2018

Enhanced UV-light detection based on ZnO nanowires/graphene oxide hybrid using cost-effective low temperature hydrothermal process

Tariq AlZoubi
University of the Middle East

Hamzeh Qutaish
University of Wollongong, hqmq581@uowmail.edu.au

Esraa Al-Shawwa
University of Science & Technology

Sameh Hamzawy
University of Wollongong, snsh769@uowmail.edu.au

Publication Details
Enhanced UV-light detection based on ZnO nanowires/graphene oxide hybrid using cost-effective low temperature hydrothermal process

Abstract
A new low-cost optimized hydrothermal process of direct synthesis of ZnO nanowires (NWs)/graphene oxide (GO) hybrid on silicon substrates at a low growth temperature (∼60°C) is reported. The careful optimization of the growth conditions and ZnO/GO relative ratios have resulted in high-density ZnO NWs formation with homogenous density and size distributions directly on GO sheets. The fabricated nanocomposites were intensively investigated by employing different structural, optical and electrical characterization techniques such as SEM, EDX, XRD, FTIR, UV-VIS and I-V. SEM analysis showed a formation of highly dense ZnO NWs on GO sheets with homogenous size distributions with average approximate diameter and length of 70 nm and 310 nm, respectively. The EDX combined with FTIR and XRD measurements confirmed the exact chemical composition of the intended structure. The room-temperature UV-VIS spectra revealed an enhanced optical absorption of UV-light at an absorption band centered at 370 nm. Under UV-excitation a significant photocurrent increase has been observed. This is can be attributed to the large surface to volume ratio in ZnO-NWs structure, which is associated with oxygen desorption at the large ZnO-NWs surfaces that reduces the recombination rate of photogenerated free charge carriers. The optimum electrical and optical properties of the device have been observed at ZnO-NWs/Go relative ratio of 1:5. These findings could be promising for potential enhanced UV-detectors and flexible optoelectronics devices.

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/aiimpapers/2966
Enhanced UV-light detection based on ZnO nanowires/graphene oxide hybrid using cost-effective low temperature hydrothermal process

Authors: Tariq AlZoubi¹, Hamzeh Qutaish², Esra’a Al-Shawwa³, Sameh Hamzawy²

¹ College of Engineering and Technology, American University of the Middle East (AUM), P.O. Box 220 Dasman, 15453 Kuwait
² Australian Institute for Innovative Materials (AIIM), University of Wollongong (UOW), Squires Way, North Wollongong, NSW, 2500, Australia
³ Department of Biomedical Engineering, Jordan University of Science & Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan

Abstract:

A new low-cost optimized hydrothermal process of direct synthesis of ZnO nanowires (NWs)/graphene oxide (GO) hybrid on silicon substrates at a low growth temperature (~60 °C) is reported. The careful optimization of the growth conditions and ZnO/GO relative ratios have resulted in high-density ZnO NWs formation with homogenous density and size distributions directly on GO sheets. The fabricated nanocomposites were intensively investigated by employing different structural, optical and electrical characterization techniques such as SEM, EDX, XRD, FTIR, UV-VIS and I-V. SEM analysis showed a formation of highly dense ZnO NWs on GO sheets with homogenous size distributions with average approximate diameter and length of 70 nm and 310 nm, respectively. The EDX combined with FTIR and XRD measurements confirmed the exact chemical composition of the intended structure. The room-temperature UV-VIS spectra revealed an enhance optical absorption of UV-light at an absorption band centered at 370 nm. Under UV-excitation a significant photocurrent increase has been observed. This is can be attributed to the large surface to volume ratio in ZnO-NWs structure, which is associated with oxygen desorption at the large ZnO-NWs surfaces that reduces the recombination rate of photogenerated free charge carriers. The optimum electrical and optical properties of the device have been observed at ZnO-NWs/Go relative ratio of 1:5. These findings could be promising for potential enhanced UV-detectors and flexible optoelectronics devices.
1. Introduction

ZnO is described as a functional, strategic, promising, low cost, and versatile inorganic material with a wide range of applications. It is known as II–VI semiconductor, since Zn and O are classified into second and sixth groups of the periodic table, respectively [1]. ZnO possesses a unique optical, chemical sensing, semiconducting, electric conductivity, and piezoelectric properties [2]. It is characterized by a direct wide band gap (3.3 eV) in the near-UV spectrum with high exciton binding energy of (60 meV) at room temperature, which has a significant effect on its properties, such as the electrical conductivity and optical absorption [3-7]. These characteristics enable ZnO to have remarkable applications in diverse fields such as electronic and optoelectronic devices, chemical sensors, and biosensors [8-11]. Due to its superior optical properties, ZnO has been highly used in ultraviolet (UV) photodetectors. Moreover, ZnO-based UV-detectors have the advantage to be insensitive to the visible light allowing for visible-blind detection without any additional filters compared to other semiconductor materials, which are used for these applications [12-16].

