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Capability Chart: A New Tool for Grid-tied
Microgrid Operation

A. V. Jayawardena, Student Member, IEEE, L. G. Meegahapola Member, IEEE,
D. A. Robinson, and S. Perera, Senior Member, IEEE

School of Electrical, Computer and Telecommunications Engineering, University of Wollongong,
Australia.

Abstract—Increasing penetration of distributed resources have
enabled the development of the microgrid concept. Similar to
traditional generators, microgrids can participate in the energy
market to achieve technical, economical and environmental ben-
efits. In order to facilitate the participation in energy markets,
microgrid operators need to be aware of the full capability of
the microgrids. This paper presents a systematic approach for
developing a capability chart for a grid-tied microgrid which
represents the active and reactive power capability at the grid
supply point. Capability charts have been developed for two
different microgrids and the impacts of different modelling
aspects have been analysed under several scenarios. Furthermore,
operating points of the capability charts have been verified using
time-domain simulations.

Index Terms—Capability chart, distribution system, grid-tied
microgrid, optimisation.

LIST OF SYMBOLS

δi Phase of the voltage at node i
φik Phase of the line admittance between node i and node k∑
Ploss Total active power losses in the microgrid

Iik Magnitude of the current between node i and node k
Pgi Active power output from the generator at node i
PGSP Active power through the grid supply point
Pi Active power through node i
Pli Active power demand of the load at node i
Qgi Reactive power output of the generator at node i
Qi Reactive power through node i
Qli Reactive power demand of the load at node i
Str Rated apparent power of the transformer
Vi Magnitude of the voltage at node i
Yik Magnitude of the line admittance between node i and

node k

I. INTRODUCTION

Microgrid paradigm has gained much interest in the power
industry due to the increased penetration of distributed gen-
eration (PV, microturbines, wind generators etc.), and storage
devices (battery storage, flywheels etc.) at distribution level.
Microgrids’ ability to provide energy requirements to the
end users during main grid outages and the capability of
parallel operation with the utility to provide ancillary services
improve the reliability, efficiency and reduce overall costs.
Apart from the technical and economical benefits, microgrids
have paved the way to achieve environmental benefits by
creating zero-net-energy communities and reducing overall
carbon footprint [1]. From the network perspective, grid-tied
microgrids can be operated as single generating entities or as

loads. Integrating microgrids into the network and building a
multi-microgrid environment will allow microgrids to provide
services to the upstream grid during normal grid-tied operation
and emergency services to adjacent microgrids in a technically
and economically feasible way. In the future, these microgrids
can participate in the wholesale markets to supply energy and
other ancillary services similar to conventional generators in
traditional power systems [2].

Few research activities have been carried out on develop-
ing microgrid central control systems. A multi-agent control
system has been proposed in [3] with the aim of optimising
internal operation of a microgrid rather than optimal participa-
tion of the microgrid itself in the market. A microgrid central
controller (MCC) performs the optimal resource allocation
within the microgrid, however it is assumed that there is
no limit to the power that can be sold or bought from the
main grid. In [4], participation of microgrids in the open
market has been considered enabling microgrids to buy and
sell power to the main grid. In order to maximise the profit,
optimisation process is carried out on every pre-defined time
interval. However, in [3] and [4], the distribution network ser-
vice provider (DNSP) or the distribution management system
do not utilise information on the full active and reactive power
capability of the microgrid for the considered time period.
Previous research has focused on optimising the power avail-
ability and minimising operational costs within the distribution
network while minimising active and reactive power flow at
the grid supply point (GSP) [5]–[8]. However, enabling the
participation in power market and ancillary services market
while fulfilling the local energy demand will provide extra
revenue for grid-tied microgrids. In order to facilitate this
concept, MCCs or DNSPs must not only find the optimal
operating solution but they must also be aware of the full
capability of the microgrid at the GSP in order to make
decisions in the market.

