Decomposition Mechanism of Zinc Ammine Borohydride: A First-Principles Calculation

Xiaowei Chen
Fudan University, chenx@nju.edu.cn

Weidong Zou
Jimei University

Renquan Li
Jimei University

Guanglin Xia
University of Wollongong, guanglin@uow.edu.au

Xuebin Yu
Fudan University, xyu@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the [Engineering Commons, and the Physical Sciences and Mathematics Commons](https://ro.uow.edu.au/aiimpapers)

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Decomposition Mechanism of Zinc Ammine Borohydride: A First-Principles Calculation

Abstract
The decomposition mechanism of zinc ammine borohydride ([Zn(NH₃)₂][BH₄]₂) has been studied by density functional theory calculation. The release of B₂H₆ and BH₃ is predicted to be kinetically and/or thermodynamically unfavorable for [Zn(NH₃)₂][BH₄]₂, in agreement with experimental results that no boranes were detected during decomposition. The climbing image nudged elastic band calculation and ab initio molecular dynamics simulations indicate the formation of NH₃BH₃ and B₂H₇⁻ intermediates during decomposition of [Zn(NH₃)₂][BH₄]₂, which is different from that observed for other reported ammine metal borohydrides. The dehydrogenation occurs through reaction pathways involving transfer of hydrides from the Zn cation to BH₄⁻ or transfer of protons from NH₃BH₃ to NH₃.

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/3000
Decomposition Mechanism of Zinc Ammine Borohydride: A First-Principles Calculation

Xiaowei Chenab*, Weidong Zouc, Renquan Lia, Guanglin Xiad, Xuebin Yub*

a Department of Physics, School of Science, Jimei University, Xiamen, 361021, China
b Department of Materials Science, Fudan University, Shanghai 200433, China
c College of Physics and Electromechanical Engineering, Longyan University, Fujian, 364012, China
d Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, NSW, Australia

* To whom correspondence should be addressed.

E-mail: chenxiaowei@jmu.edu.cn
 yuxuebin@fudan.edu.cn
Abstract
The decomposition mechanism of zinc ammine borohydride ([Zn(NH$_3$)$_2$][BH$_4$]$_2$) has been studied by density functional theory calculation. The release of B$_2$H$_6$ and BH$_3$ is predicted to be kinetically and/or thermodynamically unfavorable for [Zn(NH$_3$)$_2$][BH$_4$]$_2$, in agreement with experimental results that no boranes were detected during decomposition. The climbing image nudged elastic band calculation and ab initio molecular dynamics simulations indicate the formation of NH$_3$BH$_3$ and B$_2$H$_7^-$ intermediates during decomposition of [Zn(NH$_3$)$_2$][BH$_4$]$_2$, which is different from that observed for other reported ammine metal borohydrides. The dehydrogenation occurs through reaction pathways involving transfers of hydrides from the Zn cation to BH$_4^-$ or transfers of protons from NH$_3$BH$_3$ to NH$_3$.
1. Introduction

