2019

Effects of IPA treatment on the photovoltaic performance of bulk heterojunction organic solar cells

Ali Aghassi
University of Wollongong, aa009@uowmail.edu.au

Cormac Fay
University of Wollongong, cfay@uow.edu.au

Publication Details
Effects of IPA treatment on the photovoltaic performance of bulk heterojunction organic solar cells

Abstract
The treatment of the bulk heterojunction (BHJ) active layer by polar solvents such as alcohols is regarded as a simple, yet effective technique to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). This study investigated the impact of isopropyl alcohol (IPA) on the photovoltaic performance of two BHJ solar cell devices composed of (a) Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-|(4′,7′-di-2-thienyl-2’,1’,3′-benzothiadiazole)] (PCDTBT) and (b) 7,7′-[4,4-Bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b’] dithiophene-2,6-diyl]bis [6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole (p-DTS(FBTTh 2) 2 as donors and [6,6]-phenyl-C61-butyric acid methyl ester (PC 60 BM) as the acceptor in both instances. The physical characteristics of the active layers before and after the treatment were established by UV-Vis absorption and water contact angle measurements. The photovoltaic characteristics of the devices were measured using current density-voltage and external quantum efficiency (EQE) measurements. In addition, a light-intensity dependency technique was employed to study the recombination dynamics of charge carriers under steady-state conditions. The finding reveals that the characteristics of the films remain almost unchanged and that none of the key factors contributing to the PCE of the solar cells were significantly influenced by the IPA treatment. It is thus concluded that the treatment with IPA may not be an effective method to enhance the photovoltaic performance of solar cell devices, as opposed to reports within the literature.

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/3494
Effects of IPA treatment on the photovoltaic performance of bulk heterojunction organic solar cells

Ali Aghassi*, Cormac D. Fay

Intelligent Polymer Research Institute, AIIM Faculty, University of Wollongong, Innovation Campus, Squires Way, Wollongong, NSW 2522, Australia.

Corresponding Author
E-mail: aa009@uowmail.edu.au (Ali Aghassi, Ph.D.)

Keywords: Solvent treatment, IPA, polymer solar cells, small molecule, bulk heterojunction, mobility, trap-assisted recombination, water contact angle.
Abstract

The treatment of the bulk heterojunction (BHJ) active layer by polar solvents such as alcohols is regarded as a simple, yet effective technique to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). This study investigated the impact of isopropyl alcohol (IPA) on the photovoltaic performance of two BHJ solar cell devices composed of (a) Poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)] (PCDTBT) and (b) 7,7’-[4,4-Bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b’]dithiophene-2,6-diyl]bis[6-fluoro-4-(5’-hexyl-[2,2’-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole (p-DTS(FBTTh)2) as donors and [6,6]-phenyl-C61-butyric acid methyl ester(PC60BM) as the acceptor in both instances. The physical characteristics of the active layers before and after the treatment were established by UV-Vis absorption and water contact angle measurements. The photovoltaic characteristics of the devices were measured using current density-voltage and external quantum efficiency (EQE) measurements. In addition, a light-intensity dependency technique was employed to study the recombination dynamics of charge carriers under steady-state conditions. The finding reveals that the characteristics of the films remain almost unchanged and that none of the key factors contributing to the PCE of the solar cells were significantly influenced by the IPA treatment. It is thus concluded that the treatment with IPA may not be an effective method to enhance the photovoltaic performance of solar cell devices, as opposed to reports within the literature.
1. Introduction

Solution-processed bulk heterojunction (BHJ) organic solar cells (OSCs) have been studied extensively during the past decade. This is due to their promising potential for developing low-cost, lightweight, and flexible photovoltaic devices [1]. The power conversion efficiency (PCE) of BHJ OSCs have made impressive progress during the last 10 years with currently reported efficiencies reaching ca. 14% [2,3]. However, they are still lagging behind their silicon-based counterpart in terms of their efficiency and operational lifetime - for commercial purposes, further enhancement of the device performance is required. Numerous approaches have been investigated to enhance the PCE of the BHJ OSC including developing new materials [4–6], improving device architecture [7], the introduction of additives [8], post-production solvent treatments [9–19], and interface engineering [20,21].