The concept of capability chart is traditionally related to
synchronous machines, and represents the area of permissible
operation in terms of active and reactive power availability at
the machine terminal [9]. Recent research activities have been
carried out on developing capability charts for wind turbines
based on doubly fed induction generators (DFIG) [10], [11],
grid connected PV units [12], generator-transformer units [13],
and HVDC links [14]. These capability charts are considered
as essential system planning tools and are widely being used
in power system operation. Two different methods of deriving
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capability charts can be found in [15] and [16].
This paper presents a new approach on developing a chart

for the active and reactive power capability of a microgrid at
the GSP, while taking into account the generation limits, local
load demands, network constraints and other technical con-
straints. The method for obtaining the capability chart is based
on an optimisation model. Capability charts are derived using
MATLAB for two microgrid models under different network
configurations and validated using DIgSILENT PowerFactory.
Structure of this paper is as follows; The optimisation model
is presented in Section II. Section III presents the derivation
of the capability chart under different scenarios for a five-bus
microgrid model. A case study on a grid-tied microgrid model
based on a modified version of the IEEE 13-Bus system is
presented in Section IV. Discussion and conclusions are given
in Section V and Section VI respectively.

II. OPTIMISATION MODEL

Optimisation technique is used to derive the capability
chart for a grid-tied microgrid in the complex power plane.
Objective function is developed to maximise the active power
for a particular reactive power flow through the GSP while
minimising the microgrid total active power losses. Selection
of this objective function will allow the microgrid to increase
revenue by power exporting while reducing the costs for
network losses. Reactive power through the GSP is increased
iteratively and the optimisation model is solved at each step
yielding the maximum active power through the GSP. This
procedure is carried out for both power import and export
modes. In order to obtain the capability limits, the objective
function is subjected to typical AC power flow constraints
during all time periods and all network configurations.

Objective function;

Max (PGSP −
∑

Ploss) (1)

where, PGSP = f (V, δ, Y ).
Subjected to load flow equalities

Pgi − Pli − Pi(V, δ) = 0 (2)

Qgi −Qli −Qi(V, δ) = 0 (3)

Inequalities will account for the limits on magnitude and
phase angle of nodal voltages,

V mini ≤ Vi ≤ V maxi (4)

− π ≤ δi ≤ π (5)

Distribution line capacity limits,

Iik(V, δ) ≤ Imax (6)

Power flow between the microgrid and the main grid is
limited by the coupling transformer at the GSP. Transformer
power limit is incorporated as follows,√

P 2
tr +Q2

tr ≤ Str (7)

Maximum and minimum generator power capability limits,

Qmingi ≤ Qgi ≤ Qmaxgi (8)

Pmingi ≤ Pgi ≤ Pmaxgi (9)

where

Pi(V, δ) = Vi
∑

VkYik cos(δi − δk − φik) (10)

Qi(V, δ) = Vi
∑

VkYik sin(δi − δk − φik) (11)

Iik(V, δ) =

√
V 2
i + V 2

k − 2ViVk cos(δi − δk)

Zik
(12)

Zik is the magnitude of the system impedance between
node i and k. Voltage at the GSP is maintained at 1∠0◦

pu. As the non-linear optimisation problem cannot be solved
analytically, numerical solutions are obtained by using the
interior-point algorithm [17] available in the optimisation
solver in MATLAB.

III. CAPABILITY CHART

A. Microgrid model-1

Fig. 1 illustrates the microgrid model-1, comprising a
5 MVA synchronous generator (SG) based hydro power plant
and a 1.5 MVA doubly fed induction generator (DFIG) based
wind generator unit. Daily generation profiles of the SG
and the DFIG are presented in Fig. 2-(a). The microgrid
system is connected to the external grid through a 10 MVA,
69 kV/13.8 kV transformer. Load-1 and load-2 are consid-
ered as an industrial customer (0.85 p.f.) and a commercial
customer (0.85 p.f.) respectively, having load patterns on a
typical weekday during the summer as illustrated in Fig. 2-(b)
[18]. During this study, it is assumed that tap position in the
coupling transformer is fixed. Several scenarios are undertaken
and are presented in the subsections as follows; (1) the effects
of capability curves of different distributed generators (DGs),
(2) modelling voltage dependency of loads, (3) variation with
different loading conditions, and (4) bus voltage regulation on
the overall microgrid capability chart.