Hydrogen is an ideal clean energy carrier because of its abundance, high heating value per mass and environmentally friendly product of water. Developing hydrogen storage materials with high gravimetric hydrogen densities and favorable de-hydrogenation/re-hydrogenation properties is one of the key challenges in using hydrogen as an alternative energy source for mobile or stationary applications. Metal borohydrides (M(BH₄)ₓ) with high gravimetric and volumetric densities of hydrogen have received great attention in the past few decades. The experimental and theoretical studies suggest a correlation between the hydrogen desorption temperature and the Pauling electronegativity of the cation (χₚ) of metal borohydrides. The metal borohydrides with low χₚ tend to release hydrogen at high temperature. For instance, NaBH₄, LiBH₄ and Mg(BH₄)₂ with χₚ lower than 1.3 start to release H₂ at temperature above 300 °C. On the other hand, metal borohydrides with high χₚ tend to release an undesired byproduct of diborane (B₂H₆) at low temperatures. For example, Al(BH₄)₃ and Zn(BH₄)₂ with χₚ of 1.6 and 1.65, respectively, are volatile at room temperature and release a significant volume of B₂H₆ byproduct upon heating. The use of NH₃ ligands to saturate and immobilize the metal cation with formation of ammine metal borohydrides (AMBs, [M(NH₃)ₓ][BH₄]ₙ) is an effective strategy to improve thermo-dynamic stability of metal borohydrides. Although AMBs show improvement of dehydrogenation properties and prevention of B₂H₆ release compared to metal borohydrides, many of these AMBs tend to release ammonia during thermal decomposition. It has been reported that [Li(NH₃)ₙ][BH₄] and [Ca(NH₃)ₙ][BH₄]₂ (x=1, 2 and 4) release a significant amount of ammonia below 300 °C under dynamic situation. The [Mg(NH₃)₂][BH₄]₂ and [Al(NH₃)₆][BH₄]₃ mainly release hydrogen with a certain amount of ammonia detected during decomposition. Among these AMBs, zinc ammine borohydride, [Zn(NH₃)₂][BH₄]₂, shows favorable dehydrogenation properties in terms of hydrogen desorption temperature and purity of gas release.
reported in a previous literature study, \([\text{Zn(NH}_3\text{)}_2]\text{[BH}_4\text{]}_2\) is able to release 8.9 wt% hydrogen below 115 °C within 15 min without concomitant release of undesirable gases such as ammonia and boranes.\(^{22}\)

The dehydrogenation of some of the AMBs may be achieved through combining hydrides from \([\text{BH}_4^-]\) and protons from \(\text{NH}_3\), ultimately yielding amorphous metal boronitrides.\(^{19, 23-26, 34-36}\) The experimental observation of the formation of well-crystallized Zn during dehydrogenation indicates that the decomposition pathway of \([\text{Zn(NH}_3\text{)}_2]\text{[BH}_4\text{]}_2\) is slightly different from those of the other reported AMBs, in which the metal cations in the dehydrogenated products are always bonded to the BN species.\(^{22}\) Although a previous report suggested the formation of the \(\text{NH}_3\text{BH}_3\) intermediate,\(^{37}\) the dehydrogenation mechanism of \([\text{Zn(NH}_3\text{)}_2]\text{[BH}_4\text{]}_2\) is still unclear. Therefore, a detailed study of the decomposition mechanism of \([\text{Zn(NH}_3\text{)}_2]\text{[BH}_4\text{]}_2\) will provide useful insights for improving its dehydrogenation performance and offer guidelines for designing novel Zn-based ammine borohydrides for hydrogen storage.

Herein, the decomposition mechanism of \([\text{Zn(NH}_3\text{)}_2]\text{[BH}_4\text{]}_2\) was studied by density functional theory (DFT) calculation. We performed climbing image nudged elastic band (CI-NEB) calculation and ab initio molecular dynamics (AIMD) simulations to illustrate that the dehydrogenation mechanism of \([\text{Zn(NH}_3\text{)}_2]\text{[BH}_4\text{]}_2\) is different from those of other reported AMBs which release hydrogen via combining hydrides from \([\text{BH}_4^-]\) and protons from \(\text{NH}_3\). Our calculation indicates the formation of \(\text{NH}_3\text{BH}_3\) and \(\text{B}_2\text{H}_7^-\) intermediates during decomposition of \([\text{Zn(NH}_3\text{)}_2]\text{[BH}_4\text{]}_2\).