Several studies have shown that the overall performance of OSC can be enhanced as high as 30% (depending on BHJ system and used alcohol) as a result of solvent treatment using alcohols [9,19]. One particular advantage of this approach is that alcohols can be directly applied to the active layer due to the poor solubility of the donor and acceptor materials. The solvent treatment is typically performed by direct exposure of the active layer to a pure alcohol solution for a given time, followed by the removal of the residual by means of spin coating. Methanol is the commonly employed alcohol to treat the BHJ active layers. It is reported that methanol treatment gives rise to enhanced built-in voltage, reduction of series resistance, increased charge carrier mobility and suppressed charge carrier recombination in solar cell devices composed of PTB7:PC_{70}BM bulk heterojunction [19]. The positive impact of the methanol treatment was mainly attributed to the optimization of nanoscale phase separation [11,12]. This was mainly correlated with the redistribution of the PCBM molecules within the BHJ resulting in dwelling more PCBM molecules near the top surface [13–16]. There are also other reasons reported in the literature including interface
modification between BHJ and poly(3,4-ethylene dioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) layer [18], and energy barrier reduction between the active layer/metal electrode [9].

While the effect of methanol treatment has been extensively investigated, there are only a few reports in the literature considering the impact of other alcohols on the performance of organic solar cells [9,12,17]. Isopropyl alcohol (IPA, 2-propanol) is among the solvents whose impact has been investigated within a few BHJ systems. Guo et al. [9] have shown that the photovoltaic parameters of PTB7:PC71BM BHJ solar cells improved “to a certain extent” following treatment with IPA; a relatively moderate increase of V_{oc} (from 0.62 to 0.66 V), FF (from 50 to 52) and J_{sc} (from 14.58 to 15.32 mA cm$^{-2}$) was observed in devices treated with IPA. They have observed no changes in the thickness, crystallinity, optical properties, and surface roughness of the active layer before and after solvent treatment. However, the authors claimed that IPA treatment results in phase separation structures with smaller domains, which led to the improvement of separation, transportation, and collection of charge carriers [9]. Conversely, a lower power conversion efficiency (PCE) was observed when solar cell devices composed of PCDTBT:PC71BM BHJ was treated with IPA, owing primarily to the reduction of short-circuit current (J_{sc}). The reduction was further correlated to the extremely uneven surface of the active layer arising from IPA treatment, which gave rise to the trapping of charge carriers [22]. Furthermore, when PTB7:PC71BM BHJ solar cells were subjected to IPA treatment out using a solvent vapor annealing (SVA) method, the power conversion efficiency of the devices remains almost similar to as-cast devices [23]. It was also reported that surface morphology and charge carrier mobility of devices did not change significantly upon the SVA treatment with IPA. It is therefore evident from the abovementioned contrary results that a thorough study is required to determine whether post-treatment using IPA can be an effective method to enhance PCE of the organic solar cells.
The focus of this study is to systematically examine the impact of the IPA treatment on the key factors determining the PCE of the organic solar cells. To achieve that two bulk heterojunction solar cells consisting of PCDTBT:PC$_{60}$BM and p-DTS(FBBTh$_2$)$_2$:PC$_{60}$BM were subjected to post-production solvent treatment using isopropyl alcohol. The amount of IPA used for the treatment of the active layers was 10, 20, and 35 µl. The result of the treatment with 35 µl are only discussed in the following sections and the current density-voltage measurement of all devices treated with IPA are summarized in electronic supplementary information (ESI) (Table S1, Table S2). It was determined that 35 µl of IPA not only fully covered the surface area of the substrate but also remained on top of the active layer over the course of the treatment (1 min). This is similar to the method reported previously [22]. Subsequently, the impact of IPA treatment was probed using a variety of techniques including current density-voltage measurement (J-V), external quantum efficiency (EQE), UV-Vis absorption, light-intensity dependency and photo-induced charge extraction by linearly increasing voltage (photo-CELIV). In addition, water contact angle (WCA) measurements were used to study the surface composition of the active layer before and after IPA treatment. As a result of this investigation, the impact of the post-treatment on the charge carriers generation, collection, mobility, and recombination is elucidated.
2. Materials and methods

