The impact of a dot: Case studies of a noise metamorphic relation pattern

Chaohua Wu
University of Wollongong, cw811@uowmail.edu.au

Liqun Sun
University of Wollongong, ls168@uowmail.edu.au

Zhi Q. Zhou
University of Wollongong, zhiquan@uow.edu.au
The impact of a dot: Case studies of a noise metamorphic relation pattern

Abstract
We propose a 'noise' metamorphic relation pattern (MRP), which is a sub-pattern under the more general MRP 'symmetry.' We conduct case studies with real-life systems in three different application domains (obstacle perception in autonomous systems, machine translation, and named entity recognition) to show the usefulness of the 'noise' MRP for software verification and validation.

Disciplines
Engineering | Science and Technology Studies

Publication Details

This conference paper is available at Research Online: https://ro.uow.edu.au/eispapers1/3151
The Impact of a Dot: Case Studies of a Noise Metamorphic Relation Pattern

Chaohua Wu, Liqun Sun, and Zhi Quan Zhou*
School of Computing and Information Technology
University of Wollongong
Australia

Abstract—We propose a “noise” metamorphic relation pattern (MRP), which is a sub-pattern under the more general MRP “symmetry.” We conduct case studies with real-life systems in three different application domains (obstacle perception in autonomous systems, machine translation, and named entity recognition) to show the usefulness of the “noise” MRP for software verification and validation.

Keywords: Metamorphic testing, metamorphic relation pattern, oracle problem, noise, machine translation, machine recognition, artificial intelligence.

I. INTRODUCTION

Testing is the most widely used approach for software verification and validation. A key component of testing is the mechanism to determine whether the outcomes of test case executions are correct. Such a mechanism is called a test oracle. Sometimes, however, a test oracle is unavailable or is too expensive to be applied—a situation known as the oracle problem [1], [2]. For example, due to the sheer volume of data, software for big data analytics is difficult to test [3].

A growing body of research has examined the concept of metamorphic testing (MT) [4], [5], and proven it highly effective for addressing the oracle problem and automated test case generation problem [1], [6], [7], [8]. MT was originally proposed as a verification technique, which can be adopted by both development organizations [9] and end-user programmers [10]. Xie et al. [11] found that MT could also be used for software validation, and Zhou et al. [12] further developed MT into a unified framework for software verification, validation, and other types of quality assessment.

In MT, the software under test (SUT) is checked against prescribed metamorphic relations (MRs). MRs are expected relations among the inputs and outputs of multiple executions of the SUT [7]. Because MRs are necessary properties of the software’s intended functionality, if an MR is violated for certain test cases during testing then the SUT must be at fault.

To facilitate systematic identification of useful MRs, a concept of metamorphic relation “patterns” has been proposed from which multiple concrete metamorphic relations can be derived [13], [14]. Zhou et al. [14] defined a metamorphic relation pattern (MRP) as an abstraction that characterizes a set of (possibly infinitely many) metamorphic relations, and they also identified a universal MRP, symmetry. In the present research, we propose a noise MRP, which is a sub-pattern under symmetry, and show its applications using real-life software systems in different domains. The rest of this paper is organized as follows: Section II introduces the concept of metamorphic relation patterns, and proposes a noise pattern. Section III revisits previous work from the perspective of the noise pattern. Section IV shows the application of the noise pattern in the context of machine translation. Section V goes on with a case study in the area of named entity recognition. Section VI concludes the paper.

II. METAMORPHIC RELATION PATTERN

In the early days of MT research, researchers usually identified MRs from scratch for each individual problem under study. To make this process more systematic, Zhou et al. were the first to propose an idea of using an abstract form of MR to derive multiple concrete MRs, and they called this abstract form of MR a “general metamorphic relation” [15, p. 3]. In a follow-up study, Zhou et al. further identified another type of abstract relation, which is a subset relation among the source and follow-up outputs—they called this a “general relation” [16, p. 223]. Their empirical results demonstrated that concrete MRs derived from the above abstract forms of MRs had a strong fault-detection capability [15], [16].