Enhancing the collection of incident photons thereby the generated photocurrent are key parameters in today UV-photodetectors design and development. ZnO-nanowires (NWs) are highly preferable in this direction due to its large surface-to-volume ratio compared with other reported nanostructures [17-19]. However, further improvement of UV-photodetectors internal parameters such as sensitivity, responsivity, detectivity, photocurrent gain, rise time and decay time are still remained a challenge in modern flexible optoelectronics devices.

ZnO/carbon-based hybrid nanomaterials have attracted interest as a way to further improve the ZnO nanowires (NWs) based photodetectors performance [20-25]. Integration of graphene (G) into optoelectronic devices such as UV-light sensors have a strong impact on their performance and applications, due to it is high optical transmission property (97.7%), which in turns maximize the UV-light absorption in these devices [26-29]. In addition, graphene has a superior electrical conductivity, which can effectively prevent the recombination of the electron-hole pairs in the ZnO/G nanocomposites and thereby increase the photocurrent of the sensor for detection without requiring high-precision measurement [30-35]. Many methods have been employed for the synthesis of ZnO-NWs including Vapor liquid solid (VLS) growth [36], chemical vapor deposition (CVD) [37], metal organic chemical vapor deposition (MOCVD) [38], physical vapor deposition (PVD) [39], molecular beam epitaxy (MBE) [40], pulsed laser deposition (PLD) [41], and metal organic vapor phase epitaxy (MOVPE) [42]. However, all these methods are carried out at elevated growth temperatures (450 °C - 1500 °C) using very complex and expensive techniques. Further reduction in the growth temperature (< 80 °C) of ZnO-NWs based-devices can replace the expensive substrates by cheaper and more flexible substrates.
Therefore, photodetectors synthesized at reduced temperatures methods play a key role in cost reduction and open more choices of flexible substrates selection, which are highly desirable in flexible optoelectronics technology.

The hydrothermal process is one of the prime candidates that has attracted considerable attention due to its unique advantages such as simplicity, low cost, more controllable and low temperature (< 100 °C) compared with the previously discussed methods. Despite of these research efforts, few reports have studied ZnO-NWs/graphene oxide (GO) sheets system using hydrothermal process, which is likely due to the absence of effective morphological and interfacial control between ZnO nanostructures and graphene [43-46]. The motivation of this work is to take advantage of the superior optical properties of ZnO nanowires combined with the flexible, transparent and ideal transport properties of graphene into a single device. As a result, leading to a remarkable enhancement of photodetector internal parameters. However, excellent flexible UV-photodetectors can be used in wide range of applications such as automobiles, fire detection, environmental studies, pharmaceuticals, robotics, medical and communication equipment, biosensors, chemical industry for the production, storage of chemicals, and recently in space exploration [47, 48].

In this paper, we report on exploring high performance, large-scale, cost effective UV- sensor, which is highly compatible with flexible electronics. This UV-detector is synthesized by ZnO nanowires/GO sheets hybrid using a low temperature hydrothermal process directly on silicon substrate.

2. ZnO nanowires growth and UV detector design

2.1 Hydrothermal Synthesis of ZnO-Nanowires/GO sheets:

ZnO-NWs have been prepared by mixing ZnO-nanoparticles with a growth solution under a water path at a low temperature of (~ 60 °C). The detailed description of ZnO-NPs preparation has been already reported in our previous work [49]. The ZnO-nanoparticles serve as seeds and nucleation sites to initiate the growth of ZnO-NWs on GO sheets inside the growth solution. After preparing the zinc oxide nanoparticles, a solution of distilled water and graphene was sonicated for 30 min, then the ZnO-NPs solution was added to the graphene solution with different relative ratios (ZnO-NPs/GO) 1:25, 1:5, and 1:1, respectively. The used growth solution was prepared from 0.5488 g zinc acetate and 0.7437 g zinc nitrate in 100 ml of distilled water.

All n-type Si (100) substrates underwent a wet etching cleaning for oxides removal using HCL for 2 min. The nanocomposite mixtures solution prepared in the previous step was put on Si substrates and left to dry for 24 hours at room temperature. After that, the holder that holds
the silicon substrates was dunk in the growth solution in a water path at temperature of 60 C° for 7 hours.