2.1. Materials

PCDTBT (purity of > 99.5%, Solaris Chem. Inc.), 7,7′-[4,4-Bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diy]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole (p-DTS(FBTTh$_2$)$_2$) (purity of > 99.5%, 1-Material), and PC$_{60}$BM ((purity of > 99.5%, Solaris Chem. Inc.) (Figure 1a), chlorobenzene (CB) (anhydrous, purity of > 99.9%, Sigma-Aldrich), 1,8-diiodooctane (DIO) (Sigma-Aldrich), 1,2-dichlorobenzene (o-DCB) (anhydrous, purity of > 99.9%, Sigma-Aldrich), isopropyl alcohol (IPA) (Sigma-Aldrich) were available commercially and used as received. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) solution (PEDOT:PSS) (CleviosTM PV P AI4083) was supplied by “Heraeus Deutschland GmbH & Co.” and kept within a dark environment and also under ambient temperature and pressure.

2.2. Device fabrication

A conventional device structure consisting of ITO/PEDOT:PSS/BHJ active layer/A was used throughout this study (Figure 1b). The ITO-coated glass (Rs ≤ 15 Ω sq$^{-1}$, Xin Yan Technology LTD) were sonicated sequentially in deionized water, acetone, and IPA, and subsequently treated with UV-Ozone for 20 minutes. The PEDOT:PSS solution was cast at 5000 rpm for 45 s to form a 30-40 nm thick layer. The PEDOT:PSS coated substrates were then subject to thermal annealing for 10 min at 120 °C. The active layer solutions composed of PCDTBT:PC$_{60}$BM (1:4 donor/acceptor ratio, 20 mg/ml) and p-DTS(FBBTh$_2$)$_2$:PC$_{60}$BM (1:1.5 donor/acceptor ratio, 35 mg/ml) were spin-coated on top of the PEDOT:PSS layer to form the active layer with a thickness of 80 ± 5 nm and 100 ± 5 nm, respectively. The thickness of the active layer was measured by a stylus surface profiler (Dektak 150, Veeco). The devices with small molecule active layer were left in the glove box environment for a
Figure 1. (a) Chemical structures of p-DTS(FBTTh$_2$)$_2$, PCDTBT and PC$_{60}$BM. (b) Schematic of the conventional architecture of organic solar cells used in this study. Further 30 min, followed by annealing at 70 °C for 10 min and 80 °C for 5 min, in order to remove the residual solvent within the bulk. The IPA treatment of the active layer was carried out before deposition of cathode electrode by dropping 35 µl on top of the active layer and removing the residual alcohol after 60 s (after IPA fully covered substrate surface) via spin casting at 1000 rpm for 60 s. The cathode electrode was finally deposited by thermal evaporation of 100 nm of aluminum (AVT Services Thermal Evaporator). The active area of the fabricated device was 0.06 cm2.

2.3. UV-Vis absorption

A UV-VIS-NIR spectrophotometer (Shimadzu, UV-3600) was used to measure the UV-Vis absorption profile of the BHJ films. The baseline was corrected for through glass absorption using a single point adjustment at 800 nm.

2.4. Current density-voltage measurement

A simulated white light illumination of 100 mW cm$^{-2}$ (PV Measurement Inc.) was used to study the device characteristics. The irradiance was calibrated with a standard silicon photovoltaics certified by the National Renewable Energy Laboratory. All encapsulated solar cells were tested in ambient air.

2.5. Incident photon-to-collected electron (IPCE)

External quantum efficiency was measured using a QEX10 quantum efficiency measurement system (PV Measurement Inc.). AC mode was chosen for both calibration and
measurement. An increment of 10 nm was set to record the photocurrent response of the device.

