2009

Characterisation of antibiotic resistance gene clusters and their mobility within a collection of multi-drug resistant Salmonella spp

Xiulan Liu
University of Wollongong
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Characterisation of antibiotic resistance gene clusters and their mobility within a collection of multi-drug resistant Salmonella spp.

A thesis submitted in fulfillment of the requirements for the award of the degree

Doctor of Philosophy

from

University of Wollongong

by

Xiulan Liu

Department of biological sciences

2009
Declaration

I, Xiulan Liu, declare that the thesis submitted to the University of Wollongong in fulfillment of the degree of Doctor of Philosophy does not include any work published previously by another person unless appropriate reference is stated in the text. This material has not been submitted for qualifications at any other academic institution.

Signed: Xiulan Liu

Date: 25 May 2009
Table of Contents

Declaration..i

Table of Contents..ii

List of Figures..x

List of Tables...xvii

List of Abbreviations...xix

Abstract..xxii

Acknowledgements...xxv

Publications arising from this thesis...xxvi

Chapter 1: Introduction

1.1 Use of antibiotics..1

1.2 Emergence of antibiotic resistance...3

 1.2.1 Streptomycin resistance..5

 1.2.2 Sulfonamide resistance..6

 1.2.3 Tetracycline resistance..8

 1.2.4 β-lactam resistance...9

 1.2.5 Mercury resistance...12

1.3 Why antibiotic resistance is a concern?...15

1.4 How bacteria acquire antibiotic resistance?..16

1.5 Mobile genetic elements...18

 1.5.1 IS elements..18
1.5.2 Integrons...19
1.5.3 Transposons..21
1.5.4 Plasmids..27
1.6 Salmonella...29
1.6.1 What is Salmonella?...29
1.6.2 Antibiotic resistance in Salmonella and its cost...33
1.7 Aim of this research...35

Chapter 2: Materials and methods

2.1 Bacterial strains...37
 2.1.1 Salmonella strains...37
 2.1.2 E. coli strains..41
2.2 Bacterial media..42
 2.2.1 MacConkey agar...42
 2.2.2 Luria Bertani (LB) medium..42
2.3 DNA preparation..42
 2.3.1 Boiled DNA preparations...42
 2.3.2 DNA extraction by the phenol/chloroform method..43
 2.3.3 DNA extraction using the Corbett Robotics X-tractor Gene™ instrument......44
2.4 PCR amplification...45
2.5 Agarose gel electrophoresis...46
2.6 Restriction endonuclease analysis of DNA...46
2.7 Purification of PCR products...47
Chapter 3: Primary PCR screening for strA, strB, sul2, tetA(A) and tetA(B) genes

3.1 Introduction...59

3.1.1 Tn5393-like transposons..59

3.1.2 RSF1010 and other small plasmids...61

3.1.3 tetA(A), tetA(B), tetA(G) tetracycline resistance genes and the
Tn1721 transposon...63
3.2 Materials and methods..65

3.2.1 PCR amplification...65

3.2.2 Multiplex PCR amplification...69

3.2.3 Sequence analysis of each PCR product...69

3.2.4 Small plasmid extraction of 11 *Salmonella* strains...69

3.2.5 Electroporation of 8 *Salmonella* plasmids...70

3.2.6 Chemical transformation of plasmids from *Salmonella* strains
SRC35 and SRC110..70

3.2.7 Conjugation of a plasmid from *Salmonella* strain SRC6.................................70

3.2.8 Antibiotic resistance testing for 11 *Salmonella* plasmids.................................70

3.3 Results ...71

3.3.1 Screening for strA, strB and sul2 genes..71

3.3.2 Tn5393 and Tn5393b transposon detections...75

3.3.3 Detection of RSF1010 and related plasmids..76

3.3.4 Detection of other plasmids..77

3.3.5 Transformation or conjugation of small plasmids...77

3.3.6 Restriction endonuclease analysis of small plasmids..79

3.3.7 Detections of tetA(A), tetA(B), tetA(G) genes and transposon Tn1721..............84

3.4 Discussion ..88

Chapter 4: Characterisation of the IS26-strB-strA-sul2-repC-repA-IS26 cluster
among 36 *Salmonella* strains

