2019

Enhanced superconductivity induced by several-unit-cells diffusion in an FeTe/FeSe bilayer heterostructure

Wenbin Qiu
University of Wollongong, wq118@uowmail.edu.au

Qingshuang Ma
Tianjin University

Zongqing Ma
University of Wollongong, zqma@uow.edu.au

Jun Tan
Sichuan University

Lina Sang
University of Wollongong, ls906@uowmail.edu.au

See next page for additional authors

Publication Details

Enhanced superconductivity induced by several-unit-cells diffusion in an FeTe/FeSe bilayer heterostructure

Abstract
Unlike monolayer Fe-Chalcogenide (Fe-Ch)/SrTiO3 (STO), which possesses the potential for high-temperature superconductivity (HTS), a regular Fe-Ch thin film grown on a non-STO substrate by the pulsed laser deposition method shows totally different superconducting behavior and a different mechanism. Although regular Fe-Ch thick films grown on CaF2 generally show the highest superconducting transition temperature (Tc) compared with any other substrates, the disappearance of superconductivity always takes place when the thickness of the Fe-Ch film is reduced to a critical value (∼20nm for Fe-Se and ∼30nm for Fe-Se-Te) with the reason still under debate. Here, we report an enhanced Tc≈17.6K in a 7-nm-FeTe/7-nm-FeSe bilayer heterostructure grown on CaF2 substrate. Generally, the Fe-Ch film on CaF2 is supposed to be one order of magnitude greater in thickness to achieve similar performance. Hall measurements manifest the dominant nature of hole-type carriers in the films in this work, which is similar to the case of a pressurized bulk FeSe single crystal, while in sharp contrast to heavily electron-doped HTS Fe-Ch systems. According to the electron energy loss spectroscopy results, we observed direct evidence of nanoscale phase separation in the form of a fluctuation of the Fe-L3/L2 ratio near the FeTe/FeSe interface. In detail, a several-unit-cell-thick Fe(Se,Te) diffusion layer shows a higher Fe-L3/L2 ratio than either an FeTe or an FeSe layer, indicating low Fe 3d electron occupancy, which is, to some extent, consistent with the hole-dominant scenario obtained from the Hall results. It also implies a possible relationship between the state of Fe 3d electron occupancy and the enhanced Tc in this work. Our work clarifies the importance of the FeTe/FeSe interface in reviving the superconductivity in Fe-Ch ultrathin films, contributing to a more unified understanding of unconventional Fe-Ch superconductivity.

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Wenbin Qiu, Qingshuang Ma, Zongqing Ma, Jun Tan, Lina Sang, Chuanbing Cai, Md. Shahriar Al Hossain, Zhenxiang Cheng, Xiaolin Wang, Yongchang Liu, and Shi Xue Dou

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/3484
Enhanced superconductivity induced by several-unit-cells diffusion in an FeTe/FeSe bilayer heterostructure

Wenbin Qiu,2,3,4 Qingshuang Ma,1 Zongqing Ma,1,2,4 Jun Tang,3 Lina Sang,2,4 Chuanbing Cai,4 Mohammed Shahriar Al Hossain,2 Zhenxiang Cheng,2 Xiaolin Wang,2 Yongchang Liu,1 and Shi Xue Dou2

1Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
2Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, New South Wales 2500, Australia
3Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
4Shanghai Key Laboratory of High Temperature Superconductors, Physics Department, Shanghai University, Shanghai 200444, People’s Republic of China

I. INTRODUCTION

Considering that the mechanism of high-temperature superconductivity still remains unsolved [1,2] since its discovery three decades ago [3], scientists are seeking inspiration from novel superconductors, for instance, Fe-based superconductors. Intense debate has been triggered since the survival of superconductivity was found in Fe-based compounds [4] in 2008. Among the numerous types of Fe-based superconductors [4–11], iron selenide [11,12] (FeSe) with the simplest binary structure is an appropriate candidate for investigating the intrinsic mechanism of unconventional superconductivity. Through applying high pressure [13–17], elemental substitution [18–21]/intercalation [22–24], or a liquid-gating technique [25–27], the superconducting transition temperature (T_c) of FeSe crystals can be substantially raised despite the low T_c of \sim8 K [11] in the original bulk FeSe. More surprisingly, the FeSe compound in the form of thin films or multilayers has attracted considerable attention in the past few years due to its potential for achieving significantly high T_c and unique electronic properties.

