Cognitive factors predicting checking, procrastination and other maladaptive behaviours: prospective versus Inhibitory Intolerance of Uncertainty

Alice Fourtounas
University of Wollongong, acf709@uowmail.edu.au

Susan J. Thomas
University of Wollongong, sthomas@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/smhpapers

Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Cognitive factors predicting checking, procrastination and other maladaptive behaviours: prospective versus Inhibitory Intolerance of Uncertainty

Abstract
Intolerance of Uncertainty (IU) is a cognitive construct which is strongly linked to psychopathology, particularly anxiety and obsessive-compulsive symptoms. IU has also been proposed to be linked to maladaptive behaviours such as checking and procrastination in uncertain situations. Additionally, two subfactors of IU have recently been identified, Prospective IU (Desire for Predictability) and Inhibitory IU (Uncertainty Paralysis). These factors may differentially predict approach and avoidance behaviours respectively, however research is lacking. This study investigated associations between IU subfactors and self-reported maladaptive behaviours. University students (n=110; 74.3% female) completed self-report measures of behaviours including checking, procrastination, general avoidance and controlling behaviours. We hypothesised that Prospective IU would be associated with checking behaviours while Inhibitory IU would be associated with procrastination. Procrastination was predicted only by Inhibitory IU, however Checking was predicted equally by Inhibitory IU and Prospective IU. The results provide the first evidence of a differentiation between the two IU subfactors in predicting maladaptive behaviours. Uncertainty Paralysis may be an important cognitive factor reflecting tendencies to freeze during uncertainty, which predicts both checking and procrastination. Checking behaviours may be associated with additional unwillingness to leave outcomes to chance. This research provides new information about specific cognitive factors associated with checking and procrastination and other maladaptive behaviours, which could potentially be targeted in interventions.

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details
Title: Cognitive Factors Predicting Checking, Procrastination and other Maladaptive Behaviours: Prospective Versus Inhibitory Intolerance of Uncertainty

Authors

1. Alice Fourtounas
 School of Psychology,
 Faculty of Social Sciences,
 University of Wollongong

Alice Fourtounas acf709@uowmail.edu.au

2. Susan J Thomas (corresponding author)
 Graduate School of Medicine
 Faculty of Science, Medicine and Health
 University of Wollongong
 Northfields Avenue
 Wollongong
 NSW
 Australia 2522

sthomas@uow.edu.au

Telephone: +61242215928
Cognitive Factors predicting Checking, Procrastination and other maladaptive behaviors: Prospective versus Inhibitory Intolerance of Uncertainty.

Abstract

Intolerance of Uncertainty (IU) is a cognitive construct which is strongly linked to psychopathology, particularly anxiety and obsessive-compulsive symptoms. IU has also been proposed to be linked to maladaptive behaviors such as checking and procrastination in uncertain situations. Additionally, two subfactors of IU have recently been identified, Prospective IU (Desire for Predictability) and Inhibitory IU (Uncertainty Paralysis). These factors may differentially predict approach and avoidance behaviors respectively, however research is lacking. This study investigated associations between IU subfactors and self-reported maladaptive behaviors. University students (n=110; 74.3% female) completed self-report measures of behaviors including checking, procrastination, general avoidance and controlling behaviors. We hypothesised that Prospective IU would be associated with checking behaviors while Inhibitory IU would be associated with procrastination. Procrastination was predicted only by Inhibitory IU, however Checking was predicted equally by Inhibitory IU and Prospective IU. The results provide the first evidence of a differentiation between the two IU subfactors in predicting maladaptive behaviors. Uncertainty Paralysis may be an important cognitive factor reflecting tendencies to freeze during uncertainty which predicts both checking and procrastination. Checking behaviors may be associated with additional unwillingness to leave outcomes to chance. This research provides new information about specific cognitive factors associated with checking and procrastination and other maladaptive behaviors, which could potentially be targeted in interventions.

Keywords: intolerance of uncertainty, procrastination, checking, prospective, inhibitory anxiety
Highlights:

- *Intolerance of Uncertainty* (IU) is a cognitive construct strongly linked to anxiety.

- We investigated its role in maladaptive behaviors including checking and procrastination.

- Two subcomponents of IU differentially predicted maladaptive behaviors.

- Procrastination was predicted only by *Inhibitory IU*.