4.1 Introduction ..96

4.2 Materials and methods...97
4.2.1 PCR amplification of IS\textsubscript{26}-str\textsubscript{B}, sul\textsubscript{2}-rep\textsubscript{C} and rep\textsubscript{C}-IS\textsubscript{26} regions.................97
4.2.2 Restriction endonuclease analysis of the three linkage PCR amplicons........98
4.2.3 DNA sequence analysis of the three linkage PCR amplicons.......................98

4.3 Results..99
4.3.1 The IS\textsubscript{26}-str\textsubscript{B} linkage PCR amplification..99
4.3.2 The sul\textsubscript{2}-rep\textsubscript{C} linkage PCR amplification..100
4.3.3 The rep\textsubscript{C}-IS\textsubscript{26} linkage PCR amplification..102

4.4 Discussion..108

Chapter 5: Characterisation of the
IS\textsubscript{26}-str\textsubscript{B}-str\textsubscript{A}-sul\textsubscript{2}-rep\textsubscript{C}-rep\textsubscript{A}-IS\textsubscript{26}-bla\textsubscript{TEM-1}-IS\textsubscript{26} gene cluster for 23 \textit{S. enterica} serovar Typhimurium strains

5.1 Introduction...113
5.1.1 The IS\textsubscript{26}-str\textsubscript{B}-str\textsubscript{A}-sul\textsubscript{2}-rep\textsubscript{C}-rep\textsubscript{A}-IS\textsubscript{26}-bla\textsubscript{TEM-1}-IS\textsubscript{26} gene cluster........113
5.1.2 IS\textsubscript{200} elements and epidemiological research..118

5.2 Materials and methods..119
5.2.1 Southern hybridisations using \textit{bla}_{TEM}, \textit{int}I\textsubscript{1}, \textit{mer}A, \textit{dfr}A\textsubscript{5} and IS\textsubscript{200} gene probes...119
5.2.1.1 Preparing \textit{bla}_{TEM}, \textit{int}I\textsubscript{1}, \textit{mer}A, \textit{dfr}A\textsubscript{5} and IS\textsubscript{200} gene probes........119
5.2.1.2 Southern hybridisations using \textit{bla}_{TEM}, \textit{int}I\textsubscript{1}, \textit{mer}A, \textit{dfr}A\textsubscript{5} and IS\textsubscript{200} gene probes...121
5.2.2 Linkage PCR amplifications..122
5.2.3 DNA sequence analysis of each linkage PCR amplicon.......................................123
5.2.4 Restriction endonuclease analysis of each linkage PCR amplicon......................123

5.3 Results..124
5.3.1 Characterisation of the IS26-\textit{strB-strA-sul2}-IS26-\textit{bla}_{\text{TEM-1}}-IS26 antibiotic resistance gene cluster using Southern hybridisations...............124

5.3.1.1 Southern hybridisations using \textit{bla}_{\text{TEM}}, \textit{intI1} and \textit{merA} gene probes..124

5.3.1.2 The IS26-\textit{tnpB} linkage PCR amplification..125

5.3.1.3 The \textit{tnpB-bla}_{\text{TEM-1}} linkage PCR amplification......................................126

5.3.1.4 The \textit{bla}_{\text{TEM-1}}-IS26 linkage PCR amplification.....................................127

5.3.1.5 Southern hybridisation using a \textit{bla}_{\text{TEM}} gene probe to \textit{PstI}-digested whole cell chromosomal DNA derived from 23 \textit{S. enterica} serovar Typhimurium strains...129

5.3.1.6 Linking the kanamycin/neomycin resistance gene \textit{aphA1} to \textit{strB}...130

5.3.1.7 The IS26-\textit{aphA1} linkage PCR...131

5.3.1.8 The \textit{dfrA5-intI1} linkage PCR...132

5.3.1.9 Summary..134

5.3.2 Further characterisation for 11 \textit{S. enterica} serovar Typhimurium strains in group 2 (Table 5.3)..137

5.3.2.1 PCR amplification of Tn1-IS6100 region, IS6100-\textit{sul1} region and \textit{sul1-intI1} region from strain SRC26...137

5.3.2.2 PCR amplification of Tn1-\textit{dfrA5} from the other \textit{S. enterica} serovar Typhimurium strains...139

5.3.2.2.1 Tn1-\textit{dfrA5} linkage PCR..139

5.3.2.2.2 \textit{PstI} enzyme digestion of the Tn1-\textit{dfrA5} linkage PCR amplicons...140