2. Computational Method

As reported in a previous literature study, the \([\text{Zn(NH}_3\text{)}_2]\text{[BH}_4\text{]}_2\) crystallize in the orthorhombic structure with a space group of \(P2_1\) and cell parameters of \(a = 6.392(4) \, \text{Å}, \quad b = 8.417 (6) \, \text{Å}, \quad c = 6.388(4) \, \text{Å}, \quad \alpha = \gamma = 90^\circ\) and \(\beta = 92.407(4)^\circ.\)\(^{22}\) The geometric structure was optimized by DFT calculation as implemented in MedeA@VASP code\(^{38}\). To describe the weak van der Waals \(\text{H}^+\cdots\cdot\text{H}\) dihydrogen bonds, the optB86b-vdW functional\(^{39-41}\) was
adopted for geometric optimization. The projector-augmented wave (PAW) approach was used to describe the electron-ion interactions. Plane wave with kinetic energy cutoff of 400 eV was used. The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) was adopted to describe the exchange and correlation of electronics. The Brillouin zone was sampled by Monkhorst–Pack k-point meshes with mesh point spacing less than 0.05 Å⁻¹. Structural relaxations of atomic positions were carried out until the residual forces on each atoms were less than 0.02 eV⋅Å⁻¹.

The NH₃ vacancy was created by removing one NH₃ molecule from 2×1×2 supercell of [Zn(NH₃)₂][BH₄]₂. The NH₃ vacancy formation energy was estimated using the following equation:

\[E_v = [E(\text{Zn-NH}_3) + E(\text{NH}_3)] - E_{\text{total}} \]

where \(E_{\text{total}} \) is the total energy of [Zn(NH₃)₂][BH₄]₂; \(E(\text{NH}_3) \) represents the energy of isolated NH₃ molecule; and \(E(\text{Zn-NH}_3) \) is the total energy of [Zn(NH₃)₂][BH₄]₂ after a NH₃ molecule is removed. The positive energy of \(E_v \) indicates that the creation of NH₃ vacancy is an endothermic process, and the negative energy of \(E_v \) indicates that the creation of NH₃ vacancy is an exothermic process.

Previous differential scanning calorimetry and in-situ X-ray diffraction data suggested that [Zn(NH₃)₂][BH₄]₂ started to release hydrogen at temperature higher than its melting point. In other word, [Zn(NH₃)₂][BH₄]₂ undergoes a phase change from the solid state to viscous liquid before hydrogen released. Hence, the CI-NEB calculation of hydrogen formation energy and barrier were calculated by using a molecular model in which one formula unit of [Zn(NH₃)₂][BH₄]₂ was placed in a cubic cell with a lattice parameter of 20 Å. The formation of a H₂ molecule was achieved by moving a proton and a hydride away from host N and B atoms to form a hydrogen molecule with the H-H distance of
0.74 Å. All of the atoms in the cell were relaxed during geometry optimization.

The vibrational enthalpies are important to estimate the reaction barrier and enthalpies. Therefore, we further investigate the reaction barrier and enthalpies of these reactions by including the zero-point energy (ZPE) and vibrational enthalpy contributions. Phonons are calculated using the supercell force-constant method and the vibrational enthalpies are obtained by directly summing the calculated phonon frequencies.

Ab initio molecular dynamics simulations (AIMD) were performed to further examine the decomposition mechanism. We used a $2 \times 1 \times 2$ supercell of [Zn(NH$_3$)$_2$][BH$_4$]$_2$ which contains 152 atoms to prevent the spurious interactions between neighboring supercells. The canonical ensemble (NVT) following the Born-Oppenheimer (BO) implementation was adopted. The ionic equations of motion were integrated using the Nose-Hoover algorithm with a time step of 1.0 fs; deuterium mass was used for the hydrogen atom in order to enable a larger time step. The simulated system was initially equilibrated at a temperature of 300 K for 2 ps (2 000 steps). Then, the simulation temperature increased from 300 K to 3000 K uniformly over 40 ps (40 000 steps). The high temperatures used in simulation allowed reactions to be observed within 40 ps. To analyze the fragments during the simulation, we used a bond length cut-off of ~1.3 times of the normal bond length.