By employing molecular beam epitaxy [28–37] (MBE), a dramatic enhancement in superconductivity ($T_{c\text{onset}}$ over 40 K/60 K shown by transport/scanning tunnelling spectroscopy measurements) was realized in 1-unit-cell FeSe on a pretreated SrTiO$_3$ (STO) substrate. High-T_c superconductivity (HTS) no longer survives, however, if the film has more than one atomic layer [32,36,37]. The only way to revive superconductivity in a multilayer Fe-Chalcogenide (Fe-Ch) thin film is through postengineering for electron doping or enhancing the electron-phonon coupling. For example, an alkali-metal-coating (Li, K) process [38–43] was found promising for introducing massive electron doping into multilayer FeSe films on STO. Wang et al. [44] reported that a postannealing procedure is another effective way to introduce electron charge carriers into a multilayer FeSe system and realize an insulator-superconductor transition. A novel method was also proposed

DOI: 10.1103/PhysRevB.99.064502

*Corresponding author: mzq0320@163.com
by Shiogai et al. [45,46]. They reported their achievements in tuning the thickness and corresponding superconductivity of ultrathin FeSe films on oxide substrates through subtly controlled electrochemical etching and electric-field application. Nevertheless, the STO substrate is a prerequisite in this HTS Fe-Ch system, as it transfers massive electron doping into the first Fe-Ch unit cell [28,47].

On the other hand, undoped Fe-Ch [48–54] thick films grown on a non-STO substrate showed superconducting behavior that is significantly different from the case of monolayer or electron-doped multilayer FeSe. Even though the T_c is currently not comparable with the T_c record achieved in ultrathin FeSe thin films, a deep investigation into the Fe-Ch thick film is of great importance to reveal the universal mechanism behind the superconductivity in Fe-Ch and similar systems. Using the pulsed laser deposition (PLD) method, Fe-Ch films with $T_c\text{room}$ over 15 K [55] in FeSe, or 21 K [56] in FeSe$_{0.8}$Te$_{0.2}$, can be easily prepared without external electron doping, although there is a minimum thickness for this system to exhibit superconductivity, empirically over 20 nm for FeSe [53,57,58] and over 30 nm for Fe-Se-Te [43,51,56–60]. Films with less thickness are generally nonsuperconducting or even insulating. Quite a few works have explained the disappearance of superconductivity in ultrathin Fe-Ch films. For instance, it is well accepted that severe thermal and quantum fluctuations at low dimensionality usually suppress the T_c of a superconducting film [44]. Tensile stress, which is detrimental to the superconductivity of Fe-Chalcogenide films [59], tends to be induced when the thickness of FeSe$_{0.8}$Te$_{0.2}$ is lower than 30 nm [56]. Nabeshima et al. [53] demonstrated that low T_c in FeSe films thinner than 100 nm was due to the excess-Fe disorder near the surface of the films. The superconducting-insulating transition (SIT) was ascribed to a disorder-driven effect by Schneider et al. [55,56] in their FeSe films prepared by a sputtering technique. More recently, we reported similar SIT behavior and ascribed the insulating resistivity behavior of an 8 nm FeSe film to the severely unbalanced FeSe stoichiometry, which is caused by the calcium selenide (CaSe) interlayer that universally exists at FeSe/CaF$_2$ interfaces [55]. Despite the various viewpoints, the intrinsic reason for the suppression of superconductivity in undoped ultrathin Fe-Ch films still remains elusive, which is preventing the discovery of HTS in this system. A very recent work published by Kouono et al. [60] reported a T_c at 38 K in an Fe(Se$_{0.8}$Te$_{0.2}$) thin film on CaF$_2$ substrate. Similar to the top-down approach used by Shiogai [45], they focused on the interface between the Fe(Se$_{0.8}$Te$_{0.2}$) layer and the ionic liquid electrolyte. Inspired by that, we expected that the upper surface of the Fe-Ch thin film would be critical in overcoming the T_c suppression in ultrathin Fe-Ch films grown on non-STO substrates.

In this work, we achieved a superconducting transition in an ultrathin 7 nm FeSe film grown on a CaF$_2$ substrate by simply coating an FeTe capping layer on top. In this bilayer heterostructure, the highest T_c reaches 17.6 K, although superconductivity is generally lacking in ultrathin Fe-Ch films grown on non-STO substrates by the PLD method. The enhanced superconductivity is considered to probably result from a several-unit-cell-thick Fe(Se,Te) diffusion layer formed near the FeTe/FeSe interface. Our bilayer films were found to be hole dominated according to Hall measurements, which excludes them from the heavily electron-doped HTS scenario. Localized electron energy loss spectroscopy (EELS) results revealed the abnormal electronic orbital behavior of the interfacial region and hinted at a possible relationship between the low Fe 3d electron occupancy and the enhanced superconductivity in Fe-Ch thin films. This work is valuable for improving our current understanding of the common suppression of superconductivity in ultrathin Fe-Ch films grown on non-STO substrates.