Recently, Segura et al. [17] introduced the term metamorphic relation output pattern (MROP), which they defined as an abstract relation among the source and follow-up outputs from which multiple concrete metamorphic relations can be derived. Their work opened a new MT research direction on “metamorphic relation patterns,” in a broad sense, as foreseen by Segura in his keynote at the third International Workshop on Metamorphic Testing (ICSE MET ’18) [13].

All the above studies on abstract forms of MRs, when introduced, were limited to their specific application domains (that is, search functions [15], [16] and RESTful web APIs [17]).
More recently, Zhou et al. [14] further investigated the notion of “patterns” and formally defined the general concept of a *metamorphic relation pattern* (MRP) as “an abstraction that characterizes a set of (possibly infinitely many) metamorphic relations.” Zhou et al. also defined a concept of a *metamorphic relation input pattern* (MRIP) as “an abstraction that characterizes the relations among the source and follow-up inputs of a set of (possibly infinitely many) metamorphic relations.” After proposing these basic concepts, Zhou et al. [14] identified a universal symmetry MRP, which “refers to the existence of different viewpoints from which the system appears the same”—this definition borrows from the notion given by Philip W. Anderson, Nobel laureate in Physics, who said: “*By symmetry we mean the existence of different viewpoints from which the system appears the same*”—this definition borrows from the notion given by Philip W. Anderson, Nobel laureate in Physics, who said: “By symmetry we mean the existence of different viewpoints from which the system appears the same” and that “it is only slightly overstating the case to say that the physics is the study of symmetry” [18, p. 394]. In a symmetry MRP, the word “system” can refer to not only a physical system, but also to a computer system. The symmetry MRP is not limited to any specific application domain, but rather is general enough to be applicable to various areas. Also note that, in the definition of the symmetry MRP, “the system appears the same” does not mean that the software system’s (source and follow-up) outputs must have an equality or equivalence relation [14].

Using the symmetry MRP, and a “change direction” MRIP, Zhou et al. [14] conducted case studies in a variety of different application domains, including commercial websites, navigation software, location-based search, face recognition, and video analysis. The results showed that their patterns can help users to (i) detect previously unknown failures efficiently and effectively, and (ii) obtain more desirable computation results in spite of the failures, even when the users do not fully understand the implementation of the software.

In the present paper, we propose a *noise* MRP, defined as follows:

Definition 1: The *noise MRP* refers to the requirement that a reliable system should be able to perform its functions when a low level of interference (noise) is present.

Remark 1: Definition 1 means that some noise in the input data or environment should not have a strong impact on the program’s output if the program is reliable. A tester can therefore test the SUT by first running a normal input, and then running it with some injected noise, and finally comparing the outputs with each other.

Remark 2: To achieve generality, an MRP is defined at a higher level of abstraction than a concrete MR. The above definition, therefore, does not need to include an explanation of the exact meaning of “perform its functions,” “a low level of interference,” and “noise.” These terms can be interpreted in different ways when the MRP is instantiated in specific application domains.

Remark 3: In the literature of metamorphic testing, the concept of “noise” has already been used by different researchers for the development of metamorphic relations in their application areas. The “noise” concept itself, therefore, is not new. Nevertheless, documenting it in the form of an MRP to enhance generality and reusability is beneficial.

Remark 4: As pointed out by Zhou et al. [14], it is possible for many MRPs to form a hierarchy, with MRPs at higher levels being more abstract, and those at lower levels being more concrete. Obviously, the noise MRP is a sub-pattern of the symmetry MRP, as the latter is more general (abstract).

Remark 5: To study the relationships among different MRPs and to construct family trees for them will be an important future research direction. Researchers in software patterns and pattern languages have developed approaches for structuring and visualizing relationships among patterns, such as abstract security patterns [19]. Some of those approaches could be adopted or adapted for MRP research.