3. Results and Discussion

3.1 Formation and Diffusion of NH$_3$ Vacancy

The transport property of NH$_3$ vacancy is crucial to the thermodynamics and kinetics of ammonia release or intermediate formation. To understand the microscopic dehydrogenation mechanism of [Zn(NH$_3$)$_2$][BH$_4$]$_2$, the formation and diffusion of NH$_3$ were studied.

Our calculated formation energy of NH$_3$ vacancy is 1.13 eV for [Zn(NH$_3$)$_2$][BH$_4$]$_2$, which is 0.68 eV lower than that of [Mg(NH$_3$)$_2$][BH$_4$]$_2$. In addition, as shown in Figure 1, the energy barrier of ammonia diffusion is calculated to be 0.96 eV for [Zn(NH$_3$)$_2$][BH$_4$]$_2$.
The activation energy (E_a) for self-diffusion of ammonia (combining the vacancy formation energy with the diffusion energy barrier) is calculated to be 2.09 eV, comparable to that of [Mg(NH$_3$)$_2$][BH$_4$]$_2$. Our previous reports suggest that AMBs with low E_a tend to release ammonia during decomposition.34,35 Ammonia was not detected during thermal decomposition of [Zn(NH$_3$)$_2$][BH$_4$]$_2$, unlike that of [Mg(NH$_3$)$_2$][BH$_4$]$_2$ which released a small amount of NH$_3$ during decomposition.22,23 With a relatively low ammonia diffusion energy barrier of 0.96 eV, NH$_3$ may be able to diffuse and involve in the formation of amorphous intermediate(s) before the dehydrogenation of [Zn(NH$_3$)$_2$][BH$_4$]$_2$, which prevents its release upon heating.

Figure 1. Calculated energy barrier, and initial (IS), transition (TS) and final (FS) geometric structures of NH$_3$ diffusion in [Zn(NH$_3$)$_2$][BH$_4$]$_2$. E_b represents the calculated energy barrier.

3.2 Direct Release of Hydrogen
Figure 2. Calculated hydrogen release energy barriers for AMBs (via directly combining a hydride from BH$_4^-$ and a proton from NH$_3$) plotted as a function of experimental peak temperature of dehydrogenation. The experimental peak temperature of dehydrogenation is adapted from refs 22, 23, 26, 33 and 36. The H$_2$ releases energy barrier is adapted from refs 33 and 34.

Figure 3. Calculated energy barrier, and initial (IS), transition (TS) and final (FS) geometric structures of H$_2$ release from [Zn(NH$_3$)$_2$][BH$_4$]$_2$ via directly combine hydride from [BH$_4$]$^-$ and proton from NH$_3$. E_b represents the calculated energy barrier.
Our previous studies about AMBs (see Figure 2) show a correlation between the peak dehydrogenation temperature and the calculated H₂ release energy barrier (H₂ released via combining a hydride from BH₄⁻ and a proton from NH₃). The AMBs with higher energy barriers tend to release hydrogen at higher temperatures. Therefore, we calculated a similar reaction pathway in which H₂ is form via combining a hydride from BH₄⁻ and a proton from NH₃. For making the discussion easier to understand, the reaction pathway was simplified as the following equation:

\[\text{BH}_4^- + \text{NH}_3 \rightarrow \text{BH}_3\text{NH}_2^- + \text{H}_2 \] \hspace{1cm} (1)

As shown in Figure 3, the energy barrier of this process is 2.02 eV, which is 0.66 eV higher than that of [Al(NH₃)₆][Li₂(BH₄)₅]. The experimental results, however, show peak dehydrogenation temperature of 127 and 138 °C for [Zn(NH₃)₂][BH₄]₂ and [Al(NH₃)₆][Li₂(BH₄)₅], respectively. Thus, different from that of [Al(NH₃)₆][Li₂(BH₄)₅], the dehydrogenation of [Zn(NH₃)₂][BH₄]₂ may not through the direct combination of a proton from NH₃ and a hydride from [BH₄]⁻. [Zn(NH₃)₂][BH₄]₂ presents an amorphous phase at 69 °C, and with the temperature increase, some amorphous intermediate(s) may be formed.