II. EXPERIMENTAL DETAILS

FeSe and FeTe thin films were grown on CaF$_2$ (100) single-crystal substrates (lattice parameter $a = 5.462 \, \text{Å}$) via PLD [neodymium-doped yttrium aluminium garnet (Nd:YAG) laser, $\lambda = 355 \, \text{nm}$, 10 Hz, 2 W output, $\sim 1.7 \, \text{nm/ min}$] under a vacuum better than $4 \times 10^{-6} \, \text{Torr}$. First, an FeSe film with a thickness of 7 nm (determined by cross-sectional micrographs) was deposited at a substrate temperature as 300 °C. Afterwards, by directly switching to an FeTe target, the as-grown FeSe film was covered in situ by an FeTe layer (same deposition time) with the temperature unchanged. Finally, the bilayer FeTe/FeSe heterostructure (denoted as #FT-300) was naturally cooled down in the evacuated chamber. For comparison, a counterpart (denoted as #FT-r.t.) was separately prepared based on the same procedure for the FeSe layer. The only difference between #FT-300 and #FT-r.t. was that the FeTe layer of the latter was deposited only after the substrate temperature was cooled down to room temperature. Hence, the chemical reaction between the FeSe and FeTe composite was minimized in #FT-r.t. compared with #FT-300. To ensure the identical properties of the as-grown FeSe in two samples, the postannealing effect on the as-grown FeSe in #FT-300 during the FeTe deposition at 300 °C was taken into consideration. A heating process at 300 °C for the same time period was added right after finishing the FeSe deposition in #FT-r.t.

The phase and structure were identified by x-ray diffraction (XRD, GBC MMA) $\theta-2\theta$ scans with Cu Kα radiation. For microstructure characterizations, an aberration-corrected high-angle annular dark-field—scanning transmission electron microscope (HAADF-STEM, JEOL ARM-200F) equipped with a detector for energy-dispersive x-ray spectroscopy (EDS, Centurio SDD) was employed for acquiring high-resolution micrographs as well as information about elemental distributions from a cross-sectional view. Further STEM-EELS measurements at a spectral resolution of 0.05 eV were performed at room temperature to acquire chemical and bonding information on the specimens. Lamellae for STEM were prepared through the in situ lift-out technique in a focused ion beam (FIB, FEI Helios 600 NanoLab) system. The electrical transport measurements were carried out in a 9 T physical properties measurement system (PPMS, Quantum Design). Commercial gold wires (diameter 25 μm) and conductive silver paint were used in preparing the electrodes for transport resistance measurements.

IIII. RESULTS AND DISCUSSIONS

Figure 1 shows the transport superconducting performance obtained from the two samples in this work together with the
result from Refs. [55,56] for comparison. The temperature dependence of the normalized resistance ($R/R(25K)$) in the low-temperature range (2–25 K) is presented in Fig. 1(a). T^onset is defined as the crossing point at which the extrapolation from the normal-state resistance intersects with the tangent line of the transition (shown by the dashed lines), while T^zero refers to the temperature at which the resistance drops to zero. We obtained a $T^\text{onset}/T^\text{zero} = 17.6 K/14.4 K$ for #FT-300 and 7.6 K/5.3 K for #FT-r.t. By applying magnetic fields up to 8 T perpendicular to the ab plane of the sample, the ρ-T curves of #FT-300 under external field were plotted, as shown in Fig. 1(b) as an example, and the upper critical field (B^c2) was calculated [inset of Fig. 1(b)] depending on the linear extrapolation of the T^mid, which is defined as the temperature at which the resistivity has dropped to one-half of the value at 25 K. It should be noted that T^c and B^c2 are both higher in the #FT-300 sample than those from the optimized results obtained in a 127 nm FeSe film in our previous work [55]. Considering that the entire thickness of #FT-300 is no more than 15 nm (including both FeSe and FeTe layers), normally, no superconducting transition would be expected in this sample, which is because traditional FeSe or FeSeTe films with ultrathin thickness always show insulating behavior [55,61], just as in the case of 8 nm FeSe (black triangles) plotted in Fig. 1(a) (excluding the cases of HTS FeSe involving heavy electron doping [28–37,45,46]), and superconductivity is also absent in pure FeTe thin films down to 2 K [62,63]. Thus, the discovery of a superconducting transition in a surprisingly thin FeTe/FeSe bilayer structure is unexpected and definitely worth further exploration to clarify the mechanism. Furthermore, the T^onset of #FT-300 is 2.5 K higher than the $T^\text{onset} = 15.1 K$ from a 127 nm FeSe film in our recent work [55] [shown by magenta diamonds in Fig. 1(a)] which is one of the highest T^c’s that can be obtained in a pristine PLD-FeSe thin film grown on a CaF$_2$ substrate. Similar T^c enhancement was also reported in FeSe/FeTe superlattices [52]. FeTe has been widely used as a protective layer on unit-cell FeSe films [28–30,47,64,65]. Although the possibility of Se/Te atom diffusion cannot be excluded, no enhancement in superconductivity was reported after introducing an FeTe layer onto an FeSe film ($T^\text{c} \sim 53 K$ in Si/FeSe/STO from Ref. [28], while $T^\text{c} \sim 54.5 K$ in Si/FeTe/STO/STO from Ref. [29]). It was further found by transport measurements that a 14-unit-cell (UC) ($\sim 8.7 nm$) FeTe film was dominated by hole carriers throughout the temperature range from 5 to 300 K [47], which may affect the overall carrier situation of the bilayer structure. There is no distinct change in the Hall resistance results (R^xy), however, of 1-UC and 2-UC FeSe films after subtracting the influence of the FeTe layers [65]. Hence, the doping effect on FeSe from the FeTe should be negligible in our case, as the 7 nm FeSe is even thicker than the 2-UC FeSe. The enhanced superconductivity in #FT-300 is probably related to an interface effect between the FeSe and FeTe layers.