2.6. Photo-induced charge extraction with linearly increased voltage (Photo-CELIV):

Photo-CELIV measurements were performed using a nanosecond switch (Asama Lab., SR-05). The role of the switch was to retain the device at open circuit conditions (2.2 MΩ impedance) for a well-defined, adjustable time delay after charge generation [24]. The device was excited by a laser pulse (532 nm, 10 Hz repetition rate) from a Nd:YAG laser (Spectra-Physics, INDI-40-10), while biased at a voltage similar to the open-circuit potential of the devices in order to compensate for charge extraction under the built-in electric field. The device was kept at open-circuit conditions for an adjustable time delay set by a time delay generator (Stanford Research System, DG535). Then, the photogenerated charge carriers were extracted using a linearly increasing voltage pulse applied by a function generator (NF Corporation, WF1973.). A digital oscilloscope (Tektronix, DPO4054) was employed to record the transient photocurrent (50 Ω input impedance).
3. Results and discussion

3.1. Light and dark current density-voltage measurement

The effect of IPA treatment on the performance of the solar cell devices (a composite of PCDTBT:PC$_{60}$BM blended film) was investigated. Figure 2a shows current density versus voltage ($J-V$) characteristics of the devices with and without IPA treatment; under air mass of 1.5 (AM 1.5 G) and illumination at 100 W cm$^{-2}$. The control device shows open-circuit potential (V_{oc}) of 910 ± 7 mV, short-circuit current density (J_{sc}) of 7.8 ± 0.4 mA cm$^{-2}$, fill factor (FF) of 61.2 ± 3.2 resulting in a power conversion efficiency (PCE) of 4.3 ± 0.2 % (average of 10 devices). When the surface of the active layer was treated with 35 μl of IPA, the photovoltaic parameters of the devices - namely, V_{oc} (904 ± 12 mV), J_{sc} (7.7 ± 0.5 mA cm$^{-2}$) and FF (58 ± 5.8) - decreased slightly, exhibiting a PCE of 4.04 ± 0.1% (average of 10 devices, Table S1, ESI). The decrease of device performance resulted, primarily, from the fill factor reduction. This implies that the recombination of charge carriers may increase after treatment of the active layer with isopropyl alcohol. These results are in contradiction with the findings reported by Guo et al., suggesting that IPA treatment enhanced all photovoltaic parameters of solar cells based on PTB7:PC$_{71}$BM BHJ [9]. Another report shows that IPA improved both V_{oc} and FF of PCDTBT:PC$_{71}$BM devices, whereas the J_{sc} was decreased, which resulted in the reduction of device overall efficiency [22].

It is reported that the enhancement of V_{oc} following solvent treatment (by methanol) could be due to enhancement of turn-on voltage and subsequently built-in potential (V_{bi}) [19]. The turn-on voltage is an indication of built-in voltage that influences the internal electric field in BHJ solar cells and determines the maximum attainable V_{oc} provided that difference of electrodes’ work functions is larger than the offset between HOMO-donor and acceptor-LUMO [19]. To understand the impact of IPA treatment on the turn-on voltage and V_{bi}, dark characteristics of the devices before and after the treatment were studied (Figure 2b). It is
clear that there is only quite small difference between dark currents characteristics of the
solar cell devices. Both control and IPA treated devices show quite identical turn-on voltage
around 0.9 V. This indicates that the built-in voltage (V_{bi}) of the devices was not enhanced
upon treatment. Thus, it can be inferred that unaffected V_{oc} under illumination is associated
with unaltered V_{bi}.
Figure 2. Comparison of current density-voltage characteristics of the PCDTBT:PC$_{60}$BM solar cell devices before and after treatment with IPA (a) top - under illumination of 100 mW cm$^{-2}$, (b) bottom - in the dark.
3.2. EQE and UV-Vis absorption

The EQE spectra of the devices with and without IPA treatment from 300 to 800 nm is presented in Figure 3a (3 devices, see also Figure S1, ESI). The EQE measurement indicates the percentage of incoming photons that are collected as charge carriers (electrons and holes) at the respective electrodes. The EQE of the control device has two distinct peaks approaching almost ca. 60%, whereas the EQE of the IPA treated device has similar characteristics with a slightly lower value - specifically in the range from 360 to 600 nm. In addition, the J_{sc} values, obtained by integration of the EQE spectra of the control and IPA treated devices are 8.14 mA cm$^{-2}$ and 8 mA cm$^{-2}$, respectively. These results show that IPA treatment slightly decreases the efficiency of photons to electrons (holes) conversion. The loss in EQE may be a result of a reduction of light absorption, a reduction of charge carrier generation or an increase of charge carrier recombination within the bulk heterojunction [25].

