Insoluble oxide product formation and its effect on coke dissolution in liquid iron

Michael Wallace Chapman
University of Wollongong

This paper is posted at Research Online.
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Appendix IX - Sessile drop results

Figure IX-1 The contact angle of the Fe-2\%[C] melt on an Alumina substrate at 1450°C

Figure IX-2 The contact angle of the Fe-2\%[C] melt on an Alumina substrate at 1500°C

Figure IX-3 The contact angle of the Fe-2\%[C] melt on an Alumina substrate at 1550°C
Figure IX-4 The contact angle of the Fe-5%[C] melt on a CA6 substrate at 1450°C

Figure IX-5 The contact angle of the Fe-5%[C] melt on a CA6 substrate at 1500°C

Figure IX-6 The contact angle of the Fe-5%[C] melt on a CA6 substrate at 1550°C
Figure IX-7 The contact angle of the Fe-2%[C] melt on a CA6 substrate at 1450°C

Figure IX-8 The contact angle of the Fe-2%[C] melt on a CA6 substrate at 1500°C

Figure IX-9 The contact angle of the Fe-2%[C] melt on a CA6 substrate at 1550°C
Figure IX-10 The contact angle of the Fe-5%[C] melt on a CA2 substrate at 1450°C

Figure IX-11 The contact angle of the Fe-5%[C] melt on a CA2 substrate at 1500°C

Figure IX-12 The contact angle of the Fe-5%[C] melt on a CA2 substrate at 1550°C
Figure IX-13 The contact angle of the Fe-2%[C] melt on a CA2 substrate at 1450°C

Figure IX-14 The contact angle of the Fe-2%[C] melt on a CA2 substrate at 1500°C

Figure IX-15 The contact angle of the Fe-2%[C] melt on a CA2 substrate at 1550°C
Figure IX-16 The contact angle of the Fe-5%[C] melt on a CA substrate at 1450°C

Figure IX-17 The contact angle of the Fe-5%[C] melt on a CA substrate at 1500°C

Figure IX-18 The contact angle of the Fe-5%[C] melt on a CA substrate at 1550°C
Figure IX-19 The contact angle of the Fe-2%[C] melt on a CA substrate at 1450°C

Figure IX-20 The contact angle of the Fe-2%[C] melt on a CA substrate at 1500°C

Figure IX-21 The contact angle of the Fe-2%[C] melt on a CA substrate at 1550°C
Figure IX-22 The contact angle of the Fe-2\%[C]-0.03\%[S] melt on an Al₂O₃ substrate at 1450°C

Figure IX-23 The contact angle of the Fe-2\%[C]-0.03\%[S] melt on an Al₂O₃ substrate at 1500°C

Figure IX-24 The contact angle of the Fe-2\%[C]-0.03\%[S] melt on an Al₂O₃ substrate at 1550°C
Figure IX-25 The contact angle of the Fe-2%[C]-0.05%[S] melt on an Al₂O₃ substrate at 1450°C

Figure IX-26 The contact angle of the Fe-2%[C]-0.05%[S] melt on an Al₂O₃ substrate at 1500°C

Figure IX-27 The contact angle of the Fe-2%[C]-0.05%[S] melt on an Al₂O₃ substrate at 1550°C
Figure IX-28 The contact angle of the Fe-2\%[C]-0.03\%[S] melt on a CA6 substrate at 1450°C

Figure IX-29 The contact angle of the Fe-2\%[C]-0.03\%[S] melt on a CA6 substrate at 1500°C

Figure IX-30 The contact angle of the Fe-2\%[C]-0.03\%[S] melt on a CA6 substrate at 1550°C
Figure IX-31 The contact angle of the Fe-2\%[C]-0.05\%[S] melt on a CA6 substrate at 1450°C

Figure IX-32 The contact angle of the Fe-2\%[C]-0.05\%[S] melt on a CA6 substrate at 1500°C

Figure IX-33 The contact angle of the Fe-2\%[C]-0.05\%[S] melt on a CA6 substrate at 1550°C
Figure IX-34 The contact angle of the Fe-2%[C]-0.03%[S] melt on a CA2 substrate at 1450°C

Figure IX-35 The contact angle of the Fe-2%[C]-0.03%[S] melt on a CA2 substrate at 1500°C

Figure IX-36 The contact angle of the Fe-2%[C]-0.03%[S] melt on a CA2 substrate at 1550°C
Figure IX-37 The contact angle of the Fe-2\%[C]-0.05\%[S] melt on a CA2 substrate at 1450°C

Figure IX-38 The contact angle of the Fe-2\%[C]-0.05\%[S] melt on a CA2 substrate at 1500°C

Figure IX-39 The contact angle of the Fe-2\%[C]-0.05\%[S] melt on a CA2 substrate at 1550°C
Figure IX-40 The contact angle of the Fe-2%[C]-0.03%[S] melt on a CA substrate at 1450°C

Figure IX-41 The contact angle of the Fe-2%[C]-0.03%[S] melt on a CA substrate at 1500°C

Figure IX-42 The contact angle of the Fe-2%[C]-0.03%[S] melt on a CA substrate at 1550°C
Figure IX-43 The contact angle of the Fe-2\%[C]-0.05\%[S] melt on a CA substrate at 1450°C

Figure IX-44 The contact angle of the Fe-2\%[C]-0.05\%[S] melt on a CA substrate at 1500°C

Figure IX-45 The contact angle of the Fe-2\%[C]-0.05\%[S] melt on a CA substrate at 1550°C