- Checking behavior was predicted both by *Inhibitory* and *Prospective IU*.
Introduction

Intolerance of Uncertainty (IU) has recently received increasing attention as a potentially important trans-diagnostic factor spanning anxiety, obsessive-compulsive and depressive disorders. It is defined as the “tendency of a person to consider the possibility of a negative event occurring as unacceptable and threatening irrespective of the probability of its occurrence” (Carleton, Sharpe & Asmundson, 2007 pg. 1). While numerous studies have investigated links between IU and psychopathology (Birrell, Meares, Wilkinson & Freeston, 2011), its role in contributing to common maladaptive behaviours including checking, procrastination, avoidance and control has received relatively little attention.

IU was originally proposed as a specific vulnerability factor for generalised anxiety disorder (GAD; Dugas, Gosselin & Ladouceur, 2001; Dugas, Schwarz & Francis, 2004). Recent studies, however, have found associations between IU and symptoms of obsessive-compulsive disorder (OCD; Fergus & Wu, 2010), social phobia (Boelen & Reijntjes, 2009; Carleton, Collimore, & Asmundson, 2010), panic disorder (McEvoy & Mahoney, 2012; Sexton and Dugas, 2009; Carleton et al., 2013), post-traumatic stress disorder (PTSD; Fetzner et al., 2013) and depression (Yook, Kim, Suh & Lee, 2010). Despite many studies linking IU to psychopathology, questions remain about the specific nature of the construct and how it may contribute to psychopathological symptoms (Birrell, Meares, Wilkinson & Freeston, 2011). A recent review of factor analysis studies strongly suggested that the IUS is made up of two factors, both in the original 27-item and the 12-item versions (Birrell et al., 2011). Birrell et al. (2011) concludes that ‘Desire for Predictability’ and ‘Uncertainty Paralysis’ are appropriate labels for these two subfactors. Desire for Predictability comprises items that describe an active engagement in seeking certainty. It represents a desire to know what the future holds and may motivate attempts to increase predictability through seeking information and engaging in preparation and planning (Birrell et al., 2011). Uncertainty Paralysis represents a sense of being stuck and unable to respond effectively when faced with uncertainty, resulting in a paralysis of cognition and action (Birrell et al., 2011). In the Intolerance of Uncertainty Scale, Short Form (IUS-
These two subfactors are referred to as Prospective and Inhibitory IU, respectively.

Evidence suggests that the two IU subfactors are differentially associated with specific psychopathology. Uncertainty Paralysis is more strongly associated with symptoms of social anxiety, panic disorder, agoraphobia, PTSD and depression; while Desire for Predictability is more strongly associated with symptoms of OCD and GAD (Boelen, Vrinssen, van Tulder, 2010; Carleton et al. 2012; Carleton et al. 2007; McEvoy and Mahoney 2012; Fetzner et al., 2013; Boelen & Reijntjes, 2009; Gentes & Ruscio, 2011; McEvoy & Mahoney, 2011; Tolin et al., 2003). These studies suggest that while Uncertainty Paralysis may be associated more strongly with anxiety and depression symptoms generally, Desire for Predictability may be the facet of IU with the greatest specificity to checking, worry and control behaviors, seen particularly in OCD and GAD.

A number of hypotheses have been put forward to explain the differences between the two sub-factors. According to Birrell et al. (2011) these two factors represent different ways of dealing with uncertainty with Desire for Predictability reflecting approach responses and Uncertainty Paralysis reflecting avoidance responses. Berenbaum et al. (2008) further hypothesized that “Desire for Predictability may directly increase worry, while Uncertainty Paralysis likely contributes to avoidant behavior that helps maintain a pattern of worrying” (pg. 124).

Although IU is thought to be associated with particular cognitive, affective, and behavioral responses to uncertain situations (Dugas, Schwartz, & Francis, 2004), few studies have explored specific behaviors in relation to IU or its two subfactors (Luhmann, Ishida, Hajcak, 2011; Thibodeau et al., 2013). There is some evidence that IU shapes people’s behavior. In particular, those with high IU may seek more information before making decisions (Ladouceur et al., 1997; Rosen and Knauper, 2009). For example, in a study of information seeking in a health context those higher in IU were more likely to acquire health-related brochures, as a way of reducing their health worries (Rosen and Knauper, 2009). IU may also lead people to behave in ways that reduce the time spent in uncertainty, which they find difficult. Luhmann et al. (2011) found that those with higher IU were
more likely to repeatedly choose smaller and fewer probable awards if they were immediately made aware of the outcome, than larger and more probable rewards that would require a longer period of uncertainty before outcomes.