5.3.2.3 Southern hybridisation using a \textit{dfrA5} gene probe143

5.3.2.4 Summary..144

5.3.3 IS200 profiles..145
Chapter 6: Plasmid conjugation for 23 S. enterica serovar Typhimurium strains

6.1 Introduction...154

6.1.1 Conjugative plasmids...154

6.1.2 Mobilisable plasmids..157

6.1.3 Non-conjugative plasmids..158

6.2 Materials and methods...159

6.2.1 Conjugation..159

6.2.2 Triparental mating...159

6.2.3 Chromosomal DNA extraction for 19 E. coli transconjugants.......................159

6.2.4 PCR amplification..159

6.2.4.1 Multiplex PCR amplification of strA, strB and sul2 genes..............159

6.2.4.2 PCR amplification of Salmonella invA gene and E. coli uspA gene..160

6.2.4.3 PCR amplification of gene tetA(A), tetA(B), the right arm of Tn1721 transposon, merA and the dfrA5-intII region.......................161

6.2.5 Southern hybridisations..161

6.2.5.1 Southern hybridisation using the blaTEM gene probe.....................161

6.2.5.2 Southern hybridisation using an aphAI gene probe.........................162

6.2.5.2.1 Making the aphAI gene probe...162

6.2.5.2.2 Southern hybridisation using the aphAI probe.........................162

6.2.6 Plasmid extraction..162

6.3 Results...162
6.3.1 Conjugation of *Salmonella* plasmids..162

6.3.2 PCR amplifications..163

6.3.2.1 *Salmonella invA* gene and *E. coli uspA* gene amplifications............163

6.3.2.2 Multiplex PCR amplification of *strA, strB* and *sul2* genes..............165

6.3.2.3 PCR amplifications of *tetA*(A), the right arm of transposon
Tn1721 and *tetA*(B)...165

6.3.2.4 PCR amplification of the *merA* gene and the *dfrA5-intI1*
region...167

6.3.3 Southern hybridisation results..169

6.3.3.1 Southern hybridisation using the *blaTEM* gene probe......................169

6.3.3.2 Southern hybridisation using the *aphAI* gene probe.......................170

6.3.4 The *blaTEM* Southern hybridisation of three plasmids.........................172

6.4 Discussion..173

Chapter 7: Discussion

7.1 Discussion..180
List of Figures

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The mer operons from Gram-negative bacteria Shigella flexneri (Tn21) and Pseudomonas aeruginosa (Tn501)</td>
</tr>
<tr>
<td>1.2</td>
<td>Acquisition of antibiotic resistance determinants by transformation, transduction and conjugation methods</td>
</tr>
<tr>
<td>1.3</td>
<td>The structure of IS26 element</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic representation of a class 1 integron</td>
</tr>
<tr>
<td>1.5</td>
<td>The structure of Tn3 transposon</td>
</tr>
<tr>
<td>1.6</td>
<td>The structure of Tn21 transposon</td>
</tr>
<tr>
<td>1.7</td>
<td>The hypothetical process for the formation of Tn21</td>
</tr>
<tr>
<td>1.8</td>
<td>The members of Tn21-like transposon family found on plasmid pRMH760, R100 and TnSF1</td>
</tr>
<tr>
<td>1.9</td>
<td>The structure of R plasmid NR1</td>
</tr>
<tr>
<td>1.10</td>
<td>Schematic representations of genes within and between InC and InD regions in S. enterica serovar Typhimurium DT104</td>
</tr>
<tr>
<td>2.1</td>
<td>The antibiotic disc, the zone of inhibition and the Sensitest Agar plate used in antibiotic resistance testing experiment</td>
</tr>
<tr>
<td>3.1</td>
<td>The structures of Tn5393-like transposons</td>
</tr>
<tr>
<td>3.2</td>
<td>The maps of plasmid RSF1010, pMS260, pIE1115 and p9123</td>
</tr>
<tr>
<td>3.3</td>
<td>The structure of Tn1721</td>
</tr>
<tr>
<td>3.4</td>
<td>The primer positions of sulII-F/sulII-R, strA-F/strA-R, strB-F/strB-R, sulII-F/strA-out, strA-F(L)/strB-R(L), and RSF1010-F/RSF1010-R on plasmid RSF1010</td>
</tr>
<tr>
<td>3.5A</td>
<td>The primer positions of smAR/IS1133F on transposon Tn5393</td>
</tr>
<tr>
<td>3.5B</td>
<td>The primer positions of Tn5393-3/Tn5393-1 on Tn5393b</td>
</tr>
</tbody>
</table>
transposon..66