III. The Noise MRP for Autonomous Systems

A trend has recently emerged for applying MT to machine learning and autonomous systems [20, 21, 22, 23]. In particular, Zhou and Sun [24] combined MT and fuzzing and detected previously unknown fatal defects in the LiDAR obstacle-perception module of the real-life self-driving system Baidu Apollo. In this section, we revisit Zhou and Sun’s work [24] from the “pattern” perspective, and show that the approach used in their work is an application, or instance, of the noise MRP.

A. Background

At about 10 pm of March 18, 2018, an autonomous Uber SUV hit Elaine Herzberg in the street of Tempe, Arizona. The death of Herzberg was the first recorded case of a pedestrian fatality involving a self-driving vehicle. Subsequently, experts expressed doubts about Uber’s LiDAR technology [25]. LiDAR stands for “Light Detection and Ranging,” which enables an autonomous vehicle to see its surroundings hundreds of feet away. The LiDAR supplier, Velodyne, said that “our LiDAR is capable of clearly imaging Elaine and her bicycle in this situation. However, our LiDAR doesn’t make the decision to put on the brakes or get out of her way” [26], and that “our LiDAR can see perfectly well in the dark, as well as it sees in daylight, producing millions of points of information. However, it is up to the rest of the system to interpret and use the data to make decisions. We do not know how the Uber system of decision-making works” [27].
Before the Uber accident, Zhou and Sun had already started an investigation into the question “Are there situations where a driverless car’s on-board computer system could incorrectly interpret and use the data sent from a sensor such as a LiDAR sensor, making the car unable to detect a pedestrian or an obstacle on the roadway?” They did not have access to the Uber system, but managed to test Baidu Apollo, a famous real-life self-driving software system controlling many autonomous vehicles on the road (http://apollo.auto). Using a combination of metamorphic testing and fuzzing, Zhou and Sun found a fatal software fault in Apollo’s LiDAR Obstacle Perception (LOP) module (which takes as input the 3D point cloud data generated by Velodyne’s HDL-64E LiDAR sensor, exactly the same type of LiDAR involved in the Uber accident [28]). The fault could make the system unable to detect some obstacles. Zhou and Sun reported this issue to the Baidu Apollo self-driving car team on March 10, 2018, MST (UTC -7), eight days before the Uber accident. They did not receive a response until 10:25 pm, March 19, 2018, MST (24 hours after the Uber accident), in which the Apollo perception team confirmed the error [24].

B. Testing Method: A Concrete Instance of the Noise MRP

Zhou and Sun [24] identified the following MR, where the software under test is the LOP module, and A and A' represent two inputs to LOP, and O and O' represent the LOP's outputs for A and A', respectively:

MR_{LiDAR}: Let A and A' be two frames of 3D point cloud data that are identical except that A' includes a small number of additional LiDAR data points (which could represent tiny particles in the air or some possible noise from the sensor) randomly scattered in regions outside the driving area. Let O and O' be the sets of obstacles in the driving area identified by LOP for A and A', respectively.

Then, the following relation must hold: $O \subseteq O'$. Remark 1: MR_{LiDAR} means that the existence of some particles in the air, or some noise points, far away outside the driving area should not cause an obstacle inside the driving area to become undetectable. Obviously, MR_{LiDAR} is a concrete instance of the noise MRP defined in the present paper.

Remark 2: While we use the LiDAR image as an example to illustrate our approach, the idea of the noise MRP is generally applicable to almost all types of sensors and signals including videos, sound, speed, temperature, pressure, positions, angles, and so on.

Remark 3: For mission-critical systems, lack of robustness in dealing with erroneous sensor data could cause catastrophic consequences including aircraft crashes [29].

C. Test Results

Figs. [1a] and [1b] show a real-life example of Zhou and Sun’s findings [24], where a pedestrian inside the driving area (the Apollo system depicted this pedestrian using the small pink mark □ as shown in Fig. [1a] could not be detected after only 10 random points were placed outside the driving area (as shown in Fig. [1b] the small pink mark is missing). Through a series of experiments with the Apollo system, Zhou and Sun found that the probability of this type of failure (violation of MR_{LiDAR}) was as high as 2.7% when only 10 random points were added [24].

