2010

A dynamic platform for workflow management system: a ward management perspective

Nantika Prinyapol
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

A thesis submitted in (partial) fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

by

Nantika Prinyapol

B.Sc. Information Technology, Assumption University
M.Sc. Information Management, Asian Institute of Technology

School of Information System and Technology
Faculty of Informatics
2010
I, Nantika Prinyapol, declare that this thesis, submitted in partial fulfilment of the requirement for the award of Doctor of Philosophy, in the School of Information Systems and Technology, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Nantika Prinyapol
31 March 2010
LIST OF PUBLICATIONS

This is a list of referred conference papers that are related to this research work.

TABLE OF CONTENTS

THESIS CERTIFICATION ... ii

LIST OF PUBLICATIONS ... iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS ... xiv

ABSTRACT .. xvi

ACKNOWLEDGEMENTS .. xviii

Chapter 1: Introduction.. 1

1. 1 Introduction ... 1

1. 2 Statement of Problems .. 3

1. 3 Overview of Research Framework .. 5

1. 4 Research Aim .. 7

1. 5 Research Objectives .. 7

1. 6 Research Methods .. 8

1. 7 Research Contribution ... 9
Chapter 2: Literature Reviews

2.1 Nursing Roles and Functions Classification

2.1.1 Job Functionalities of Nurses

2.2 Nursing Documentations and Tools

2.2.1 Kardex Panel

2.3 Nursing Scenario: A Children Ward

2.4 Information Flow During a Shift: A Children Ward

2.5 Information Flow During Handover Time: A Children Ward

2.6 Workflow Management System

2.7 Web Technologies

2.8 Technologies for Web Services

2.9 Chapter Summary

Chapter 3: Dynamic Platform Development for Workflow Management

3.1 Proposed Conceptual Model of the DPWFM

3.2 Proposed Mechanisms of DPWFM Model

3.3 DPWFM Recompilation Feature Demonstrated
6.1 Evaluation Process ..120

6.2 Evaluation Results ..125

6.3 Conclusion ...130

Chapter 7: Conclusion ..132

7.1 Research Findings ...132

7.2 Contribution ...134

7.3 Further Research ..134

REFERENCES ..135

Appendix A - Program codes for Prototype146

Appendix B – MySQL Scripts ..153
LIST OF TABLES

Table 2.1 An example of function allocation designed for each nurse ... 23
Table 3.1: Four web service repositories ... 49
LIST OF FIGURES

Figure 1.1 Dynamic platform for workflow management components .. 6

Figure 2.1 Nursing functions.. 14

Figure 2.2 Patient care responsibilities (NIA 2004, p3)... 15

Figure 2.3 Work shifts of nursing care (based on low-care ward) .. 17

Figure 2.4 Medical panel and Kardex panels (RecordSystem.net 2009)..................................... 21

Figure 2.5 The nursing Kardex panels... 21

Figure 2.6 The nursing Kardex panels and a chain of commands.. 23

Figure 2.7 An example of assignment of tasks using Kardex cards.. 24

Figure 2.8 Nurse hierarchy in the children ward in a public hospital, Thailand....................... 25

Figure 2.9 Work shifts in a children ward in public hospital, Thailand................................... 26

Figure 2.10 General ward workflow ... 27

Figure 2.11 The workflow of the children ward in public hospital, Thailand.......................... 30

Figure 2.12 Workflow process components... 32

Figure 2.13 Technique to enhance workflow process ... 35

Figure 2.14 Relationship of WFM and BPM (van der Aalst et al. 2003, p5).............................. 36

Figure 2.15 YAWL representation of assignment of tasks to nurses in a general ward 37

Figure 2.16 BPMN representation of assignment of tasks to nurses in a general ward 38

Figure 2.17 Web service architecture (IBM 2001, Vaughan-Nichols 2002, W3C 2004)........... 40
Figure 4.3 Functionalities of the prototype ... 72
Figure 4.4 Overview of the prototype’s architecture .. 73
Figure 4.5 Login web page of the prototype .. 74
Figure 4.6 Top level state diagram of dynamic recompilation system 79
Figure 4.7 Before recompilation sub module ... 81
Figure 4.8 During dynamic recompilation sub module .. 83
Figure 4.9 Finalising recompilation service sub module ... 86
Figure 4.10 Assignment result displayed sub module ... 88
Figure 4.11 Examples of tables .. 90
Figure 4.12 ProfileDB ... 90
Figure 4.13 FunctionDB ... 92
Figure 5.1 Use case diagram of nurses in a hospital ward 97
Figure 5.2 Examples of nursing care services .. 100
Figure 5.3 Jenny login page ... 101
Figure 5.4 Assigning shift schedule viewed by Date ... 101
Figure 5.5 Assigning shift schedule viewed by All Nurses 102
Figure 5.6 Assigning shift schedule viewed by In-charge Nurse 103
Figure 5.7 Assigning shift schedule viewed by Specific Nurse 103
Figure 5.8 Jenny assigns seven patients to Lucy .. 105
Figure 6.5 The new Kardex activities... 123

Figure 6.6 The status change to *Done* after the task is completed and submitted............. 124
LIST OF ABBREVIATIONS