In terms of relationships between the IU subfactors and behavior, Thibodeau et al. (2013) examined this in relation to speed and accuracy of typing performance. Both subfactors were similarly associated with slower typing speed and neither were associated with typing errors. These findings are contrary to the proposal that Desire for Predictability is associated with cognitive but not behavioral responses to uncertainty, as both subfactors were associated similarly with typing performance. Other studies have explored associations between the two subfactors and behavioral symptoms of different anxiety disorders. These studies have found Uncertainty Paralysis to be associated with avoidance in panic disorder (Carleton et al., 2013), with avoidance, emotional numbness and hyperarousal (but not re-experiencing) in PTSD (Fetzner et al., 2013), and hoarding severity (both buying and keeping) among people with hoarding disorder (Oglesby, 2013). In these studies Desire for Predictability was not associated with these symptoms, suggesting that it is more predictive of cognitive rather than behavioral responses.

Checking is a behavioral response associated with psychopathology which may be useful in differentiating the two IU subfactors. Checking is primarily an approach response designed to reduce the uncertainty of possible future threat. If Desire for Predictability reflects an approach response to uncertainty and Uncertainty Paralysis an avoidance response then it would be expected that checking would be more closely related to Desire for Predictability than Uncertainty Paralysis. No prior studies have explored this possibility. Checking is common in individuals with OCD (>80%; Lind & Boschen, 2009), and is seen as a type of compulsion performed to reduce the distress and anxiety associated with obsessions. There is also evidence that checking may occur commonly in GAD. Many GAD patients report engaging in repetitive compulsive behaviors at a similar frequency and impairment level to OCD patients, with the most frequent being checking (Schut, Castonguay & Borkovec, 2001; Townsend et al., 1999). The type of checking behavior may differ, however, from
people with OCD. A recent study of undergraduate students found that OCD symptoms were associated with object and interpersonal checking, while GAD symptoms were associated only with checking in an interpersonal context (e.g. reassurance seeking; Coleman, Pieterefesa, Holaway, Coles & Heimberg, 2011). As well as being relevant to both OCD and GAD patients, previous findings support an association between checking and IU (Lind and Boschen, 2009). Using undergraduate students and a clinical OCD sample Lind and Boschen (2009) found that IU mediated the association between beliefs about responsibility to prevent harm and checking behavior. Therefore, exploring the associations of checking with the two IU subfactors will contribute to understanding the possible influence of IU beliefs on checking behavior, and potentially inform treatment approaches. If, for example, checking behaviour is associated with Desire for Predictability, interventions could aim to increase individuals’ confidence in their abilities to deal with common events, even though they involve unpredictability. If, however, checking is related to Uncertainty Paralysis, interventions could aim to shape individuals’ capacity to continue to perform goal-directed behavior even in the face of uncertainty, through exposure, behavioral experiments and reinforcement.

Procrastination is another type of behavior related to psychopathology which may also be differentially associated with the two IU subfactors. It is a form of avoidance which involves the “voluntarily delay (of) an intended course of action despite expecting to be worse off for the delay” (Steel, 2007 pg.66). Procrastination is highly common and problematic. It can not only cause practical problems but can also prolong anxiety and stress related to the task being avoided (Steel, 2007). It is particularly common for students, with up to 50% of university students acknowledging that they engage in consistent and problematic procrastination (Steel, 2007). The items making up the Uncertainty Paralysis scale describe a tendency to freeze into inertia in the face of uncertainty and this may reflect a procrastination response to uncertain tasks. Evidence suggests that anxiety and a low sense of self-efficacy are associated with greater procrastination (Haycock et al., 2011), however, no previous studies have investigated the association between IU and student procrastination.
Additional maladaptive behaviors which are prominently associated with psychopathology and uncertainty are avoidance as a general and maladaptive means of attempting to cope with stressors, and excessive attempts to control life circumstances. The recently developed Intolerance of Uncertainty Index (IUI) has subscales assessing both Avoidance and Control (Carleton et al., 2010). Measurement of these behaviors in relation to IU subfactors may help to determine the extent to which Prospective and Inhibitory IU relate to approach and avoidance behaviors respectively.

This study aims to investigate the role of cognitive constructs including IU and its subfactors Prospective IU and Inhibitory IU, and their individual roles in contributing to problematic behaviors. Specifically we aim to explore whether IU subfactors are differentially associated with types of self-reported maladaptive behaviors, including interpersonal and object checking, academic procrastination, more general avoidance, and control. These behaviors are common in student and clinical populations, and it is hoped that identifying specific cognitive constructs associated with specific maladaptive behaviors will inform models and treatment approaches.