To study the effect of IPA on the light absorption of the active layer, UV-Vis absorption spectroscopy was carried out. Figure 3b shows the absorption spectra of the active layer prior to and after treatment with IPA. The absorption of the PCDTBT:PC$_{60}$BM BHJ film subjected to isopropyl alcohol decreases from 350 to 600 nm and then increases marginally between 600 to 800 nm compared to the pristine BHJ film. It can be seen that the absorption peak of PCDTBT between 500 - 650 nm did not reduce significantly, nor was it red shifted. This indicates that the crystallinity of PCDTBT remained almost unaffected following IPA treatment. As such, absorption difference of the films can be due to either thickness alteration of the active layer film or internal reconstruction of donor phase [18,19]. The thickness of PCDTBT:PC$_{60}$BM BHJ was measured (using a surface profilometer) before and after IPA treatment and no substantial changes in the film thickness (80 ± 5 nm) were verified. It is, therefore, speculated that redistribution of PC$_{60}$BM molecules (reconstruction of donor
Figure 3. (a) EQE and (b) UV-Vis spectra of the PCDTBT:PC$_{60}$BM blend film before (black line) and after (red line) treatment with 35 µl of IPA.
phase) within the active layer may be responsible for the observed reduction. Previous studies have shown that the IPA treatment can result in different impacts on the absorption characteristics, depending on the BHJ systems. For example, absorption of P3HT:PCBM BHJ film was reduced upon treatment with IPA largely due to the aggregation of PCBM molecules [12]. It is suggested that PCBM molecules tend to aggregate to reduce the contact area with the polar solvent [26]. In contrast, the absorption of the BHJ films composed of PCDTBT:PC$_{70}$BM and PTB7:PC$_{70}$BM remained almost unchanged after the treatment. This was further correlated with unaltered crystallinity and thickness of the bulk heterojunction films [9,22].

3.3. Water contact angle measurement

Several studies have reported that polar solvent treatment (specifically methanol) causes vertical redistribution of the active layer components, leading to increase PCBM content on the top surface (more hydrophilic surface). It was proposed that the fast evaporation of the penetrated methanol in the bulk and its inter-solubility with remnants of active layer solvent (DCB) could drive PCBM molecules to the top surface [12,14]. To examine the influence of the IPA on the vertical redistribution of the active layer component, surface properties of the PCDTBT:PC$_{60}$BM blend film was studied using a water contact angle analysis technique. The contact angle of the blended film without treatment was 96 ± 1.5° (3 film samples each measured three times, i.e. 9 measurement in total, see Figure 4a and Figure S2, ESI). This indicates that the surface is relatively hydrophobic with a higher concentration of the PCDTBT polymer on the top surface of the blended film. This can be attributed to the higher surface energy of conjugated polymers compared with fullerene derivative. As a result, the polymer tends to accumulate on the top surface of the active layer in order to reduce the overall energy [14,27]. Following exposure of the active layer to isopropyl alcohol, the contact angle of the films remained at the same level (3 film samples each measured
Figure 4. Photos of a water droplet on top of PCDTBT:PC60BM blend film treated (a) without and (b) with 35 μl of IPA.

three times, i.e. 9 measurements in total, see Figure 4b, and Figure S2, ESI), suggesting that the surface content of the bulk heterojunction was not altered. Given the mechanism proposed for methanol, it can be thus surmised that isopropyl alcohol does not substantially drive the PCBM molecules to the top surface of BHJ. This may be due to the relatively high boiling point of the isopropyl alcohol, preventing fast evaporation.