External grid

DG 1 DG 2Load 1 Load 2

Bus 4 Bus 3 Bus 2

Bus 1

Bus 5Bus 6

Fig. 1. Single line diagram of the microgrid model-1
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Fig. 2. (a) Daily generation profiles of the SG and DFIG, and (b) Daily load
profiles for load 1 and load 2 for a typical weekday in summer
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Fig. 3. Capability limits of (a) a generator neglecting machine limits (b) a
DFIG, and (c) a SG

B. Scenario 1: Effects of capability limits of individual DGs

Due to the intermittent nature of wind resources and time
varying load patterns, the capability chart of the microgrid also
varies with time. For the purpose of analysis, the capability
chart is derived for the period when the microgrid has min-
imum load (1.56 MW) and maximum generation (5.4 MW).
Nodal voltages of the microgrid are allowed to vary within
±5% and loads are modelled as constant power loads. As
illustrated in Fig. 3-(b), active and reactive power capability
of a DFIG based wind generator unit is mainly determined
by the rotor current limit, stator current limit and the wind
turbine rating [10], [11]. Similarly, power output of a SG based
hydro power plant is limited by the rotor current limit, stator
current limit, load angle and the hydro-turbine rating [19] as
illustrated in Fig. 3-(c). However, if those machine limits are
not taken into account, a simple capability chart for DG will be
similar to Fig.3-(a). Fig. 4 illustrates two capability charts of

-6

-5

-4

-3

-2

-1

1

2

3

4

-2 -1 0 1 2 3 4
PGSP (MW)

QGSP (MVAr)

With real capability limits of DGs With simple capability charts for DGs

Fig. 4. Impact of simplistic and real DG capability limits on the capability
chart of microgrid model-1

the microgrid, derived considering different capability limits
of the DGs. Positive values indicate power export from the
microgrid to the external grid, while negative values represent
power import into the microgrid. It can be observed that
the assumption of simplistic capability limits for DGs as in
Fig. 3(a), instead of the real machine capability charts would
give misleading information regarding the microgrid real and
reactive power availability.

C. Scenario 2: Effects of voltage dependency of loads

In this scenario, effects of voltage dependent load models
on the microgrid capability chart is analysed. Capability chart
is derived for the same time period and network conditions as
in Scenario 1 and loads are modelled as per (13) and Table I.
Depending on the terminal voltage and the exponents of the
models, active and reactive power absorption of the loads vary.
Reactive power exponent of the load models considered in this
scenario are relatively larger than the active power exponent.
This affects the reactive power limits of the capability diagram
compared to the active power limits as observed in Fig. 5.

P = P◦

(
V

V◦

)α
Q = Q◦

(
V

V◦

)β
(13)

where P◦,Q◦ are active and reactive power at voltage V◦.

Table I
LOAD CHARACTERISTICS [19]

Load class p.f. α β

Load 1 (industrial) 0.85 0.99 3.5
Load 2 (commercial) 0.85 0.18 6.0

D. Scenario 3: Variation of capability chart with different
loading conditions

Fig. 6 illustrates the microgrid capability for maximum
load (6.3 MW) and minimum load (1.56 MW) under maximum
generation (5.4 MW) conditions. With minimum loading con-
ditions, the microgrid has a higher capability to supply power
to the upstream network and demonstrates four quadrant
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-2

-1

0

1

2

3

-2 -1 0 1 2 3 4

PGSP (MW)

QGSP ( MVAr)

With constant power load models With voltage dependent load models

Fig. 5. Effects of voltage dependent load modelling on the capability chart
of microgrid model-1
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Fig. 6. Variation of capability chart for different loading conditions in
microgrid model-1

operation. Whereas, with maximum loading conditions, this
particular microgrid is unable to export active power to the
external grid. Network losses corresponding to the capability
limit during minimum loading conditions is illustrated in
Fig. 7.

E. Scenario 4: Effects of voltage regulation on microgrid
capability limits

In this scenario, system conditions of the microgrid are
maintained similar to Scenario 2 and only the voltage regu-
lation at the buses are varied. An increase in terminal voltage
will allow DGs to output higher active power to the network.
As expected, it can be observed from Fig. 8 that an increase in
the range of voltage regulation is favourable for power export
from the microgrid.