Figure 3.6 The primer positions of TAF/TetAR3 on Tn1721 tranposon........67

Figure 3.7 Gel electrophoresis of three different PCR amplicons
representing strA, strB and sul2 genes..71

Figure 3.8A Gel electrophoresis of the strA-strB linkage PCR amplicon......72

Figure 3.8B Restriction endonuclease analysis of the strA-strB linkage
PCR amplicon digested with RsaI + HaeIII...73

Figure 3.9A Gel electrophoresis of the sul2-strA linkage PCR amplicon........74

Figure 3.9B Gel electrophoresis of PstI digested sul2-strA linkage
PCR amplicon...74

Figure 3.10 Gel electrophoresis of a Tn5393 PCR amplicon.....................76

Figure 3.11 Gel electrophoresis of RSF1010 PCR amplicon.....................77

Figure 3.12 Gel electrophoresis of plasmid extracts from 11
transformants/transconjugants...79

Figure 3.13 The restriction digestion map of RSF1010 plasmid with enzymes
PstI, SspI and EcoRV...79

Figure 3.14 The restriction digestion map of p9123 plasmid with enzymes
PstI, SspI and EcoRV...80

Figure 3.15 Gel electrophoresis of 11 plasmid extracts digested with
enzyme PstI..82

Figure 3.16 Gel electrophoresis of 11 plasmid extracts digested with
enzyme SspI..83

Figure 3.17 Gel electrophoresis of 11 plasmid extracts digested with
enzyme EcoRV..83

Figure 3.18 Gel electrophoresis of multiplex PCR for tetA(A), tetA(B)
and tetA(G) amplicons...85

Figure 3.19 Gel electrophoresis of the PCR amplicon of the right
arm of transposon Tn1721...86
Figure 3.20 The structures of RSF1010 and pCCK1900 ... 91

Figure 3.21 The possible relationship between transposon Tn5393 and RSF1010 plasmid ... 94

Figure 4.1 The consensus maps of the strB-strA-sul2-repC-repA-IS26 antibiotic resistance region (blue color) on the chromosome of S. enterica serovar Typhimurium DT193 and on the S. enterica serovar Enteritidis IncI plasmid ... 97

Figure 4.2 The primer positions used to amplify the IS26-strB region (JL-D2/strB-F), sul2-repC region (sulII-R/JL-D3) and repC-IS26 region (JL-D1/JL-D2) ... 98

Figure 4.3A Gel electrophoresis of the IS26-strB linkage PCR amplicon .. 99

Figure 4.3B Gel electrophoresis of the IS26-strB PCR amplicon digested with NotI ... 100

Figure 4.4A Gel electrophoresis of the sul2-repC linkage PCR amplicon .. 101

Figure 4.4B Restriction endonuclease analysis of the sul2-repC linkage PCR amplicon digested with SspI ... 101

Figure 4.5A Gel electrophoresis of the three different sized amplicons for the repC-IS26 linkage PCR .. 102

Figure 4.5B Gel electrophoresis of RsaI digested repC-IS26 linkage PCR amplicons .. 103

Figure 4.6 The structures of three repC-IS26 linkage PCR amplicons digested with restriction enzyme RsaI ... 104

Figure 4.7 DNA sequence alignment of the repC-IS26 fragments from S. enterica serovar Typhimurium DT193, strain SRC28, S. enterica serovar Enteritidis IncI plasmid, strains SRC122 and SRC126 respectively ... 105

Figure 4.8 The structure of Tn4352B transposon ... 109

Figure 5.1 The IS26-strB-strA-sul2-IS26-blaTEM-1-IS26 antibiotic resistance gene cluster on plasmid pHCM1, pU302L, pRSB107 and pAKU_1 ... 116
Figure 5.2 Hypothesis for various insertion events occurred for the multiple antibiotic resistance plasmid pAKU_1

Figure 5.3 The primer positions for the IS26-aphAI region [JL-D2/aphAI-IAB(F)], aphAI-strB [aphAI-IAB(R)/strB-out], IS26-tnpB (JL-D7/JL-D13), tnpB-blaTEM-1 (JL-D14/TemSFW) and blaTEM-1-IS26 (TemSRV/JL-D7) linkage PCR amplifications