3.3 Formation of B₂H₆ or BH₃

The above discussion indicates that the formation of intermediate(s) may be a key aspect to uncover the dehydrogenation mechanism of [Zn(NH₃)₂][BH₄]₂. Previous experimental results show the release of B₂H₆ during decomposition of Zn(BH₄)₂. Although no borane byproducts were detected during the dehydrogenation of [Zn(NH₃)₂][BH₄]₂, the B₂H₆ or BH₃ intermediate(s) may be formed before dehydrogenation, which may further react with NH₃ to release hydrogen.
Figure 4. Calculated energy barrier, and initial (IS), transition (TS) and final (FS) geometric structures of (a) B$_2$H$_6$ formation and (b) BH$_3$ formation. E_b represents the calculated energy barrier.

We first calculated the formation of B$_2$H$_6$ via combination of two BH$_3$ from [BH$_4$]$^-$ with two remaining hydrides bonding to the Zn cation. This reaction pathway was simplified as the following equation:

$$2\text{BH}_4^- \rightarrow \text{B}_2\text{H}_6 + 2\text{H}^- \quad (2)$$

As shown in Figure 4a, the CI-NEB energy profile indicates that [Zn(NH$_3$)$_2$][BH$_4$]$_2$ first overcomes an energy barrier of 1.62 eV to form a local minimize configuration with B$_2$H$_7^-$-like anion fragment (LM as shown in Figure 4a). The B$_2$H$_7^-$-like anion fragment subsequently transforms to B$_2$H$_6$ through an endothermal process with a reaction enthalpy of 0.68 eV. This indicates that B$_2$H$_6$ formation via LM\rightarrowFS2 is kinetically and thermodynamically unfavorable because the reverse reaction to form B$_2$H$_7^-$-like anion fragment (FS2\rightarrowLM) is a barrierless exothermal process.

We also examined the pathway in which two hydrides from BH$_4^-$ directly combine with
each other to form H₂, and the two remaining BH₃ fragments bond to the Zn cation. This reaction pathway was simplified as the following equation:

\[
2\text{BH}_4^- + \text{Zn}^{2+} \rightarrow \text{Zn(BH}_3)_2 + \text{H}_2 \quad (3)
\]

As shown in Figure 4b, the final configuration (FS3) shows that two BH₃ bond to the Zn cation with Zn-B and B-B distances of 2.072 and 1.932 Å, respectively. This process is also an endothermal process with the reaction enthalpy and barrier of 1.23 and 2.58 eV, respectively. The high reaction barrier indicates that this process is kinetically unfavorable.

The above discussion indicates that the formation of B₂H₆ and BH₃ is kinetically and/or thermodynamically unfavorable, in consistent with experimental results that not boranes were detected during decomposition of [Zn(NH₃)_2][BH₄]₂.²²

3.4 Formation of the B₂H₇⁻ Intermediate

![Image](image_url)

Figure 5. Calculated energy barrier, and initial (IS), transition (TS) and final (FS) geometric structures of B₂H₇⁻ formation. \(E_b\) represents the calculated energy barrier.

We further calculated the formation of B₂H₇⁻ intermediate via the combination of two BH₄⁻ with a remaining hydride bonding to the Zn cation. This reaction pathway was simplified as the following equation:

\[
2\text{BH}_4^- \rightarrow \text{B}_2\text{H}_7^- + \text{H}^- \quad (4)
\]