We hypothesised that if the IU subfactors represent approach and avoidance responses then CCS Checking and IUI Control, as approach responses, will be more highly associated with Prospective IU, while Academic Procrastination and IUI Avoidance, both representing avoidance responses, will be more highly associated with Inhibitory IU, after controlling for the other IU subfactor.

1. Method

2.1 Participants

The protocol was approved by the university ethics committee. A total of 110 Participants (74.3% women) completed self-report measures online. Most participants (80%) were psychology students who received course credit for participation, while the remainder were university students of other disciplines. Most participants reported being enrolled in a Bachelor’s degree (84.4%) with the remainder enrolled in a postgraduate degree. The majority of participants (81%) were aged
between 18 to 24 years, 12% were aged 25-30 and 7% over 30. Most participants were born in
Australia and came from an English speaking background (91%). Ten (9%) of participants were born
elsewhere including Canada, Japan, Romania, Philippines, Germany, South Africa, United States,
United Kingdom and two from India. Most participants had either completed high school or
equivalent (70.6%) or a Bachelor’s degree (16.5).

2.2. Measures

The Intolerance of Uncertainty Scale, Short Form (IUS-12; Carleton, Norton, & Admundson,
2007) is a 12-item version of the original 27-item IUS (IUS-27; Freeston et al., 1994; English
translation: Buhr & Dugas, 2002), which strongly correlates with the original scale (r = 0.96; Carleton
et al., 2007). Factor analysis studies have found that the IUS-12 is made up of two subfactors
(reviewed in Birrell et al., 2011). Seven items assess the Desire for Predictability factor and five
assess the Uncertainty Paralysis factor. Previous studies have found the two subscales demonstrate
adequate internal consistency (Cronbach’s alphas of >.85; Carleton et al., 2007; McEvoy & Mahoney,
2011). Test-retest reliability over two weeks is considered satisfactory (r=.77; Khawaja and Yu, 2010).

The Intolerance of Uncertainty Index, Part B (IUI-B; Gosselin et al., 2008; English translation:
Carleton et al., 2010) is a 30-item measure that assesses manifestations of uncertainty which are
similar to common symptoms of anxiety disorders. It consists of six distinct subscales: Avoidance,
Overestimation, Doubt, Reassurance Seeking, Control and Worry. Internal consistency has been
found to be adequate for the total score and for each subscale (Carleton, Gosselin & Asmundson,
2010). Due to its recent development few other studies have yet explored other aspects of its
validity and reliability. In this study we focus on two subscales only: Avoidance and Control which are
particularly relevant to the study aims. The Avoidance subscale measures tendencies to avoid,
behaviorally or cognitively, things which are uncertain. The control subscale was developed to
measure attempts to control life circumstances to decrease uncertainties.
The Compulsive Checking Scale (CCS; Holaway, Coles, & Heimberg, 2004, in Coleman et al., 2011) is an 11-item self-report measure developed to assess compulsive checking behaviors, involving both object and interpersonal checking. The scale was designed by asking experts to rate items as being more likely to occur in OCD or GAD and retaining those items which were more likely to discriminate between these conditions. Both factors have been found to have strong internal consistency (Coleman et al., 2011; Holaway et al., 2004, as cited in Coleman et al., 2011).

The Procrastination Assessment Scale-Students (PAS-S; Solomon & Rothblum, 1984) is an 18-item self-report measure developed to assess levels of academic procrastination among university students. Test-retest reliability is adequate with correlations of .80 for the total score. Evidence supports good convergent validity of the PAS-S, with significant correlations between the PAS-S and the Beck Depression Inventory, Delay Avoidance Scale, Rosenberg Self-Esteem Scale, and students’ grade point averages. Only the first two rating scales concerning frequency and problems with procrastination were administered.

2.3. Analyses

Preliminary analyses involved calculating descriptive statistics and internal consistencies for each measure. Pearson’s correlation coefficients were then calculated to examine relationships between the study variables. A series of separate regression analyses was performed with each of the behavioral subscales (interpersonal checking, object checking, academic procrastination, IUI Avoidance and IUI Control) as dependent variables and Prospective IU and Inhibitory IU entered as independent variables, to determine the unique contribution of each variable in predicting the dependent variable.
3. Results

3.1. Descriptive Statistics and Correlational Analyses

Descriptive and reliability statistics are presented in Table 1. The results of the correlational analyses are presented in Table 2. *Desire for Predictability and Uncertainty Paralysis* were significantly positively correlated with the behavioral variables assessed (CCS, PAS-S, IUI subscales).