Figure 5.4 The primer positions of Tn1-IS6100 (JL-D44/DB-T1), IS6100-sul1 [IS6100-Rv2/sul1-F(C)] and sul1-intI1 (sul1-R/L2) linkage PCR amplifications

Figure 5.5 The primer positions of Tn1-dfrA5 (JL-D44/JL-D6) and dfrA5-intI1 (JL-D5/L1) linkage PCR amplifications

Figure 5.6 Southern hybridisation results of BglII digested DNA probed using blaTEM, intI1 and merA gene probes

Figure 5.7A Gel electrophoresis of the IS26-tnpB linkage PCR amplicon

Figure 5.7B Gel electrophoresis of the IS26-tnpB linkage PCR amplicon digested using restriction enzyme SalI

Figure 5.8A Gel electrophoresis of the tnpB-blaTEM-1 linkage PCR amplicon

Figure 5.8B Gel electrophoresis of ScalI restriction digestion of the tnpB-blaTEM-1 linkage PCR amplicon

Figure 5.9A Gel electrophoresis of the blaTEM-1-IS26 linkage PCR amplicons

Figure 5.9B Gel electrophoresis of BamHI restriction digestion of the blaTEM-1-IS26 linkage PCR amplicon

Figure 5.10A The predicted restriction digestion map of the IS26-△tnpB-blaTEM-1-IS26 region using PstI

Figure 5.10B Southern hybridisation using the blaTEM gene probe for 23 Salmonella strains digested with PstI

Figure 5.11A Gel electrophoresis of the aphAI-strB linkage PCR amplicon

Figure 5.11B Gel electrophoresis of DraI restriction digestion of the
aphAI-strB linkage PCR amplicon..131

Figure 5.12A Gel electrophoresis of the IS26-aphAI linkage PCR amplicon........132

Figure 5.12B Gel electrophoresis of HindIII restriction enzyme digestion of the IS26-aphAI linkage PCR amplicon..132

Figure 5.13A Gel electrophoresis of the dfrA5-intI1 linkage PCR amplicon........133

Figure 5.13B Gel electrophoresis of AseI restriction enzyme digestion of the dfrA5-intI1 linkage PCR amplicon..134

Figure 5.14A Gel electrophoresis of the Tn1-IS6100 linkage PCR amplicon for strain SRC26..138

Figure 5.14B Gel electrophoresis of the IS6100-sulI linkage PCR amplicon for SRC26..138

Figure 5.14C Gel electrophoresis of the sulI-intI1 linkage PCR product for SRC26..138

Figure 5.15A Gel electrophoresis of the Tn1-dfrA5 linkage PCR amplicons..139

Figure 5.15B PstI enzyme restriction digestion of the Tn1-dfrA5 linkage PCR amplicons..140

Figure 5.16 DNA sequence alignment of S. enterica serovar Paratyphi A, S. enterica serovar Typhi CT18, and the Tn1-dfrA5 linkage PCR amplicons from SRC31, SRC14 and SRC129..143

Figure 5.17 Southern hybridisation employing the dfrA5 gene probe for 3 S. enterica serovar Typhimurium strains..144

Figure 5.18 Illustration of the antibiotic resistance gene clusters found in different S. enterica serovar Typhimurium strains including SRC26, SRC129, SRC14 and SRC31..145

Figure 5.19A Representatives IS200 profiles for group I and group IIa and IIb..146

Figure 5.19B Representatives IS200 profiles for group IIa, IIc and IIId..146

Figure 5.20 The hypothetical derivation of the blatem-1 gene and the structure
Figure 6.1 The Tn21-related transposon identified in isolates of S. enterica serovar Brandenburg

Figure 6.2 Map of the Tn402-like transposon on plasmid pRSB101

Figure 6.3 The primer positions for strA (*strA-F/strA-R), strB (*strB-F/strB-R), and sul2 (*S2-F/S2-R) on RSF1010 plasmid

Figure 6.4 Gel electrophoresis of PCR amplicon of the E. coli uspA gene

Figure 6.5 Gel electrophoresis of the multiplex PCR amplicons for the strA, strB, strA-strB and sul2 genes for 19 E. coli transconjugants