As shown in Figure 5, the formation of the B₂H₇⁻ intermediate through IS1→TS4→FS4
is an endothermal process with reaction enthalpy and barrier of 0.56 eV (0.62 eV at 300 K) and 1.58 eV (1.52 eV including zero-point energy correction), respectively. The geometry of TS4 shows that a hydride from BH$_4^-$ migrates and ultimately bonds to Zn cation with a Zn-H distance of ~1.56 Å, which is 0.33 Å shorter than Zn-H distances in crystalline phase of [Zn(NH$_3$)$_2$][BH$_4$]$_2$. Thus, the Zn cation assists the formation of B$_2$H$_7^-$ intermediate by extracting a hydride from BH$_4^-$ to form Zn-H ionic bond. Compared to that of H$_2$ release via combining a hydride from BH$_4^-$ and a proton from NH$_3$ (BH$_4^-$+NH$_3$→BH$_3$NH$_2^-$+H$_2$, IS→TS→FS as shown in Figure 2), the formation of B$_2$H$_7^-$ intermediate is 0.44 eV lower in energy barrier. This indicates that [Zn(NH$_3$)$_2$][BH$_4$]$_2$ may first undergo a phase transformation to form B$_2$H$_7^-$ rather than directly release H$_2$ upon heating.

3.5 Formation of NH$_3$BH$_3$ Intermediate

Figure 6. Calculated energy barrier, and initial (IS), transition (TS) and final (FS) geometric structure of NH$_3$BH$_3$ formation via (a) combining BH$_3$ from B$_2$H$_7^-$ with NH$_3$ (b)
combining BH3 from BH4 with NH3. E_b represents the calculated energy barrier.

A previous study suggests that B2H7− would combine with NH3 to form NH3BH3 and BH4− in gas phase. It would be interesting to examine whether or not this process can occur in [Zn(NH3)2][BH4]2. As shown in Figure 6a, we calculated the rearrangement pathway in which a BH3 from B2H7− combines with a NH3 to form NH3BH3 and BH4− fragments through FS4→TS5→FS5. The reaction pathway was simplified as the following equation:

$$\text{B}_2\text{H}_7^- + \text{NH}_3 \rightarrow \text{BH}_4^- + \text{NH}_3\text{BH}_3$$ (5)

This rearrangement is an exothermal process with a reaction barrier of 1.15 eV (1.30 eV including zero-point energy correction). To take the rearrangement enthalpy from BH4 to B2H7− into account, the effective barrier for NH3BH3 formation via IS1→TS4→FS4→TS5→FS5 is 1.71 eV (1.93 eV including zero-point energy correction).

An alternative pathway to form the NH3BH3 intermediate can be achieved through combination of a BH3 from BH4− and a NH3 in [Zn(NH3)2][BH4]2, with a remaining hydride bonding to the Zn cation (Figure 6b). This reaction pathway was simplified as the following equation:

$$\text{BH}_4^- + \text{NH}_3 \rightarrow \text{NH}_3\text{BH}_3 + \text{H}^-$$ (6)

As shown in Figure 6b, the geometry of TS6 shows that the Zn cation assists the formation of the NH3BH3 intermediate by extracting a hydride from BH4− to form the Zn-H ionic bond. The Zn-H distance in TS6 is ~1.55 Å, similar to that in TS4. As shown in Figure 6b, the calculated energy barrier of direct formation of NH3BH3 intermediate via IS1→TS6→FS6 is 1.59 eV (1.54 eV including zero-point energy correction), which is comparable to the formation of B2H7− (2BH4−→B2H7− + H−, IS1→TS4→FS4 as shown in Figure 5). Therefore, the NH3BH3 and B2H7− intermediates may co-exist during the decomposition of [Zn(NH3)2][BH4]2.
3.6 Discussion

Our above calculation compared the numbers of possible reaction pathways and indicated that the release of \(\text{B}_2\text{H}_6 \) and \(\text{BH}_3 \) is kinetically and/or thermodynamically unfavorable for \([\text{Zn}(\text{NH}_3)_2][\text{BH}_4]_2\), in agreement with experimental results that no borane byproducts were detected during decomposition.