Inhibitory IU was significantly correlated with the PAS-S (Academic Procrastination) while *Prospective IU* was not significantly associated with PAS-S. Both IUS-12 subfactors were equally highly correlated with CCS interpersonal checking and CCS object checking.

3.3. Regression analyses of self-reported behaviors

To assess the unique contributions of each IUS-12 subfactor to self-reported behaviors, a series of hierarchical regression models was constructed with both IU subfactors entered as predictors (IVs) of each self-reported behavior (DV), including Academic Procrastination, CCS Interpersonal Checking, CCS Object Checking, IUI Avoidance and IUI Control. Collinearity statistics of tolerance and VIF indicated no problems of multicollinearity (Tabachnick et al., 2013). Mahalanobis distance value indicated no indication problematic multivariate outliers. For the majority of regression analyses the assumptions of normality, linearity and homescedasticity of residuals were considered to be met based on the inspection of plots of standardized residuals and predicted values (Tabachnick et al., 2013). However, for Object Checking there was some indication of non-normal distribution of residuals, and so this analysis was re-run using the bootstrap method and the results were found to be the same.

A summary of the results for the regression analyses can be seen in Table 3. The regression model with both IUS-12 subfactors predicting academic procrastination (PAS-S) was significant ($R^2 = 0.08$, $\hat{f}^2 = 0.08$, $F(2,106) = 4.42$, $p<0.014$), with *Inhibitory IU*, but not *Prospective IU*, explaining a unique proportion of variance in procrastination scores.
The regression model with both IUS-12 subfactors predicting CCS Interpersonal Checking was statistically significant ($R^2 = 0.29, f^2 = 0.41, F(2,106) = 21.72, p<0.0001$), explaining 29% of variance in Interpersonal Checking scores. Both Inhibitory, and Prospective, IU explained a unique proportion of variance in Interpersonal Checking scores, after controlling for the other. The regression model with both IUS-12 subfactors predicting CCS Object Checking was statistically significant ($R^2 = 0.17, f^2 = 0.2, F(2,106) = 10.57, p<0.0001$). When entered into the model together, Inhibitory, but not Prospective, IU explained a unique proportion of variance in Object Checking scores.

The regression model with both IUS subfactors predicting IUI Control was statistically significant ($R^2 = 0.40, f^2 = 0.68, F(2,106) = 35.70, p<0.0001$). Prospective, but not Inhibitory, IU explained a statistically significant unique amount of variance in Control scores. When entered into the regression model Inhibitory IU explained 1% of variance and Prospective IU 13% of variance in Control scores.

4. Discussion

We investigated the contribution of specific cognitive constructs (Intolerance of Uncertainty and its subcomponents , Prospective IU (corresponding to Desire for Predictability) and Inhibitory IU (corresponding to Uncertainty Paralysis; Birrell et al., 2011) to self-reported problematic behaviors. Maladaptive behaviors including procrastination, checking and avoidance are common in student and clinical populations, and related to psychopathology and impaired functioning. Identification of cognitive constructs associated with these problematic behaviors may present opportunities for improved and tailored interventions. The current study was the first to examine relationships between Prospective and Inhibitory IU with self-reported maladaptive behaviors (checking, procrastination, avoidance and control). It was predicted that Inhibitory and Prospective IU would be associated with avoidance and approach behaviors respectively. Findings were mostly in line with predictions, with Inhibitory IU explaining more unique variance in PAS-S academic procrastination and IUI Avoidance scores and Prospective IU explaining more unique variance in IUI Control scores.
However, contrary to hypotheses, *Prospective IU* did not explain more unique variance than *Inhibitory IU* in Object or Interpersonal Checking scores, suggesting that the two IU subfactors are both similarly related to checking behavior.

4.2. Relationships between IUS-12 subfactors and to self-reported interpersonal and object checking

As expected both IUS-12 subfactors were significantly correlated with interpersonal and object checking behaviors, demonstrating similar moderate positive relationships. This is consistent with previous studies reporting associations between measures of IU and OCD symptoms, including checking behavior (Lind & Boschen, 2009; Reuther et al., 2013; Tolin et al., 2003). Contrary to hypotheses, however, the regression analyses did not find *Prospective IU* to be a more important predictor of checking scores after controlling for *Inhibitory IU*. When both IUS-12 subfactors were added into the regression model only *Inhibitory IU* explained a statistically significant amount of variance in object checking scores. Both *Prospective* and *Inhibitory IU* explained a statistically significant amount of unique variance in interpersonal checking scores. This indicates that the variance in checking scores explained by the IU subfactors is largely shared variance, with each subfactor uniquely explaining very little additional variance. The results of this study therefore indicate that both IU subfactors are similarly linked to individuals’ self-reported engagement in checking behavior.