IV. THE NOISE MRP FOR MACHINE TRANSLATION

Can the noise MRP be applied to domains beyond signal processing? Our answer is affirmative. This section shows such an example in the natural language processing domain. We consider the testing of machine translation.

A. Related Work

Generally speaking, manual assessment of machine translation quality by a human assessor is both expensive and subjective [30]. A method that alleviates this problem is known as round-trip translation (RTT) [31] (that is, translate the original sentence to the target language and back to the original language, then compare the difference). RTT does not test one system, but two systems: the forward translation and the back translation. In spite of this limitation, it was claimed that “RTT is the only technique that can be used when no human fluent in the target language or equivalent text is readily available” [32].

Pesu et al. [30] were the first to develop an automatic non-RTT technique that can be used to assess the quality of machine translation without the need for an equivalent target language text, or proficient (fluent) target language user. Their approach used a Monte Carlo method and was based on metamorphic testing. Sun and Zhou [33] extended the study of metamorphic testing for machine translation (MT4MT) beyond Monte Carlo approaches. They named their metamorphic relation pattern $\text{MR}_{\text{replace}}$ (which belongs to the symmetry MRP). As an example of detected failures with $\text{MR}_{\text{replace}}$, they observed that Google translated “Emma likes Mini” into the correct Chinese sentence “艾玛喜欢迷你,” but translated “Victoria likes Mini” into “维多利亚喜欢Mini” where “Mini” was not translated into Chinese.

B. Our Findings with the “Replace” and “Noise” MRs

In this section, we first apply $\text{MR}_{\text{replace}}$ to the Google Cloud Translation API (https://cloud.google.com/translate) to show a translation failure, and then go on to apply a noise MR to show further failures. Although the theme of this paper is on the noise MRP, we include $\text{MR}_{\text{replace}}$ in our experiment to show that multiple MRs can be applied
in practical situations, and that they may complement each other for the generation of more informative test results.

Fig. 2 shows that Google translated “Tom is a go-getter” and “Trump is a go-getter” into the Chinese sentences “汤姆是个干净的人” (which means “Tom is a clean person”) and “特朗普是一个吸毒者” (which means “Trump is a drug addict”) respectively. This inconsistency was detected when we run our automated test driver that implemented MR_{replace} with random test case generation. It was illogical that the change of a personal name from “Tom” to “Trump” could have changed the meaning of the entire translation.

Based on the above results, we further defined a noise MR, hoping to detect more failures. In this MR, the “noise” was some periods that appear at the end of a sentence. Fig. 3 shows that Google translated “Trump is a go-getter..” (two periods) and “Trump is a go-getter....” (five periods) into the Chinese sentences “特朗普是一个吸血鬼.” (which means “Trump is a vampire”) and “特朗普是一个不错的选择.....” (which means “Trump is a good choice”) respectively.

The above example shows that, every time the sentence “Trump is a go-getter” was translated, it was given a completely different meaning, only because of the different number of periods in the original sentence: When there was one period (Fig. 2b), Trump was “a drug addict”; when there were two periods (Fig. 3a), Trump was “a vampire”; when there were five periods (Fig. 3b), Trump became “a good choice.” These translation inconsistencies (failures) were repeatable for a long period of time when we conducted the experiment in 2018, and have now been corrected.
V. THE NOISE MRP FOR NAMED ENTITY RECOGNITION

In this section, we conduct a case study of the named entity recognition (NER) feature of LingPipe, which is a tool kit for processing text using computational linguistics (http://alias-i.com/lingpipe).

NER is the process of finding mentions of specified things in text. For instance, in the sentence John J. Smith lives in Seattle, a named entity recognizer might find the person mention John J. Smith and the location mention Seattle (http://alias-i.com/lingpipe/demos/tutorial/ne/read-me.html). As explained in its website, the NER feature of LingPipe “involves the supervised training of a statistical model or more direct methods like dictionary matching or regular expression matching. All these methods are designed to work together smoothly.” This tool is often used to identify biomedical entities (such as genes, organisms, malignancies, chemicals, and so on).