2.2 UV detector of ZnO-NWS/GO/Si design

The holder together with the surface treated Si-substrates that submersed in the growth solution in the last step were lifted from the growth solution. At the end, all samples were cleaned using DI water and left to dry at room temperature. After drying, a very thin layer of Ag was printed on the UV detector structure as shown in Fig. [1]. Subsequently, Cu electrodes were fixed over Ag contacts using heat and a duct tape.

3. Results and discussion

The successful formation of ZnO-NWs on GO sheets was evaluated using various structural, optical and electrical characterization tools. These investigations have been performed with the help of electron dispersive x-ray (EDX), scanning electron microscope (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultra violet-visible absorption spectroscopy (UV-VIS), and current-voltage (IV) measurements.

3.1 Structural and compositional characterizations

3.1.1 XRD studies

Fig. 2 shows the XRD measurement of ZnO-NWs/GO/Si composite. The typical Si substrate peak (100) reflection was observed with highest intensity at a diffraction angle 2θ of 26.7°. However, (002) GO reflection was detected at an angle 2θ of 12.71° with relatively lower intensity, this confirms the partial reduction of GO to graphene sheets. All ZnO major reflections are observed at 2θ = 31.81°, 34.6°, 47.7°, 54.9°, 56.7°, 63.3°, 68.1° and 69.2°, which correspond, respectively, to the (100), (002), (101), (110), (102), (103), (200), (112) and (201) planes of ZnO (Joint Committee on Powder Diffraction Standards 36-1451). All peaks in the ZnO-NWs can be indexed to hexagonal wurtzite structure with space group P63mc and lattice parameters a = 0.3251 nm and c= 0.5208 nm, which indicates that ZnO nanowires are oriented to some extent [50, 51]. No extra diffraction peaks of other phases have been detected, indicating the phase purity of the nanocomposite.

3.1.2 EDX for Chemical composition analysis

The chemical compositions of the ZnO-NWs/GO nanocomposite (sample with ratio 1:5) was characterized by a scanning electron microscope SEM equipped with an energy dispersive X-ray (EDX). EDX analysis of the chemical composition as-prepared ZnO-NWs/GO nanocomposite on
Si substrate shows that only Zn, O, C and Si substrate signals have been detected (Fig. 3), which indicate that the hybrid structure indeed made up of Zn, O, C and Si elements. No signal of secondary phase or impurity was detected, thus suggested the high-purity of the grown structure.

3.1.3 Morphological studies

SEM has been utilized for the purpose of morphological study of the grown ZnO/GO nanocomposites. Fig. [4] depicts the SEM images for different ZnO:GO relative ratios of 1:1, 1:5, and 1:25, respectively. A clear high dense ZnO-NWS with homogenous size and density is observed at relative ratio of 1:1 (Fig. 4-a).

Fig.4-b with a relative ratio of 1:5 shows less dense ZnO-NWs formation compared to 1:1 ratio. However, no ZnO-NWs has been observed at a relative ratio of 1:25 (Fig.4-c). This might be attributed as a formation of ZnO nanoparticles instead on nanowires with kind of aggregation behavior that tend to form bigger islands with random growth directions. One possible reason for that growth structure is the less ZnO concentration compared to GO, which is not sufficient to initiate the growth of ZnO-NWs that observed to form at higher ZnO concentrations.

3.1.4 FTIR spectroscopy

The surface modifications of the functional groups of ZnO-NWs/GO after the hydrothermal process have been investigated by FTIR spectroscopy. Fig. 5 shows FTIR spectrum of the absorption bands of ZnO-NWs/GO nanostructure with a relative concentration of 1:5.

All oxidized samples exhibit an absorption band centered at 442 cm\(^{-1}\), related to the stretching mode of Zn-O bond vibration [1]. The peaks at 3451, 1740, 1683 and 724 cm\(^{-1}\) are assigned to O-H stretching vibration, C=O stretching, C=C bond stretch in alkenes and C-H rock, respectively [2-4]. The FTIR spectrum results are in a good agreement with ZnO-NWs/GO contents obtained by XRD and EDX analysis.

3.2 Optical characterization via UV-VIS

Fig. 6 shows the UV-VIS absorption spectra for a water solution of pure ZnO nanowires (ZnO-NWs) and ZnO-NPs, pure graphene oxide (GO), and ZnO-NWs/GO with different relative ratios 1:25, 1:5, and 1:1. The ZnO-NWs solution shows the characteristic UV sharp peak absorption centered at 370 nm (~ 3.35 eV) [50], which near to the energy gap of bulk ZnO, with an absorption of about 60 % of the incident UV-light. The peak found at about 260 nm, which is much below the energy gap of ZnO, is mostly because of the ZnO nanoparticles formation in this sample [51].