Iron-based superconductors always show complex Hall behavior [66–72] due to their multiband nature. We performed Hall measurements for both samples to reach a greater understanding of their transport properties. In order to eliminate the longitudinal resistivity component resulting from the misalignment of electrode contacts, we acquired the transverse resistance results (R^xy) in both positive and negative fields and then calculated the difference, i.e., $\rho^\text{xy}(H) = [\rho^\text{xy}(+H) - \rho^\text{xy}(-H)]/2$. The final results for the Hall coefficient (R^H) are shown in Fig. 2(a) for #FT-300 and Fig. 2(b) for #FT-r.t. The R^H is determined by the linear fitting of the ρ^xy curves between 1 to 4 Tesla so that the contribution from the anomalous Hall effect can be excluded. Herein, the noticeable temperature dependence of R^H provides solid evidence of the multiband nature of the band structure. On cooling down from room temperature, the nearly temperature-independent R^H with positive absolute values above the characteristic temperature $T^* \sim 125 K$ is considered as proof of a hole-dominated two-band
model. That is to say, the hole pockets around the Γ point in the Fermi surface are governing the transport properties in the high-temperature range. We found that the R_H behavior differs between the two samples near T^*. In #FT-300, R_H changes to a negative small value near T^*, which indicates a predominance of electron-type charge carriers. Below T^*, R_H immediately switches back to positive and exhibits a clear upward deviation. The phenomenon that the sign of R_H changes twice is very similar to that in FeTe flakes without a gate voltage [25] and in an 8-UC FeSe film grown on a STO substrate [47]. It can be interpreted as due to the coexistence of electron- and hole-type carriers with different contributions from various bands [30]. On the contrary, R_H is nearly constant ($\sim 5 \times 10^{-9}$ m2/C) above T^* in #FT-r.t., indicating an unchanged domination by hole-type carriers. Below T^*, R_H in both samples exhibits a rapid increase on the positive side with decreasing temperature. It reflects the decrease in the electron contribution at low temperature. Similarly, the predominance of hole-type carriers in PLD-grown multilayer FeSe thin films grown on CaF$_2$ substrates was also verified by angle-resolved photoemission spectroscopy (ARPES) measurements by Shen et al. [73]. In other words, the enhanced T_c in #FT-300 could be excluded from the heavily electron-doped HTS scenarios [25,30,44,47,65,66]. In addition, the temperature dependence of the normalized resistance [y axes in Figs. 2(a) and 2(b)] reflects a triple residual resistance ratio (RRR) of #FT-300 than that of #FT-r.t., indicating much better crystallinity quality of #FT-300.