AJAX Asynchronous JavaScript and XML
AfC Agenda for Change
ANA American Nurses Association
ANMC Australian Nursing and Midwifery Council
ASP Active Server Pages
BPD Business Process Discovery
BPM Business Process Management
BPMN Business Process Modelling Notation
DPWF M Dynamic Platform for Workflow Management
EN Enrolled Nurse
FAS Function Allocation Service
FS Function Service
IPD In-Patient Department
LAN Local Area Network
LPN Licensed Practical Nurse
NHS National Health Service
NMC Nursing and Midwifery Council (UK)
NMRA Nursing and Midwifery Regulatory Authorities (AUS)
NP Nurse Practitioner
NSW New South Wales
OS Operation System
PDA Personal Digital Assistant
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP</td>
<td>PHP: Hypertext Preprocessor</td>
</tr>
<tr>
<td>RN</td>
<td>Registered Nurse</td>
</tr>
<tr>
<td>RS</td>
<td>Recompilation Service</td>
</tr>
<tr>
<td>SOA</td>
<td>Service-Oriented Architecture</td>
</tr>
<tr>
<td>SOAP</td>
<td>Service-Oriented Architecture Protocol</td>
</tr>
<tr>
<td>TAFE</td>
<td>Technical And Further Education</td>
</tr>
<tr>
<td>UDDI</td>
<td>Universal Description, Discovery and Integration</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modelling Language</td>
</tr>
<tr>
<td>W3C</td>
<td>World Wide Web Consortium</td>
</tr>
<tr>
<td>WFM</td>
<td>Workflow Management</td>
</tr>
<tr>
<td>WPS</td>
<td>Work Profile Service</td>
</tr>
<tr>
<td>WSDL</td>
<td>Web Service Definition Language</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
<tr>
<td>YAWL</td>
<td>Yet Another Workflow Language</td>
</tr>
</tbody>
</table>
ABSTRACT

This research proposes a dynamic recompilation platform for a workflow management system to manage a hospital ward. Literature review has shown that ward management in hospitals and nursing care processes are complicated and it is not easy to design and develop a ward management system that is easy to use and one that suits requirements of any ward due to the complex nature of the hospital environment. A workflow management system that can be customised and recompiled is desired due to the dynamic nature of the nursing care process. This research investigates the feasibility of using web service technology to develop a workflow management system that enables a nursing supervisor to customise their work requirements using a dynamic recompilation technique. The two main features of the proposed system are customisation and dynamic recompilation. Customisation allows users to modify functions within the web service repository to suit individual tasks based on their work profile and situations, whereas dynamic recompilation allows multiple web service repositories to be recompiled and arranged into a new set of dynamic functional services when task assignment changes. This research proposes a framework of ward workflow management system using web services technology. We called the proposed system the dynamic platform for workflow management system (DPWFM) consisting of four web service repositories that include work profile service (WPS), function service (FS), function allocation service (FAS) and recompilation service (RS). There are three perspectives to the DPWFM: organisational, functional and procedural. The organisational aspect of the WPS defines the organisational roles of individual nurses in the hospital, the functional aspect of the FS describes tasks, activities and services to be performed and the procedural aspect of the FAS describes the allocation and assignment of tasks. The recompilation aspect of the
DPWFM is the RS that dynamically recompiles the function services using inputs from the WPS, FS and FAS to create an agenda workflow in the form of scheduled tasks to help nurses in organising and performing the assigned tasks. We will present a scenario to show how the dynamic recompilation of the DPWFM can be applied in a ward. The architecture of the proposed system consisting of three architectural layers of presentation, business logic and data layers will also be presented. The contribution of this research is the development of an innovative approach of using web services technology to manage workflow in the hospital ward.
ACKNOWLEDGEMENTS

Without the help of many people, I might never have finished this thesis. First of all, I would like to express my gratitude to my supervisor, Dr. Sim Kim Lau, who has supported and guided me with her degree of patience and professionalism that greatly exceeded the requirements of the supervisory role and thus ensured that I maintained the focus and commitment necessary to complete this task.

I am especially indebted to Dr. Joshua Fan for his tremendous helps. He constantly encouraged and motivated me in every stage of my research. In the past several years, I have learned so much from him. He allowed me to learn through the reflection on my experiences rather than telling me what to think. I am thankful for those couching as I have grown as a person as well as reaching my professional goals. I am very privileged to have the opportunity to work under his tutelage.

Special thanks go to Prof. Peter Eklund, my co-supervisor for his tremendous supports for my proposal presentation. I also would like to thank my former supervisor, Dr. Zhaohao Sun, for his guidance during the early stage of my study. Appreciation and my gratitude are to all members of the Faculty of Commerce, Sydney Business School and the Faculty of Informatics for the great supports.

The extremely difficult process of Ethics approval from University of Wollongong and Port Kembla Hospital (NSW, Australia) would not have been successful without the help of Mr. Rob Gordon, deputy director of the Centre for Health Service Development, UOW. Thanks are also due to Mrs. Katharine who helps in note taking of the interviews with Port Kembla
Hospital. I also wish to extend my thankfulness to all nurse unit managers in the Port Kembla Hospital and many head nurses of the hospitals in Thailand for participating in my interview and offering the significant information to support my research study.

In addition, I am greatly indebted to my university, Dhurakij Pundit University, Thailand, which has granted me the scholarship for postgraduate studies that has the supported my throughout my PhD Candidature.

Special appreciation is given to my parents and my brother for their love, patience, understanding and support.

Last, but not least, I also would like to show my appreciation to all of my friends (Yui-Ken, P’Mam, Noi, P’Om, Riam, P’Jeab, Tok, P’Keaw, P’Lek, P’Aree, Ying, Joey, Soi, Peng, P’Kim, Chon, P’Tee, P’Tung, P’Tu, Winnie, P’Boong and Marco) for their friendship and encouragement.