3.4. Charge carrier generation and collection

To further study the influence of the IPA on the optical properties of the solar cell devices, the photocurrent density (J_{ph}) was examined with respect to the effective voltage (V_{int}). Figure 5a shows the photocurrent density of the devices as a function of effective voltage. The photocurrent density is defined as $J_{ph} = J_L - J_D$ where J_L current density obtained under illumination and J_D is dark current. The effective voltage (also called internal voltage) is the voltage difference ($V_{int} = V_{bi} - V_{app}$) between the applied voltage (V_{app}) and the voltage at which the photocurrent density is zero (built-in voltage, V_{bi}). The effective voltage determines the strength of the electric field within the device and is an indication of driving force for charge extraction. At low effective voltages (< 0.1 V), the photocurrent linearly increases with voltage (Figure 5a). This indicates the competition between the drift and the diffusion of photogenerated charges carriers toward the electrodes [28,29]. The photocurrent density starts to saturate at around 0.2 V and reaches a plateau (saturated regime) at higher
Figure 5. (a) Photocurrent density and (b) charge collection probability as a function of effective voltage (V_{int}) of the PCDTBT:PC$_{60}$BM solar cell devices with (red line) and without (black line) IPA treatment.
effective voltage. This shows that at the saturation regime (high effective voltages and strong
electric fields), photo-induced generated excitons are efficiently dissociated into free charge
carrier at the interface between donor and acceptor. It can be seen from Figure 4a that
treatment with IPA did not change the photocurrent characteristics of the devices across all
effective voltages. The saturated photocurrent density is only limited by the number of
absorbed incident photons and can be calculated as follows:

\[J_{\text{ph,sat}} = edG_{\text{max}} \]

where \(e \) is elementary charge (1.60217662 \times 10^{-19} \text{ C}), \(d \) stands for the thickness of the active
layer (80 nm) and \(G_{\text{max}} \) is the maximum photo-induced charge carrier generation rate per unit
volume. The calculated values of \(G_{\text{max}} \) for the control device and the device treated with 35 \(\mu l \)
of IPA are \(6.971 \times 10^{27} \text{ m}^{-3} \text{ s}^{-1} \) \(89.34 \text{ A m}^{-2} \) and \(6.952 \times 10^{27} \text{ m}^{-3} \text{ s}^{-1} \) \(89.1 \text{ A m}^{-2} \),
respectively (4 devices summarized in Table S3 and 4 devices summarized in Table S4, ESI).
The \(G_{\text{max}} \) values are almost comparable, which implies that maximum numbers of bound
electron-hole pairs that can contribute to the photocurrent have not been affected by the IPA
treatment. At saturation, where the photocurrent is independent of temperature and voltage,
\(G_{\text{max}} \) is mainly governed by the number of absorbed photons [30,31]. As such, any changes in
\(G_{\text{max}} \) can be correlated to the alterations in the absorption (optical properties) of the active
layer films. Although a slight decrease in absorption was observed (Figure 3b), the overall
excitons generation appears to be unaffected upon the solvent treatment. It should also be
mentioned that not all of the generated charge carriers can be collected at the respective
electrodes. The photocurrent density can be expressed in terms of bias-dependent collection
probability \((P_c) \) of charge carriers at the electrodes prior to recombination, as follows:

\[J_{\text{ph}} = edG_{\text{max}}P_c \]

which, from equation 1 and 2, \(P_c \) can be calculated by normalizing \(J_{\text{ph}} \) with \(J_{\text{ph,sat}} \). \(P_c \)
approaches unity at sufficiently high effective voltages (reverse bias), which corresponds
with the complete collection of charge carriers at their respective electrodes. Conversely, \(P_c \)
decreases at low internal voltages (forward bias) where charge recombination becomes
increasingly important [32,33]. As shown in Figure 5b, the \(P_c \) characteristic of the IPA treated
device is virtually identical across a range of effective voltages compared with the control
device. Thus, both charge generation and collections characteristics have not been affected by
the IPA treatment - two factors which significantly contribute to \(J_{sc} \) and fill factor.