For the determination of phase composition, XRD measurements were carried out, with the results shown in Fig. 3(a) (detection angle, $2\theta = 10–55^\circ$) and Fig. 3(b) ($2\theta = 12–18^\circ$). The spectra are normalized by to the CaF$_2$ (200) diffraction peak. Overall, both FeTe/FeSe bilayer films in this work have a high-quality c-axis orientation without any indication of macroscopic disorder. The Ag phase in #FT-r.t. has resulted from the residual silver paste on the sample surface after transport measurements. For #FT-r.t., two sets of peaks indexed as FeTe (001) and FeSe (001) are shown in the spectrum. The FeTe (001) peaks are located at lower 2θ angles compared with those of FeSe, which is consistent with the fact that the interplanar distance in the FeTe [74] lattice is larger than that of FeSe [11]. For #FT-300, a similar configuration is also observed, except for the absence of the FeTe (003) peak (due to low intensity). We noticed an additional diffraction peak allocated between FeSe (001) and FeTe (001), suggesting the presence of an isosctructural phase with the lattice sitting between FeSe and FeTe. Here, the Fe(Se,Te) phase refers to a diffusion layer between the FeTe and the FeSe, which shows a continuum between the two phases rather than an FeSe$_x$Te$_{1-x}$ phase with a fixed chemical composition. We are unable to determine the specific composition due to the gradual transition near the FeTe/FeSe interface. The enlarged 2θ range near FeSe (001) is presented in Fig. 3(b) on a logarithmic scale on the y axis. From this viewpoint, an identical FeSe phase is confirmed in #FT-300, and the Fe(Se,Te) (001) peak is clearly distinguished. The FeTe (001) peak in #FT-r.t. is broader, perhaps due to the small amount of FeSe(Se,Te) phase unavoidably formed at the FeTe/FeSe interface. Nevertheless, the thickness of the Fe(Se,Te) layer in #FT-r.t. is much lower, so that only a broadened FeTe (001) peak is detected rather than a separate Fe(Se,Te) (001) diffraction peak, as appears in #FT-300. The presence of the Fe(Se,Te) phase is thought to be the determinant that triggers the superconductivity in the sample combined from two nonsuperconducting layers, although why the T_c of #FT-300 is unusually high requires further investigation and will be discussed later in this paper.

After the identification of the crystal structure by XRD from a macroscopic perspective, we confirmed that an Fe(Se,Te) diffusion layer with a lattice parameter located between those of FeSe and FeTe exists in #FT-300, while a only tiny amount of similar phase is present in #FT-r.t. With the help of HAADF-STEM analysis, we can further reveal the local microstructure and determine the morphology of the interface. Figures 3(c) and 3(d) present STEM cross-sectional micrographs focusing on the FeTe/FeSe interface. Along the [010] zone axis, well-aligned tetragonal FeSe films with no more than 10 unit cells are found stacked with a tetragonal FeTe layer. Due to the larger atomic number in Te than in Se, a distinct difference in contrast is observed in both HAADF-STEM images, leading to the brighter appearance of the upper FeTe layer. At a lower magnification (micrographs not shown here), many more disorders (stacking faults, amorphous nanoparticles) are found in #FT-r.t. than in #FT-300 due to the inferior crystallinity of the former.
FIG. 3. (a) XRD patterns for #FT-300 (red) and #FT-r.t. (blue) in the range $2\theta = 10$–55°. The indices (hkl) represent the reflections of the FeSe (brown), Fe(Se,Te) (red), and FeTe (magenta) phases, respectively. The Ag phase in #FT-r.t. comes from the residual silver paste after transport measurements. Dashed lines are guides for the eye to mark the locations of the Fe-Chalcogenide peaks. (b) Enlarged 2θ interval near the β-FeSe (001) peak. The y axis is set to a logarithmic scale. The locations of the peaks are marked by dashed lines. The Fe(Se,Te) phase is found coexisting with FeSe and FeTe in #FT-300, while it is almost absent in #FT-r.t. (c),(d) Dark-field high-resolution STEM micrographs focusing on the FeTe/FeSe transition region from a cross-sectional viewpoint for (c) #FT-300 and (d) #FT-r.t. The two micrographs are exactly identical in scale after normalization. The corresponding EDS-mapping results are shown on the right side of each STEM image, showing the distribution of Ca (green), Se (cyan), Te (magenta), Fe (yellow), and O (blue) elements. The EDS line scans of the same region show the relative variation of Fe, Se, and Te elements in the form of atomic ratio percentages. For reference only, the relative variation trend of the c-axis lattice parameter of each Fe-chalcogenide layer was measured and is plotted on the micrograph in the form of c/c_{FeSe} vs atomic layer (c_{FeSe} refers to the c-axis lattice parameter of the first FeSe layer adjacent to the CaSe interlayer). A much broader Fe(Se,Te) diffusion layer is found in #FT-300. Red dashed lines are only guides for the eye.