IV. CASE STUDY BASED ON MODIFIED IEEE 13- BUS
SYSTEM

A case study is carried on a microgrid model developed
based on the modified IEEE 13-Bus system [20]. Fig. 9 illus-
trates the three-phase balanced microgrid model-2 comprising
two DFIGs (1.5 MVA) and an SG (5 MVA). The microgrid
is connected to the main grid through a 115 kV/4.16 kV,
10 MVA transformer. Generation profiles used in Section III
are considered in this study and details of the load models are
presented in Table II. In order to support the network voltage,
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Fig. 7. Active power losses corresponding to the capability limit under
minimum loading conditions of the microgrid model-1
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Fig. 8. Effects of voltage regulation on the capability chart of microgrid
model-1

Node 650
DG 1

Node 680

DG 2

DG 3

Node 646 Node 645 Node 632

Node 611 Node 684

Node 652

Node 671 Node 692

Node 633

Node 675

Node 634

External 
grid

Fig. 9. Single line diagram of the microgrid model-2

a fixed capacitor bank rated at 0.5 MVAr is connected to Bus-
634.

A capability chart for microgrid model-2 at the GSP is
obtained for maximum generation and maximum loading con-
ditions using the optimisation model explained in Section II.
The fixed capacitor bank is modelled as a constant impedance
load. It can be observed from Fig. 10 that constant power load
model significantly affects the capability limits at the GSP.
Furthermore, unlike capability charts of individual machines,
the shape of the microgrid capability chart is unique to
the microgrid. Operating points on the capability limit are
verified using the time domain simulation model developed in
DIgSILENT PowerFactory. Fig. 11 illustrates the system losses
corresponding to the capability limits of microgrid model-2.
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With voltage dependent loads With constant power loads

Fig. 10. Effects of voltage dependent load modelling on the capability chart
of microgrid model-2
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Fig. 11. System losses corresponding to the capability limits of the microgrid
model-2

Table II
DETAILS OF LOADS IN MICROGRID MODEL-2 [19]

Load-bus Load class P◦ (MW ) p.f α β

611 Industrial 0.3 0.85 0.18 6.0
634 Residential 0.9 0.9 1.2 2.9
645 Commercial 1.0 0.85 0.99 3.5
646 Residential 0.5 0.9 1.2 2.9
652 Industrial motors 0.1 0.88 0.07 0.5
680 Commercial 0.5 0.85 0.99 3.5
692 Industrial 1.4 0.85 0.18 6.0

V. DISCUSSION

Storage devices have been omitted from the analysis pre-
sented in this paper. In microgrids, storage devices are utilised
to mitigate the power mismatch, smooth out variability of
renewable energy generations, and to reduce network losses.
Furthermore, storage devices in microgrids may be used to
store energy during low electricity prices and supply energy
back to the microgrid when electricity market price is high. If
a grid-tied microgrid is not self-sufficient in regards to other
local DGs, local storage devices within the microgrid can be
utilised to reduce the power exchange with the main grid.
Similar to other DGs, storage devices in microgrids can sell
stored excess energy to the external grid. A storage device can
be modelled as a source or a load depending on its operation.
However, feasibility of operating storage devices need to be
carefully analysed considering technical and economic aspects
prior to developing the microgrid capability chart.

Typically, capacitor banks are used to support the local
voltage by injecting reactive power. In the market paradigm,
reactive power available from the capacitor banks can also
be exported to the external grid via the MCCs. Thus, it is
proposed that the capacitor banks (switched or fixed) may be
included as local DG with reactive power (only) capabilities.
However, such operation requires careful analysis of econom-
ical and technical benefits prior to being incorporated in the
microgrid capability chart.

VI. CONCLUSIONS

This paper presented a systematic approach to develop a
capability chart for a grid-tied microgrid. An optimaistion
model was developed and solved iteratively to obtain the
capability limits for two different microgrid models. Effects
of real DG capability limits, load modelling, and voltage
regulation on microgrid capability was analysed. Furthermore,

modelling of storage devices and capacitor banks were dis-
cussed. Depending on the requirements of the MCC or the
DNSP, capability charts of grid-tied microgrids can be utilised
as graphical tools which will assist to understand the microgrid
behaviour, to allow optimum use of DERs and to provide
coordinated support to the network through ancillary services.
Capability charts can be derived online for multiple generator
configurations, network configurations, and load profiles.
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