This is the first study to explore possible differences in association between the two IU subfactors and checking behavior. The finding of similar relationships of the two IU subfactors with checking behavior appears contrary to proposals that *Prospective IU* (*Desire for Predictability*) reflects approach behavior and *Inhibitory IU* (*Uncertainty Paralysis*) reflects avoidance behavior (e.g. Birrell et al., 2011; Berenbaum et al., 2008). It may be that the associations of the two IU subfactors with behavior may be more complicated than approach/avoidance dichotomies. People who rate highly on *Inhibitory IU/Uncertainty Paralysis* may engage in a variety of maladapative behaviors, which can be classed as both approach and avoidance behaviors. This would be consistent with the
proposal that *Uncertainty Paralysis* represents a greater severity of disorder than *Desire for Predictability* (Mahoney & McEvoy, 2012) and people rating high on *Uncertainty Paralysis* may also tend to rate highly on *Desire for Predictability*. Furthermore, the distinction between approach and avoidance behaviors is not always clear cut. Checking could actually be conceptualised as a type of avoidance behavior, if seen as an avoidance of the uncertainty and discomfort of not knowing.

4.3. Relationships between IUS-12 subfactors and self-reported procrastination

Results of the correlational analyses supported our hypothesis that *Inhibitory IU* would be more highly correlated with procrastination than *Prospective IU*. While *Inhibitory IU* was found to be positively associated with self-reported academic procrastination, *Prospective IU* was not. Furthermore, in the regression analyses *Inhibitory IU* accounted for a significant amount of unique variance in procrastination scores, after controlling for *Prospective IU*. These findings suggest that difficulty acting in the face of uncertainty (i.e. *Uncertainty Paralysis*) is a contributing factor in procrastination behavior among students. Engagement in academic studies such as writing assignments, reading, and studying for exams, usually involves facing new tasks, with inherent uncertainty. Therefore those who have difficulty in tolerating uncertainty may experience high levels of discomfort and anxiety in these situations which may contribute to a tendency to procrastinate to avoid this discomfort. This is consistent with previous research on student procrastination which has identified anxiety as a factor contributing to some students’ procrastination behavior (Haycock et al., 2011). It is also in line with previous research on IU and indecisiveness, which can be seen as a tendency to procrastinate in making decisions (Berenbaum et al., 2008).

4.4. Relationships between IUS-12 subfactors and IUI Avoidance and Control

As hypothesised, while both IUS-12 subfactors were highly positively correlated with both IUI Avoidance and Control factors, when entered into the regression analyses *Inhibitory IU* made a greater unique contribution to predicting IUI Avoidance while *Prospective IU*, made a greater unique
This supports the Prospective IU factor as reflecting a behavioral tendency to try to actively increase certainty through making plans and organising things in advance, as assessed by IUI Control (eg. *I prefer to control everything in order to decrease uncertainties*). It also suggests that the Inhibitory IU factor reflects a behavioral tendency to avoid things due to dislike of uncertainty (eg. *The possibility that a negative event may occur leads me to avoid certain activities*). The current results also indicate that a dichotomous conceptualization of Prospective IU being associated with cognitive responses and Inhibitory IU being associated with behavioral responses is too simplistic, because Prospective IU was associated with several self-reported behaviours including checking, general avoidance and control. Further research is needed to refine models of the contribution of IU and its subcomponents to maladaptive behaviors. The IUS-12 subfactors together explained a large amount of variance in IUI Avoidance (47%) and IUI Control (40%) scores. This is probably due to the IUI scales having been developed as a measure of IU, while the other behavioral measures utilised in this study were not.