which is consistent with the smaller RRR of #FT-r.t. However, considering that most of the defects are present beyond the Fe(Se,Te) region rather than inside of it, the disorder effect only affects the electrical transport properties (reflected by RRR) without influencing the superconductivity originated from the Fe(Se,Te) region. On the right side of the HAADF-STEM images, EDS analysis generated in the same area illustrates the distribution of the major elements in the films, including Ca, Se, Te, Fe, and O. The EDS results help to demonstrate the configuration of the different layers and illustrate the elemental interdiffusion. Much more Se diffuses into the upper FeTe film in #FT-300 compared with the case of #FT-r.t., due to higher evaporation rate at 300°C, as shown more evidently by the EDS line scans. The atomic percentage (at. %) ratio of Fe remains almost stable and starts to decrease in the middle of the FeTe layer due to oxidation, while in the case of Se, the two Se-rich regions refer to the CaSe [55] interlayer (lower) and the FeSe layer (upper), respectively. Clearly, the diffusion of Se in #FT-300 even extended into the middle of the FeTe layer, leading to a much broader Fe(Se,Te) transition region compared with the much sharper FeTe/FeSe interface in #FT-r.t. In addition, O and Fe are detected in the top few nanometers of both samples without Se or Te elements, which hints at the probable existence of an Fe-oxide (FeO$_x$) layer above FeTe (not shown here). Similar oxidized Fe layers were also reported by Kouno et al. [60] in their Fe(Se$_{0.8}$Te$_{0.2}$)/CaF$_2$ thin films.

In order to quantitatively investigate the layout of the Fe(Se,Te) diffusion layer at the FeSe/FeTe interface, the lattice parameters of each atomic layer were calculated from the HAADF-STEM images. To minimize error, the relative trend in the variation of the c-axis lattice parameter is defined as c/c_{FeSe}, where c and c_{FeSe} refer to the c-axis lattice parameter of the particular atomic layer and the first FeSe atomic layer adjacent to the CaSe interlayer, respectively. The atomic-layer dependence of the relative c-axis lattice parameter is plotted...
in the case of Fe, the major core-loss white lines are the Fe-L_3 and Fe-L_2 edges appear in EELS. In analyzing "white-line" features in EELS spectra. The t/λ was found to range from 0.34 to 0.53 for #FT-300 and from 0.46 to 0.71 for #FT-r.t., respectively. The obtained t/λ values remained less than 1, indicating good reliability of the EELS analysis in this work.

Figure 5 shows the core-loss EELS analyses for the two samples in this work. The spectra were extracted from the dashed rectangular area shown in Fig. 5(a). Based on the data analysis method shown in Fig. 4(b), the white-line ratio Fe-L_3/L_2 as a function of position in the sample is plotted in the inset of Fig. 5(a). Overall, the trend in the position-dependent Fe-L_3/L_2 in #FT-300 and #FT-r.t. is mostly identical, with an L_3/L_2 value of ~ 3.5 in the first 6 nm close to the CaF$_2$ substrate, followed by a few nanometers with a low L_3/L_2 value of ~ 3.2, and finally boosted up to $L_3/L_2 \approx 4.9$ in the top region. The highest Fe-L_3/L_2 value of ~ 4.9 found in the top layer in this work is correlated with the fact that the Fe ions in Fe oxides are usually in a high-spin state and have a quite large local magnetic moment [86]. This high L_3/L_2 ratio value corresponds well with a variety of EELS analyses on iron-oxygen systems done by Leapman et al., Collieux et al., and Chen et al. [79]. It evidences the existence of an FeO$_x$ layer which arises from the degradation of the FeTe surface. As a result, the actual thickness of the FeTe layer must be lower than the nominal 7 nm, which is proved by a thin layer which spans ~ 3 nm with the lowest L_3/L_2 value of ~ 3.2 below the FeO$_x$ layer. On the contrary, the FeTe layer with an L_3/L_2 value of ~ 3.5 is thicker (~ 7 nm) because of the effective protection provided by the upper FeTe layer. The phenomenon that the FeTe layer shows a lower L_3/L_2 value than the FeSe layer resembles the results of EELS studies on inhomogeneous Fe$_{1+x}$Te$_{1-x}$ single crystals done by Hu et al. [82], where a higher/lower L_3/L_2 intensity ratio reflects the Te-poor/Te-rich region, respectively. Intriguingly, a distinct difference in L_3/L_2 between the two samples is observed in a several-unit-cells-thick region lying between the FeTe and FeSe layers. A relatively high Fe-L_3/L_2 ratio of ~ 4.0 is found in #FT-300, while that of #FT-r.t. shows no big variation in the same region. In consideration of the principle of white-line excitation, the abnormal L_3/L_2 behavior in the FeTe/FeSe interfacial region of #FT-300 might suggest particular properties related to the electronic orbital status and will
Fe$^{2+}$ and Fe$^{3+}$ ions in a mixed-valence spinel by the EELS technique and demonstrated that Fe$^{3+}$ ions lead to higher Fe-L_3 energy than Fe$^{2+}$ ions. Also, van Aken and Liebscher [90] reported that their Fe-L_3 edge of Fe$^{3+}$ was 1.7 eV higher than that of Fe$^{2+}$. Hence, it is reasonable here for the FeO$_x$ region to show higher energy loss in the Fe-L_3 edge, as it is the only place in our samples that could possibly possess Fe$^{3+}$ ions.