While NER can perform both the first-best and the n-best named entity chunking, we decided to test the former because the latter always produced a large amount of complicated output that was time-consuming to comprehend. For example, using the n-best analysis, a simple text input “How are you today” could yield an analysis report of more than 34 lines.

Metamorphic testing of the LingPipe NER tool was previously studied in [34]; however, we decided not to adopt the MRs used in [34] because those MRs may not be valid when the test data is arbitrary text. Instead, we used the replace and the noise MRPs to explore this system. As explained earlier, although the focus of this paper is on the noise MRP, we included the replace MRP (MRreplace) in the experiment to show that multiple MRs can be applied together to generate more informative test results in practical situations.

We defined the “noise” to be a period added to the end of a sentence or word. Fig. 4 (line 1) shows that, when the input text message was “bbagrm” the LingPipe tool successfully identified this string as a biomedical entity. In Fig. 4 (line 1), “bbagrm” is the input text, “0-6” is the software output that indicates the starting and ending positions of the identified entity. After a period was added to the string (line 2), however, the system failed to identify any biomedical entity (as represented by the empty symbol “[]”). Likewise, lines 3 and 4 show that the phrase “Okazaki Fragment” was identified but, after a full stop was added to the end of the phrase, this entity could no longer be identified.

The anomaly described above may not necessarily indicate a bug in the software, because the addition of a period to the string might have changed the confidence level calculated by the LingPipe NER tool. Nevertheless, if we consider the word identification task from a user’s perspective, these inconsistencies are obviously unacceptable because a full stop is a normal and integral part of a sentence and should not have a negative impact on the named entity recognition. From a user validation perspective, therefore, the software failed the noise test.

Fig. 5 shows another recorded anomaly (detected by MRreplace). This observation means that both the noise and the replace MRs are effective for the software under test.

VI. CONCLUSION AND FUTURE WORK

We have proposed a noise metamorphic relation pattern (MRP), which is a sub-pattern of the symmetry MRP. We have conducted case studies in three different domains: LiDAR image analysis for self-driving vehicles, machine translation, and named entity recognition, where all studies were performed with real-life software systems. We have
We present data demonstrating the extensive purification of two dexamethasone-binding proteins, corresponding in their characteristics to receptors DE-2 and DE-3:

\[148-152: \text{GENE@Infinity},
157-161: \text{GENE@Infinity}\]

It is evident that the major protein contained in the DE-2 fraction has a molecular weight of approximately 45000 whereas fraction DE-3 is mainly composed of a protein with a molecular weight of about 90000:

\[23-36: \text{GENE@Infinity},
54-58: \text{GENE@Infinity}\]

We present data demonstrating the extensive purification of two dexamethasone-binding proteins, corresponding in their characteristics to receptors DE-2 and DE-3 and so on:

\[148-152: \text{GENE@Infinity},
157-161: \text{GENE@Infinity}\]

Figure 5. The first sentence (upper) was taken from a biochemistry article [35], for which the LingPipe tool identified both “DE-2” and “DE-3” as named entities. The third sentence (lower) was created by inserting “and so on” to the end of the first sentence, for which the LingPipe tool returned the same result (which satisfied MRreplace). The second sentence (middle) was taken from the same article, for which the LingPipe tool identified “major protein” and “DE-2” but missed out “DE-3” as named entities. The missing “DE-3” was detected by MRreplace which, for the NER systems, states that if a term is identified in one sentence then it should also be identified in another (similar) sentence, especially if both sentences are from the same article.

ACKNOWLEDGMENTS

This research was supported in part by a linkage grant of the Australian Research Council (Project ID: LP160101691) and an Australian Government Research Training Program scholarship. We would like to thank Morphick Solutions Pty Ltd for supporting this work. We wish to thank Sergio Segura for his discussions and comments on this paper.

REFERENCES