3.5. Charge carrier recombination and mobility

In order to gain more of an understanding of recombination dynamics of charge
carriers, the variation of \(J_{sc} \) was studied as a function of incident light intensity prior to and
after treatment with IPA. Previous studies have shown a power law dependence between \(J_{sc} \)
and light intensity (I),

\[
J_{sc} \propto I^\alpha
\]

where \(I \) is the light intensity and \(\alpha \) is the exponential factor [32,34–36]. The \(\alpha \) exponent
demonstrates the strength of the bimolecular recombination under short-circuit conditions.
The higher the \(\alpha \) value (close to unity), the weaker bimolecular recombination is under short-
circuit conditions. In Figure 6a, \(J_{sc} \) of the devices is plotted against light intensity (log-log
scale) and subsequently fitted to a power law. Prior to the solvent treatment, the \(\alpha \) value was
estimated to be 0.81. Following treatment with IPA, the \(\alpha \) value remained unchanged (6
devices summarized in Table S5 and 4 devices summarized in Table S6, ESI). This implies
that the recombination dynamics of charge carriers at short-circuit conditions are not
influenced by the solvent treatment. Furthermore, the values of \(\alpha \) (deviation from unity)
suggest that charge carriers are likely annihilated via the bimolecular recombination
mechanism under short-circuit conditions provided that the space-charge
Figure 6. (a) short-circuit current density and (b) open-circuit potential plotted as a function of the light intensity of the PCDTBT:PC$_{60}$BM solar cell devices before and after treatment with IPA.
effect and variation of mobility between electrons and holes are negligible [32,34–36].

To examine the space charge and mobility effects on the deviation of α from unity, the charge carrier mobility of the devices was measured using Photo-CELIV technique (Figure S3, ESI). The obtained mobility values for the control device and IPA-treated device were 1.54×10^{-5} cm2 V$^{-1}$ s$^{-1}$ and 1.49×10^{-5} cm2 V$^{-1}$ s$^{-1}$, respectively (2 devices summarized in Table S7, ESI). The mobility values are close to the values reported in the literature (ranging from 3 to 5×10^{-5} cm2 V$^{-1}$ s$^{-1}$) [22,37,38]. Therefore, the reduction of α values could not be attributed to space charge effects or mobility discrepancies between holes and electrons across the active layer. Instead, the bimolecular recombination could account for such a reduction. It is worth pointing out that the mobility before and after the treatment is very similar and within experimental error. It is shown that the solvent treatment typically results in a more balanced charge carrier transport within the active layer by largely enhancing the hole mobility [14,18,19]. Although the individual charge carrier mobility cannot be determined separately, the mobility obtained from Photo-CELIV technique can be argued to be average mobility of both electrons and holes [39]. As such, any enhancement in either charge carrier due to the solvent treatment could improve the average (overall) mobility of the devices. This is clearly not observed here. Given the unchanged mobility, the reduction of fill factor can be assigned to the increase of charge carrier recombination after direct exposure of the active layer to isopropyl alcohol.

Similar to short-circuit conditions, recombination dynamics of the charge carriers can be studied at open-circuit conditions with respect to incident light-intensity variation. At open-circuit conditions, all photogenerated charge carriers recombine, and as a result, there is no net current. For pure bimolecular recombination, the slope of V_{oc} versus natural logarithm of light intensity is equal to kT/e (0.02586 V), where k, T, and e are Boltzmann constant, temperature in Kelvin and elementary charge, respectively. When an additional
recombination process is involved, e.g., Shockley-Read-Hall (SRH) or trap-assisted recombination, a stronger dependence of \(V_{oc} \) on light intensity is observed with a slope greater than \(kT/e \). Figure 6b shows the slopes for the solar cell devices before and after treatment with IPA obtained by plotting \(V_{oc} \) versus various light intensities. The control device demonstrates a slope of 1.08 \(kT/e \), whereas a slightly larger slope (1.16 \(kT/e \)) was achieved for the devices subjected to IPA treatment (Tables S5 and S6, ESI). The results suggest that bimolecular recombination is the dominant mechanism at open-circuit conditions. Moreover, a stronger dependence of \(V_{oc} \) on light-intensity implies that trap-assisted recombination was slightly intensified upon treatment with IPA. The trap-assisted recombination is significantly dependent on the mobility of the charge carriers [40]. Given that there are no substantial differences between charge carrier mobility before and after the treatment, it is speculated that trapping centers were augmented following the solvent treatment. It is indeed reported that the smooth surface of PCDTBT:PCBM was altered to an extremely uneven surface due to the appearance of anomalous hills following treatment with isopropyl alcohol [22]. Therefore, considering all circumstances the reduction of fill factor and short-circuit current may arise from an increase of trap-assisted recombination following the solvent treatment. While the above results support the scope of this study, it would be advantageous to directly investigate the morphology of the bulk heterojunction before and after IPA treatment by using Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) and/or Atomic Force Microscopy (AFM) techniques. This may be lead to deeper understanding of the treatment impact, but it is outside the focus of this paper.
3.6. Small molecule-based BHJ solar cells