The corresponding EELS spectra taken at four indicated positions are plotted in Fig. 5(c), with each pair of spectra (#FT-300 in red circles and #FT-r.t. in black squares) compared in a separate image. Obviously, the FeO$_x$ and FeSe regions in the two samples show exactly the same white-line behavior, with the two sets of spectra overlapping with each other. In the case of the FeTe region, the tail part, generally called the “continuum background,” with energy loss higher than the Fe-L_3 edge of #FT-r.t., is somewhat lower than that of #FT-300. Several factors might vary the continuum background, such as the thickness of the region analyzed, the deconvolution process used, or the exposure time spent during acquisition, but none of them is related to the intrinsic property of the analyzed sample. As a result, the spectral difference in the continuum component of FeTe spectra is considered irrelevant to the region underneath Fe(Se,Te) as well as the corresponding superconductivity. More importantly, the white-line features (Fe-$L_{3,2}$ edges) still show identical shapes, indicating the negligible effect of different heat-treatment temperatures on FeTe layers. Among all four regions, the only difference is found in the region of the Fe(Se,Te) diffusion layer. In Fig. 5(d), an enlarged range of EELS spectra from 704 to 720 eV (Fe-L_3 edge) for the Fe(Se,Te) region in Fig. 5(c) is presented. It is clearly seen that the energy loss of Fe-L_3 is 0.61 eV lower in #FT-300 compared with that in #FT-r.t. That is to say, a redshift in the Fe-L_3 edge occurs in this region if an Fe(Se,Te) diffusion layer is formed at the FeTe/FeSe interface. Several factors might result in a redshift in the Fe-L_3 edge. Hu et al. [82] reported a Fe-L_3 edge shifted by 0.13 eV to lower energy in their Te-rich FeTe$_{0.7}$Se$_{0.3}$ specimen. In our work, it may imply slightly more Te content in the Fe(Se,Te) region in #FT-300 than in #FT-r.t., although the energy redshift in our work is much larger than in the case of Hu et al. [82], and thus more factors are expected to be at work. Zhao et al. [47] conducted high-resolution EELS analyses on their MBE-FeSe/STO thin films and observed a blueshift of the Fe-L_3 edge near the FeSe/STO interface. The energy shift was then proved to be direct evidence of electron doping in the first 1–2 UC FeSe layers from the STO substrate.

FIG. 5. Core-loss EELS results acquired at room temperature for the two samples in this work. (a) A HAADF image of #FT-300 with a dashed rectangle indicating the area where spectra were collected. The HAADF image of #FT-r.t. was taken under the same conditions (not shown here). The inset shows the position-dependent Fe-L_3/L_2 ratio in #FT-300 (red circles) and #FT-r.t. (black squares) along the EELS scan direction. A relatively high Fe-L_3/L_2 ratio in #FT-300 in the Fe(Se,Te) region is the only difference. The regions denoted as Fe-O, FeTe, Fe(Se,Te), and FeSe layers are defined based on the EDS results on #FT-300. The same definition is utilized in #FT-r.t. despite the much sharper transition. The typical areas of different regions are indicated by horizontal lines on the HAADF image as well as in the core-loss EELS mapping shown in (b). (c) Separate EELS spectra for the four regions in the two samples (red circles: #FT-300; black squares: #FT-r.t.). A dashed oval in the region of Fe(Se,Te) highlights the only difference in a white-line feature. (d) A magnified range of the EELS spectra showing the energy shift of the Fe-L_3 edge in the Fe(Se,Te) region of #FT-300 compared with that of #FT-r.t. from the same area. The error bar is 0.15 eV. (e) White-line Fe-L_3/L_2 ratios for the four regions in #FT-300 are presented in the form of horizontal lines. The “L_3/L_2 ratio–3d occupancy” results from Graetz et al. [80] and Sparrow et al. [91] are reproduced as solid diamonds for reference. The dashed arrows are a guide for the eye to show the empirical correlation between the white-line ratio and the 3d occupancy of transition-metal oxides (TMO$_x$) that was summarized in Ref. [80].
in #FT-300 shows a 0.61 eV shift to lower energy in the Fe(Se,Te) diffusion layer than in #FT-r.t. results from a hybrid effect, including local fluctuation of Te content, additional hole carrier doping, and/or different stress conditions.