To better illustrate the decomposition mechanism of \([\text{Zn}(\text{NH}_3)_2][\text{BH}_4]_2\), the calculated reaction pathways with relatively low energy barriers including zero-point energy correction were summarized in Figure 7 and Table S1. As shown in Figure 7, our calculation results indicate the formation of \(\text{NH}_3\text{BH}_3 \) (via IS1→TS6→FS6) and \(\text{B}_2\text{H}_7^- \) intermediates (via IS1→TS4→FS4) with comparable reaction barrier.

![Energy profile of the formation of NH₃BH₃ and B₂H₇⁻ intermediates (including the zero-point energy correction).](image)

Figure 7: Energy profile of the formation of \(\text{NH}_3\text{BH}_3 \) and \(\text{B}_2\text{H}_7^- \) intermediates (including the zero-point energy correction).
Figure 8. Bond number analysis for decomposition of [Zn(NH$_3$)$_2$][BH$_4$]$_2$.

To further examine the decomposition mechanism discussed above, AIMD simulation was performed using a $2 \times 1 \times 2$ supercell of [Zn(NH$_3$)$_2$][BH$_4$]$_2$ which contains 152 atoms. As shown in Figure 8a, from 0 to 10 ps (10 000 fs), the number of Zn-N bonds remains unchanged, indicating that the NH$_3$ molecules still coordinate with Zn cations. The number of Zn-B bonds fluctuates from 16 to 10 because of the rotation of BH$_4^-$ around Zn cations. With the simulation time increasing from 10 to 20 ps (20 000 fs), the number of Zn-N bonds starts to decrease, indicating that some of NH$_3$ molecules detach from Zn cations. Figure 8b shows that the number of N-B and H-H bonds remains zero before 20 ps (20 000 fs), suggesting that no N-B relative intermediates or H$_2$ were formed. With the simulation time increasing from 20 to 40 ps (40 000 fs), the formation of N-B (started at ~21 000 fs) and H-H bonds (started at ~24 000 fs) were observed.
Figure 9. Schematics of the formation of NH$_3$BH$_3$ (a-c) and B$_2$H$_7^-$ (d-e) observed in our AIMD simulations. The intermediates are highlighted as ball and stick, other atoms are represent as line.

The MD trajectories in Figure 9a-9c show the formation of the NH$_3$BH$_3$ intermediate via combination of NH$_3$ and BH$_4^-$ with a remainder H$^-$ bonding to the Zn cation from simulation time of 20 869 fs to 21 025 fs. As shown in Figure 9d and 9e, two BH$_4^-$ combine to form B$_2$H$_7^-$ from the simulation time of 24 166 fs to 24 173 fs. The above MD calculation results indicate that the Zn cation assists the formation of NH$_3$BH$_3$ and B$_2$H$_7^-$ intermediates by extracting a hydride from BH$_4^-$ to form the Zn-H ionic bond, in consistent with our above CI-NEB calculation results.
Figure 1. Schematics of the release of H₂ observed in our AIMD simulations. The intermediates are highlighted as ball-and-stick models, and the other atoms are represent as line.

The MD trajectories show two initial dehydrogenation pathways as presented in Figure 10 and 11. As discussed above, the Zn cation extracts a hydride from BH₄⁻ to facilitate the formation of NH₃BH₃ and B₂H₇⁻ intermediates. Figure 10a-10c shows that the extra hydride on Zn cation transfers to the neighboring BH₄⁻ with the formation of BH₃-H₂ intermediate. BH₃-H₂ intermediate further combines with NH₃ to form H₂ and NH₃BH₃ (Figure 10d). The simplified reaction pathways were summarized as following:

\[\text{Zn}^{2+} + \text{H}^- + \text{BH}_4^- \rightarrow \text{Zn}^+ + \text{BH}_3\text{-H}_2 \] \hspace{1cm} (7)

\[\text{BH}_3\text{-H}_2 + \text{NH}_3 \rightarrow \text{H}_2 + \text{NH}_3\text{BH}_3 \] \hspace{1cm} (8)
Figure 1. Schematics of the formation of NH$_4^+$ (a-b) and release of H$_2$ (c-e) observed in our AIMD simulations. The intermediates are highlighted as ball and stick, other atoms are represent as line.