Figure 6.6A Gel electrophoresis of the tetA(A) PCR amplicon for 19 E. coli transconjugants

Figure 6.6B Gel electrophoresis of the PCR amplicon of the right arm of transposon Tn1721

Figure 6.7 Gel electrophoresis of the PCR amplicon for the tetA(B) gene

Figure 6.8 Gel electrophoresis of the PCR amplicon for the merA gene for 19 E. coli transconjugants

Figure 6.9A Gel electrophoresis of the dfrA5-intII linkage PCR amplicon for 19 E. coli transconjugants

Figure 6.9B Gel electrophoresis of the restriction digestion of the dfrA5-intII amplicon using enzyme AseI

Figure 6.10 Southern hybridisation using the blaTEM gene probe on 19 E. coli transconjugants

Figure 6.11 Southern hybridisation using the aphA1 gene probe on 19 E. coli transconjugants

Figure 6.12 Gel electrophoresis of large plasmids extracted from three E. coli transconjugants containing pSRC14, pSRC26 and pSRC27

Figure 6.13 Southern hybridisation using the blaTEM probe on three large plasmids
plasmids extracted from transconjugants

Figure 7.1 Schematic representations of the SGI1-Q1, SGI1-Q2 and SGI1-Q3 MDU regions

Figure 7.2 The hypothetical evolutionary process for the formation of the IS26-sul2-strA-strB-repC-repA-IS26-bla TEM-1-IS26 antibiotic resistance gene cluster harboired on plasmids
List of Tables

Table 1.1 Mechanisms of action of different antibiotics..........................3
Table 1.2 The top 10 *Salmonella* serovars isolated from humans and some animals including cattle, sheep, pigs and poultry in 2003.............33
Table 2.1 The 136 *Salmonella enterica* isolates used in this study.............38
Table 3.1 The primers used for PCR and multiplex PCR amplifications.........68
Table 3.2 The annealing temperatures used for different PCR amplifications.....69
Table 3.3 A summary of the PCR screening results of *strA*, *strB*, *sul2*, *strA-strB* and *sul2-strA* for 136 *Salmonella* strains.........................75
Table 3.4 Methods used to transfer the small plasmids from *Salmonella* to *E. coli* competent cells for resistance profiling.............................78
Table 3.5 The resistance phenotype, plasmid type, restriction digestion results of enzymes *SspI*, *PstI* and *EcoRV* for 11 small plasmids.........84
Table 3.6 The screening results of antibiotic resistance genes *strA*, *strB*, *sul2*, *strA-strB*, *sul2-strA*, *tetA*(A) and *tetA*(B) among 136 *Salmonella* strains..86
Table 3.7 BlastN sequence search results for representative of each PCR amplification and % identity to previously published GenBank sequences...87
Table 4.1 The primers used for the IS26-*strB* region (JL-D2/*strB*-F), *sul2*-repC region (sulII-R/JL-D3) and repC-IS26 region (JL-D1/JL-D2) PCR amplifications..98
Table 4.2 PCR screening results of IS26-*strB*, *strB*, *strA-strB*, *strA*, *strA-sul2*, *sul2*, *sul2-repC* and repC-IS26 for 36 *Salmonella* strains....................107
Table 5.1 Primers used in each PCR amplification..................................120
Table 5.2 Programs and thermocyclers used for linkage PCR amplifications....123
Table 5.3 The results of the antibiotic resistance gene clusters and
Southern hybridisations (blaTEM, intI1 and merA) for 23 S. enterica serovar Typhimurium strains.................................136

Table 5.4 IS200 profiles and their corresponding S. enterica serovar Typhimurium strains..147

Table 6.1 The primers used for the strA, strB and sul2 multiplex PCR, Salmonella invA gene and E. coli uspA gene amplifications..160

Table 6.2 Conjugation and triparental mating results for 23 S. enterica serovar Typhimurium strains..164

Table 6.3 The results of all PCR amplifications and Southern hybridisations for the 19 E. coli transconjugants.................................171
List of Abbreviations