4.5. Implications for interventions

There is existing support for the effectiveness of IU as a treatment target in therapy with GAD patients. Treatment approaches based on the IU model of GAD have been developed to decrease IU among patients with GAD and have been found to be effective in randomised controlled clinical trials in reducing IU and GAD symptoms (e.g. Dugas et al., 2003; Ladouceur et al., 2000; Ladouceur, Le’ger, Dugas, & Freestone, 2004). The current results provide new insights into the potential importance of Inhibitory IU (*Uncertainty Paralysis*) as a key cognitive construct associated both with excessive checking and procrastination. Further research is needed to confirm the role of Inhibitory IU in maintaining unhelpful behaviors in clinical conditions, however the current results lead to the tentative suggestion that Inhibitory IU could potentially provide a cognitive element which could be targeted in academic counselling, coaching and clinical contexts. Cognitive interventions could seek to reduce high levels of Inhibitory IU by helping clients to acquire skills to
act and make decisions more effectively under conditions of uncertainty (e.g., problem-solving skills), to identify and correct cognitive distortions which may contribute to indecision and avoidance and to practice these skills in situations involving uncertainty. Thus effective cognitive-behavioral interventions for procrastination might involve exposure to uncertainty-inducing situations, and the development of skills to take action in uncertain situations (Bredemeier & Berenbaum, 2008), perhaps through behavioral experiments, reinforcement and cognitive strategies. In the current study, excessive checking was associated both with Inhibitory IU (Uncertainty Paralysis) and with Prospective IU (Desire for Predictability). Cognitive-behavioral interventions aimed at reducing excessive checking often focus on exposure with response prevention. Further, clinical, research is needed, however if Uncertainty Paralysis is also associated with checking in clinical OCD, incorporating additional strategies targeting this tendency to become stuck when uncertain may potentially be beneficial. Such strategies could include shaping individuals’ ability to continue taking small steps towards goals even when in uncertain situations, as well as the established approach of aiming to prevent maladaptive checking responses.

4.6. Limitations and directions for future Research

Although the current study provided further evidence of the relationship between IU with self-reported maladaptive behavior, it has a number of limitations. The study involved a relatively small sample comprising university students. Future research would therefore be of interest, involving large clinical samples. Additionally, future studies could utilise behavioral and experimental measures to provide further cross-validation of the link between IU and behaviors. The cross-sectional nature of the current study also precludes making causal interpretations. Longitudinal research is therefore required to explore the temporal ordering of the variables, as while IU beliefs may influence behavior, behavior is also likely to influence how people rate themselves on the IU. A mediational model could also be explored using longitudinal data where behavioral variables are considered as potential mediators of the association between IU and psychopathological symptoms.
4.7. Conclusions

The results of the current study extend prior research on relations between IU and maladaptive behavior. The results provide the first evidence of an association between the IU subfactors and self-reported behaviors of procrastination and checking. Furthermore, the findings provide some evidence of differentiation between the two IU subfactors, with only Inhibitory IU (Uncertainty Paralysis) predicting academic procrastination. This provides support for proposals that Uncertainty Paralysis reflects a tendency to freeze into inertia in some situations, whereas Desire for Predictability does not. While further research is needed, these results provide new information which may potentially inform interventions targeting Uncertainty Paralysis with the aim of reducing procrastination, a pervasive problem in clinical and student populations. Additionally, they suggest the potential importance of targeting both Uncertainty Paralysis and Desire for Predictability in treatments for excessive checking.

REFERENCES

Table 1. Descriptive statistics for study variables (N=109)

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>Possible Range</th>
<th>Range</th>
<th>Mean</th>
<th>SD</th>
<th>Skewness (S.E.)</th>
<th>Kurtosis (S.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUS-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty Paralysis</td>
<td>0.90</td>
<td>5-25</td>
<td>5-23</td>
<td>11.19</td>
<td>4.80</td>
<td>0.64 (0.23)</td>
<td>-0.59 (0.46)</td>
</tr>
<tr>
<td>Desire for Predictability</td>
<td>0.89</td>
<td>7-35</td>
<td>7-31</td>
<td>18.53</td>
<td>5.79</td>
<td>-0.04 (0.23)</td>
<td>-0.46</td>
</tr>
<tr>
<td>Behavioural measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procrastination (PASS)</td>
<td>0.89</td>
<td>12-60</td>
<td>17-60</td>
<td>36.43</td>
<td>9.25</td>
<td>0.09 (0.23)</td>
<td>-0.21</td>
</tr>
<tr>
<td>CCS Interpersonal checking</td>
<td>0.89</td>
<td>0-54</td>
<td>2-54</td>
<td>23.21</td>
<td>12.99</td>
<td>0.30 (0.23)</td>
<td>-0.94</td>
</tr>
<tr>
<td>CCS Object checking</td>
<td>0.93</td>
<td>0-45</td>
<td>0-39</td>
<td>9.72</td>
<td>11.31</td>
<td>1.02 (0.23)</td>
<td>-0.19</td>
</tr>
<tr>
<td>IUI Avoidance</td>
<td>0.82</td>
<td>5-25</td>
<td>4-19</td>
<td>9.90</td>
<td>5.81</td>
<td>0.45 (0.23)</td>
<td>-1.03</td>
</tr>
<tr>
<td>IUI Control</td>
<td>0.91</td>
<td>5-25</td>
<td>5-25</td>
<td>12.36</td>
<td>5.81</td>
<td>0.31 (0.23)</td>
<td>-1.04</td>
</tr>
<tr>
<td>IUI Reassurance seeking</td>
<td>0.89</td>
<td>5-25</td>
<td>5-25</td>
<td>14.88</td>
<td>5.41</td>
<td>-0.32 (0.23)</td>
<td>-0.83</td>
</tr>
<tr>
<td>IUI Overestimation</td>
<td>0.95</td>
<td>5-25</td>
<td>5-25</td>
<td>14.63</td>
<td>5.83</td>
<td>-0.36 (0.23)</td>
<td>-0.93</td>
</tr>
<tr>
<td>IUI Doubt</td>
<td>0.89</td>
<td>5-25</td>
<td>5-24</td>
<td>15.17</td>
<td>5.11</td>
<td>-0.31 (0.23)</td>
<td>-0.70</td>
</tr>
<tr>
<td>IUI Worry</td>
<td>0.92</td>
<td>5-25</td>
<td>5-25</td>
<td>14.38</td>
<td>5.26</td>
<td>-0.18 (0.23)</td>
<td>-0.83</td>
</tr>
</tbody>
</table>