To gain more of an understanding regarding the effect of solvent treatment with IPA, a similar approach was applied to small molecule-based bulk heterojunction solar cells. Figures 7a and 7b present the J-V characteristics of the p-DTS(FBTTh₂):PC₆₀BM BHJ devices in the dark and under 100 mW cm⁻² irradiation. The EQE profiles of the devices before and after treatment with IPA are also presented in Figure 7c. The photovoltaic characteristics of the control device and IPA treated devices are summarized in Table 1. Obviously, photovoltaic parameters of the SM BHJ devices following treatment with IPA exhibit imperceptible changes compared to the control devices. The EQE of the devices is almost identical across the spectra. In addition, the absorption of the SM film subjected to IPA treatment was declined specifically between 500 to 700 nm (Figure S4, ESI). These results indicate that solvent treatment using isopropyl alcohol might not be able to improve the performance of the BHJ solar cells.

<table>
<thead>
<tr>
<th>Device</th>
<th>V_oc (mV)</th>
<th>J_sc (mA cm⁻²)</th>
<th>FF</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>730 ± 7</td>
<td>8 ± 0.3</td>
<td>55 ± 2.2</td>
<td>3.2 ± 0.2</td>
</tr>
<tr>
<td>IPA treated</td>
<td>733 ± 5</td>
<td>8 ± 0.5</td>
<td>56 ± 1.8</td>
<td>3.3 ± 0.3</td>
</tr>
</tbody>
</table>
Figure 7. (a) current density-voltage under 100 mW cm$^{-1}$, (b) dark current characteristics and (c) EQE of the p-DTS(FBTTh$_2$)$_2$:PC$_{60}$BM BHJ solar cell devices before and after treatment with IPA.
4. Conclusion

A common practice to enhance photovoltaics characteristics of BHJ organic solar cells is to perform facile solvent treatment by using polar solvents such as alcohols. It is suggested that solvent treatment can cause the internal reconstruction of the bulk heterojunction, leading to better charge carrier generation, transportation, and collection and subsequently higher efficiency. In this study, two BHJ systems were subjected to the solvent treatment using isopropyl alcohol. Despite the treatment, no substantial enhancement was observed in the photovoltaic performance of the solar cell devices composed of PCDTBT:PC$_{60}$BM and p-DTS(FBTTh$_2$)$_2$:PC$_{60}$BM. This is further proven by looking at the critical parameters contributing to the power conversion efficiency such as charge carrier generation, collection, recombination, and mobility whereby all of them remained unchanged or slightly changed. Moreover, WCA measurements indicate that the surface composition of the active layer before and after the treatment is quite similar. It is therefore concluded that not all alcohols can be effective in the post-production solvent treatment for enhancing the BHJ solar cell efficiency.
Supporting Information

Supplementary data associated with this article can be found, in the online version.

Acknowledgment

This work supported by the Australian Research Council through Discovery Projects funding scheme (project DP110101369) and Australian National Fabrication Facility.
References

treatment on the performance of PTB7:PC71BM bulk heterojunction solar cells, ACS

morphology evolution in P3HT/PCBM composite films, J. Mater. Chem. 21 (2011)

exposure on the nanoscale morphologies and electrical characteristics of PCBM-based

polymer solar cells based on furan-flanked diketopyrrolopyrrole copolymer via solvent
additive and methanol treatment, Nanoscale. 7 (2015) 15945–15952.

polymer solar cells via a treatment of methanol : water on the active layers, J. Mater.

Cell Performance via Side-Chain Engineering and Simple Solvent Treatment, Chem.

[16] L. Ye, Y. Jing, X. Guo, H. Sun, S. Zhang, M. Zhang, L. Huo, J. Hou, Remove the
Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer

doi:10.1002/pi.5274.

Before IPA treatment

After IPA treatment