An empirical relationship has been established in 3d transition-metal oxides (TMOs), where a maximum white-line ratio Fe-L_3/L_2 is obtained when the filling of the 3d state is approximately half full [80, 81], and deviation toward either side from half-full 3d occupancy will lead to a lower Fe-L_3/L_2 ratio. The results are redrawn in Fig. 5(e) with dashed arrows showing the correlation between the “L_3/L_2 ratio” and “3d occupancy.” The Fe-L_3/L_2 ratios for the four regions (FeO$_x$ ≈ 4.9, FeTe ≈ 3.2, Fe(Se, Te) ≈ 4.0, and FeSe ≈ 3.5) in #FT-300 are added into the results for comparison. We note that a direct L_3/L_2 ratio comparison of Fe-Ch with 3d TMOs to obtain the information about 3d electron occupancy might not be quantitatively accurate due to their different electronic structures. Even so, the qualitative conclusion is still valuable for reflecting tiny fluctuations of Fe 3d electron occupancy in different regions, considering that O, Se, and Te all belong to the chalcogen family. According to the empirical conclusion [80] that the L_3/L_2 ratio decreases when 3d occupancy is between d^5 and d^{10}, the higher L_3/L_2 ratio in the Fe(Se,Te) region probably implies less electron occupancy in Fe 3d orbitals.

A different point of view was proposed by Cantoni et al. [81] in regard to the effect of 3d orbital occupancy on iron-based superconductors. They believed that the total amount of holes in Fe 3d orbitals is nearly constant (≈ 4) in all types of iron-based compounds, with a small fluctuation in the ratio of holes in the $j = 3/2$ and $j = 1/2$ levels ($h_{3/2}/h_{1/2}$), depending on variations in the local magnetic moment. Therefore, the abnormal 3d electronic orbital behavior found in the Fe(Se,Te) diffusion layer in #FT-300 hints that the status of Fe 3d orbital occupancy is one of the key factors determining the enhanced superconductivity in the present work.

IV. CONCLUSIONS

To summarize, the common T_c suppression in ultrathin Fe-Ch thin films grown on a non-STO substrate is overcome in an FeTe/FeSe bilayer heterostructure by coating an FeTe capping layer on top of the FeSe layer. The enhanced T_c onset in this work is 17.6 K, which is considered mostly related to a several-unit-cells-thick Fe(Se,Te) diffusion layer near the FeTe/FeSe interface observed by phase identification. The Hall coefficient results exclude the present work from the HTS Fe-Ch scenarios, which are usually dominated by electron-type carriers. According to EELS analyses near the interfacial region, variation in the electronic orbital structure of different regions is revealed by white-line features. Compared with the reference sample, an energy shift of the Fe-L_3 edge is noticed in the additional Fe(Se,Te) diffusion layer, indicating a hybrid consequence of the Te-rich condition, extra hole doping, and/or less compressive strain in this region. Moreover, the Fe(Se,Te) diffusion layer exhibits a higher Fe-L_3/L_2 ratio than those of either the upper FeTe or the lower FeSe layer. Following the empirical correlation established in 3d transition-metal oxides, lower Fe 3d electron occupancy is expected in the Fe(Se,Te) region. Our macroscale EELS analysis together with macroscopic transport and phase characterizations confirm the importance of the FeTe/FeSe interface in realizing enhanced superconductivity in regular Fe-Ch thin films. These results will provide constructive guidance for a unified understanding of unconventional iron-based superconductivity.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grants No. 51822404 and No. 51574178), the Science and Technology Program of Tianjin (Grant No.18YZCGX00070), and the Natural Science Foundation of Tianjin (Grant No. 18JCYBJC17900). The authors are also grateful to the Australian Research Council (Grants No. DE140101333 and No. DP170104116). This research used equipment funded by the Australian Research Council (ARC) via a Linkage, Infrastructure, Equipment and Facilities (LIEF) grant (Grants No. LE120100104 and No. LE160100063) located at the UOW Electron Microscopy Centre. The authors want to thank Dr. Gilberto Casillas Garcia for his kind assistance with microscopy. The authors are also grateful to Dr. Tania Silver for critical reading of the manuscript.

10. N. Chen, Y. Liu, Z. Ma, L. Yu, and H. Li, Improvement in structure and superconductivity of bulk FeSe$_{0.6}$Te$_{0.4}$

[68] F. Rullier-Albenque, D. Colson, A. Forget, P. Thüery, and S. Poissonnet, Hole and electron contributions to the transport properties of Ba(Fe$_{1−x}$Ru$_x$)$_2$As$_2$ single crystals, Phys. Rev. B 81, 224503 (2010).