Ab = absorbance
Ap = ampicillin
APH = phosphotransferase
ARP = antibiotic resistance profile
attI = the gene cassette integration site
be = base element
bp = base pair
CFU = colony forming units
Claa = chloroform/isoamylalcohol
Cm = chloramphenicol
CR = common region
CS = conserved segment
Cp = ciprofloxacin
Cp' = intermediate resistance to ciprofloxacin
CSPD = disodium 3-(4-methoxyspiro {1,2-dioxetane-3,2′-(5′-chloro) tricycle [3.3.1.1^{3,7}] decan}-4-yl) phenyl phosphate
dfr = dihydrofolate reductase
DHPS = dihydropteroate synthase
dH2O = distilled water
DIG = digoxigenin
DNA = deoxyribonucleic acid
dNTPs = deoxynucleotide triphosphates
DT104 = definitive type 104
°C = degrees celsius
E. coli = Escherichia coli
EDTA = ethylenediaminetetraacetic acid
EMAI = Elizabeth Macarthur Agricultural Institute
ESBLs = extended spectrum beta lactamases
EU = European Union
NRA = National Registration Authority
Fl = florfenicol
FDA = the United States Food and Drug Administration
g = gram
Gm = gentamicin
GCK = gene construction kit
h = hour
HCl = hydrochloric acid
H2O = water
Hg = mercury
HgS = mercury sulphide
In = integron
Int = integrase
Inc = incompatibility
IR = inverted repeat
IS = insertion sequence
kbp = kilo base pairs
kg = kilogram
Km = kanamycin
KOH = potassium hydroxide
kV = kilo volt
L = litre
LB = Luria Bertani
M = molar
mA = milliamp
MgCl₂ = magnesium chloride
MDR = multidrug resistance
MDU = Microbiological Diagnostic Unit (Melbourne)
MIC = minimum inhibitory concentration
min = minute
ml = millilitre
mm = millimetre
MQ water = Milli-Q water
µ = micro
n = nano
Na = nalidixic acid
NaCl = sodium chloride
NaOH = sodium hydroxide
NCBI = National Centre for Biotechnology Information
NEPSS = National Enteric Pathogens Surveillance System
NNDSS = National Notifiable Diseases Surveillance System
OD = optical density
ORF = open reading frame
% = percentage
PBS = phosphate buffered saline
PCR = polymerase chain reaction
pH = potential of Hydrogen
PCIaa = phenol/chloroform/isoamylalcohol
PT = phage type
PFGE = pulsed-field gel electrophoresis
QAC = quaternary ammonium compound
QLD = Queensland
R plasmid = resistance plasmid
r-det = resistance determinant
RDNC = results do not conform
RNA = ribonucleic acid
rpm = revolutions per minute
RT = room temperature
RTF = resistance transfer factor
sec = second
SDS = sodium dodecyl sulfate
SGI1 = Salmonella Genomic Island 1
Sm = streptomycin
Sp = spectinomycin
spp. = species
SRC = Salmonella reference collection
SSC = sodium citrate
sul = sulfonamide
TBE = tris-borate-EDTA
Tc = tetracycline
TE = tris-EDTA
Tp = trimethoprim
tra = transposition
tRNA = transfer RNA
U = units
UV = ultraviolet
USA = United States of America
UK = United Kingdom of Great Britain and Northern Ireland
V = volt
v/v = volume/volume
w/v = weight/volume
WHO = World Health Organisation
Abstract

One hundred and thirty-six Salmonella enterica strains, isolated from humans, animals, environmental and plant sources in Australia from 23 serovars, were examined for the streptomycin resistance gene strA and strB, the sulfonamide resistance gene sul2, and the tetracycline resistance gene tetA(A) and tetA(B). Thirteen strains were identified as containing the strA-strB genes located on the transposon Tn5393. S. enterica serovar Hadar accounted for 11 of these strains, 6 of which were isolated from humans and 5 were from ducks. This investigation is therefore the first report of the Tn5393 transposon being detected in bacterial strains from a human source in Australia.

RSF1010 plasmids were identified and extracted from 4 S. enterica strains, and were further confirmed by restriction enzyme profiling using PstI, SspI and EcoRV. Small non-conjugative plasmid p9123 was extracted and characterised from 3 of the S. enterica strains and also confirmed by restriction enzyme digestion. An RSF1010-like plasmid was also identified in 3 of the strains. This plasmid was found to be approximately 2.6 kb larger than RSF1010, and possibly derived from the RSF1010 plasmid via insertion of the tetracycline resistance gene tetA(A) between strB and mobC genes.