Note: IUS-12: Intolerance of Uncertainty Scale-12; PASS: Procrastination Assessment Scale for Students; CCS: Compulsive Checking Scale; IUI: Intolerance of Uncertainty Index; SD: Standard Deviation; S.E.: Standard Error.
Table 2. Pearson’s r correlation coefficients between study variables (N=99)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUS-12 subscales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Prospective IU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Inhibitory IU</td>
<td></td>
<td>.76**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Academic Procrastination (PAS-S)</td>
<td>.13</td>
<td>.26**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Interpersonal checking</td>
<td></td>
<td>.49**</td>
<td>.52**</td>
<td>.38**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Object checking</td>
<td></td>
<td>.36**</td>
<td>.40**</td>
<td>.17</td>
<td>.48**</td>
<td></td>
</tr>
<tr>
<td>6. IUI Avoidance</td>
<td></td>
<td>.62**</td>
<td>.65**</td>
<td>.40**</td>
<td>.51**</td>
<td>.41**</td>
</tr>
<tr>
<td>7. IUI Control</td>
<td></td>
<td>.52**</td>
<td>.63**</td>
<td>.23*</td>
<td>.57**</td>
<td>.40**</td>
</tr>
</tbody>
</table>

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).
Table 3. Summary of regression analyses with IUS-12 Prospective and Inhibitory IU subfactors as independent variables and behavioural measures as dependent variables

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent variables</th>
<th>β</th>
<th>SE</th>
<th>t</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAS-S Procrastination</td>
<td>Prospective IU</td>
<td>-0.15</td>
<td>.23</td>
<td>.70</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>Inhibitory IU</td>
<td>0.37</td>
<td>.28</td>
<td>3.4</td>
<td>.001</td>
</tr>
<tr>
<td>CCS Interpersonal Checking</td>
<td>Prospective IU</td>
<td>0.24</td>
<td>.27</td>
<td>2.3</td>
<td>.023</td>
</tr>
<tr>
<td></td>
<td>Inhibitory IU</td>
<td>0.33</td>
<td>.34</td>
<td>2.6</td>
<td>.011</td>
</tr>
<tr>
<td>CCS Object Checking</td>
<td>Prospective IU</td>
<td>0.14</td>
<td>.26</td>
<td>1.2</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>Inhibitory IU</td>
<td>0.29</td>
<td>.32</td>
<td>2.1</td>
<td>.039</td>
</tr>
<tr>
<td>IUI Avoidance</td>
<td>Prospective IU</td>
<td>0.30</td>
<td>.10</td>
<td>4.1</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>Inhibitory IU</td>
<td>0.43</td>
<td>.08</td>
<td>4.0</td>
<td><.001</td>
</tr>
<tr>
<td>IUI Control</td>
<td>Prospective IU</td>
<td>0.55</td>
<td>.11</td>
<td>5.0</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>Inhibitory IU</td>
<td>0.11</td>
<td>.44</td>
<td>.97</td>
<td>.33</td>
</tr>
</tbody>
</table>

Abbreviations: Intolerance of Uncertainty Index; IUS-12; CCS: Compulsive Checking Scale; PASS: Procrastination Assessment Scale for Students; IUI: Intolerance of Uncertainty Scale-12.