As shown in Figure 1a and 1b, the formation of NH$_3$BH$_3$ facilitates the H$_2$ release by transferring a proton from NH$_3$BH$_3$ intermediate to NH$_3$, with the formation of NH$_4^+$ and NH$_2$BH$_3^-$. The NH$_2$BH$_3^-$ fragment further rotates and bonds to the vicinal Zn cation. The NH$_4^+$ fragment migrates and combines with a BH$_4^-$ to form H$_2$, NH$_3$ and BH$_3$ as shown in Figure 1c-11e.

The simplified reaction pathways were summarized as following:

\[\text{NH}_3\text{BH}_3 + \text{NH}_3 \rightarrow \text{NH}_2\text{BH}_3^- + \text{NH}_4^+ \quad (9) \]
\[\text{NH}_4^+ + \text{BH}_4^- \rightarrow \text{H}_2 + \text{NH}_3 + \text{BH}_3 \quad (10) \]

The remaining BH$_3$ fragment could combines with NH$_3$ to form NH$_3$BH$_3$ or combine with BH$_4^-$ to form B$_2$H$_7^-$ as discussed above.
4. Conclusions

DFT calculation has been employed to investigate the decomposition mechanism of [Zn(NH$_3$)$_2$][BH$_4$]$_2$. Our calculation indicates that the formation of B$_2$H$_6$ and BH$_3$ is kinetically and/or thermodynamically unfavorable for [Zn(NH$_3$)$_2$][BH$_4$]$_2$, which explains the experimental observation that no B$_2$H$_6$ or BH$_3$ byproducts were detected during thermal decomposition. On the other hand, our calculation indicates that the decomposition mechanism of [Zn(NH$_3$)$_2$][BH$_4$]$_2$ is different from those of other reported AMBs, which releases H$_2$ via directly combining hydrides from BH$_4^-$ and protons from NH$_3$. The [Zn(NH$_3$)$_2$][BH$_4$]$_2$ is able to form NH$_3$BH$_3$ and B$_2$H$_7^-$ intermediates during decomposition. The Zn cation assists the formation of NH$_3$BH$_3$ and B$_2$H$_7^-$ intermediates by extracting a hydride from BH$_4^-$ to form the Zn-H ionic bond. Our calculation also indicates that the dehydrogenation occurs through the following two reaction pathways: transfer of a hydride from the Zn cation to BH$_4^-$ with the formation of BH$_3$-H$_2$, which further combines with NH$_3$ to form H$_2$ and NH$_3$BH$_3$ and transfer of a proton from NH$_3$BH$_3$ to NH$_3$ with the formation of NH$_4^+$, which combines with BH$_4^-$ to release hydrogen. We hope that our findings may provide useful insights for improving the dehydrogenation properties of [Zn(NH$_3$)$_2$][BH$_4$]$_2$ as well as offer guidelines for designing novel Zn-based ammine borohydrides for hydrogen storage.

Conflicts of interest

There are no conflicts to declare

Supporting Information

Calculated reaction pathways of [Zn(NH$_3$)$_2$][BH$_4$]$_2$ with relatively low energy barriers including zero-point energy correction.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51601068, 51625102, 51471053), Natural Science Foundation of Fujian Province (2016J05129).
References

10. Nakamori, Y.; Miwa, K.; Ninomiya, A.; Li, H.; Ohba, N.; Towata, S.; Züttel, A.; Orimo, S., Correlation between thermodynamical stabilities of metal borohydrides and

39. Klimes, J.; Bowler, D. R.; Michaelides, A., Van der Waals density functionals applied