An IS26-strB-strA-sul2-repC-repA-IS26 antibiotic resistance region was identified in 33 S. enterica strains, among these were 23 serovar Typhimurium isolates, 8 serovar
Bovismorbificans, 1 serovar Senftenberg and 1 isolate where the serovar could not be conclusively identified. The 23 Typhimurium strains were further characterised by PCR and Southern hybridisation analysis using a bla_{TEM} gene probe. The analysis identified two classes of antibiotic resistance gene clusters. Eleven $S. enterica$ serovar Typhimurium strains harboured an IS26-$strB-strA-sul2-repC-repA-IS26-bla_{TEM-1}$-IS26 antibiotic resistance gene cluster and another 10 $S. enterica$ serovar Typhimurium strains contained an IS26-$strB-strA-sul2-repC-repA-IS26-bla_{TEM-1}$ gene cluster, without the IS26 element downstream of the bla_{TEM-1} gene. Two strains contain elements of these gene clusters but further investigation is needed to fully identify these.

Further linkage PCR amplifications revealed that the IS26-$strB-strA-sul2-repC-repA-IS26-bla_{TEM-1}$-IS26 antibiotic resistance gene cluster was possibly inserted into the 3′-CS of a class 1 integron (In4 type) and truncated the 3′-CS region. Three derivatives were identified, of which the $dfrA5-intI1$ type was most commonly found downstream of the bla_{TEM-1}-IS26 region. Southern hybridisation analysis using an IS200 gene probe revealed that strains which contain different antibiotic resistance gene clusters also display different but related IS200 profiles.

The antibiotic resistance gene clusters of 19 $S. enterica$ serovar Typhimurium strains were transferred to an $E. coli$ 294 Rifr recipient either by direct mating or triparental mating methods. These experiments confirmed that the antibiotic resistance gene clusters were located on conjugative or mobilisable plasmids. The antibiotic resistance
gene clusters of 4 *S. enterica* serovar Typhimurium strains could not be transferred to the *E. coli* 294 Rif$^\text{r}$ recipient. These experimental results suggest that the antibiotic resistance gene cluster of IS26-strB-strA-sul2-repC-repA-IS26-blaTEM-1-IS26 might move as one genetic element between distinct plasmid backbones.
Acknowledgements

I would like to thank my supervisor Professor Mark Walker first. From the beginning, he trusted me and gave me the chance to start my PhD. In the next 5 years, he gave me great support with regards research direction. Especially during the writing of my thesis, he spent a lot of time exchanging ideas and discussing directions for my thesis. I would like to thank him for his generosity and tolerance in the past few years. I would also like to thank my other supervisor Dr Steven Djordjevic, who gave me much useful advice, set the direction for my research project and supported my thesis writing.

I would like to thank Dr Renee Levings, who acted as my "third supervisor" and also as a good friend. In the past 5 years, she provided me great support not only with regards research direction but also in technical support. I would also thank her for spending a lot of time to help me with my thesis. As a friend, Renee also gave me great support to help me culturally adapt to Australia.

I would like to thank Dr Cheryl Jenkins and Dr Tracey Kuit, who both provided great friendship and a lot of laughs in the lab.

I would like to thank Carola Venturini, who shared her experimental experiences with me unselfishly.

I would like to thank Linda Falconer for her technical support.

I would like to thank Ania and Daniel, who were fun to work with in the lab.

I would like to thank Fay Dawes for her primers.

I would like to thank my other colleagues at EMAI as well, who provided a friendly environment to work in.

Finally and most importantly, I would like to thank my husband Ying Jiang and my son Qi Jiang, for their love, understanding and tolerance of my absence from home for five years.
Publications Arising from this Thesis

Paper 1
Characterisation of resistance genes in multiply antibiotic resistant Salmonella enterica serovar Typhimurium from human and bovine sources
Renee S. Levings¹, Xiulan Liu¹,³, Diane Lightfoot⁴, Nick Evershed⁵, Linda Falconer¹, Mark J. Walker³, Ruth M. Hall⁵ and Steven P. Djordjevic¹,²*

Paper 2
Persistence of RSF1010-like plasmids and origin of their sul2-strA-strB antibiotic resistance gene cluster
Sheree Yau, Xiulan Liu, Steven P. Djordjevic and Ruth M. Hall

Manuscript 1
Evolution of the Tn1696 transposon family
Amy K. Cain, Xiulan Liu, Steven P. Djordjevic and Ruth M. Hall