It can also be clearly seen that the UV light absorption with sharp peak cantered at 370 nm decreases with the decreasing of ZnO-NWs concentration in the solution. This explains that UV
absorption is directly associated with the ZnO concentration in the sample, which confirms that ZnO-NWs acts as UV absorbing and charge carriers generating material.

3.3 I-V characteristics of ZnO-NWs/GO/Si nanocomposite

A UV light source with a wavelength of 365 nm and power density of 10 mW/cm² at the bias of 6 V has been utilized for the I-V measurements with UV illumination. Fig. 7a shows different photoresponse log scale I-V curves under dark and UV conditions for two different relative ratios of ZnO-NWs/GO 1:1 and 1:5, respectively. All I-V curves look quiet symmetric for all samples, indicating good ohmic contacts on both sides. Under UV excitation a clear reasonable photocurrent increase for both samples has been observed. The sample with 1:5 relative ratio exhibited a higher photocurrent increase compared to the one with 1:1 relative ratio. This could be attributed to the increase of ZnO-NWs density, which form closer NWs structure in 1:1 sample. As a result, ZnO-NWs cover the entire graphene sheets and decrease the contacts between GO sheets themselves. This suggests the raise of the device resistivity and decrease in photocurrent compared to the sample with lower ZnO-NWs/GO ratio 1:5.

The difference in the current behavior upon UV irradiation could be explained as follows; in the darkness with complete absence of UV radiation, oxygen molecules are adsorbed by ZnO NWs surfaces directly from ambient air. Free electrons from n-type ZnO are trapped by oxygen molecules and form negative ions – O₂ on the surface of ZnO NWs. The oxygen adsorption process lowers the conductivity on the surface of ZnO NWs by forming a non-conducting depletion layer [51]. However, Under UV irradiation, electron-hole pairs are generated and negative oxygen ions (− O₂) capture the free holes, which neutralized the oxygen ions and activate the desorption of oxygen molecules from the ZnO-NWs surface. This suggests the rise of the amount of free charge carriers and lower the surface depletion thickness in NWs, which enhances the photoconductivity of the device [52].

The presence of graphene in contact with the metal electrodes improve the probability of conduction between the Ag electrode – graphene sheets by decreasing the electrical path of the photogenerated free charge carriers in the designed detector. In addition, the transferred photogenerated free charge carriers from ZnO-NWs to graphene is enhanced due to the high transport mobility of graphene [53]. This reduces the recombination rate of the photogenerated free charge carries and increase the photocurrent in the ZnO-NWs/GO device.

Fig. 7b depicts the influence of ZnO-NWs/GO/Si nanocomposite annealing on the I-V characteristics (sample with ratio 1:5). Under UV illumination, the obtained results show a slight photocurrent decrease in the sample annealed at 300 °C compared to the sample as grown and measured at room temperature. This suggests that the UV-photodetector is relatively thermally stable up to 300 °C. However, further annealing of ZnO-NWs (> 600 °C) has been proven to have a significant impact on ZnO-NWs diameters thus their density. ZnO-NWs diameters have been found to increase with the increase of annealing temperature above 600 °C [54-58]. Low density ZnO-NWs results in less photons harvesting due to the decrease of the ZnO-NWs total
surface area which is exposed to UV-radiation. Therefore, this results in less photocharge carrier generation, which degrade the overall UV-photodetector performance.

3.4 UV-Photodetector internal performance parameters analysis

In this study, the spectral responsivity \(R_s \) of ZnO-NWs/GO nanocomposite device has been calculated using eq. 1. Responsivity defined as the ratio of the photocurrent \(I_{ph} = I_{UV} - I_{dark} \) to the incident excitation power density \(P_{in} \), where \(A \) is the effective device area of UV-illumination [59, 60].

\[
R_s = \frac{I_{ph}}{A P_{in}}
\]

(1)

Fig. 8a (circular dots line) shows the calculated responsivity of ZnO-NWs/GO device at different bias voltages ranging from 1 to 5 volts. Maximum responsivity of \(10.13 \times 10^3 \) A/W has been obtained for ZNO-NWs/GO nanostructure at applied bias voltage of 5 V. This corresponds to an enhancement factor of about 14 times higher than similar recently reported structures [63]. This enhancement is attributed to the enhanced mobility of the photogenerated carrier due to the presence of graphene sheets and the improved interfacial morphology and contacts between the nanocomposites in this device compared to other devices [64,65]. A comparison study between the results of the present work versus other reported photodetectors is summarized in Table. 1. Fig. 8a (square dots line) illustrates the calculated photocurrent gain \(G \) as a function of the bias voltage. Assuming that no optical losses and all photons are absorbed by the device, the gain can be calculated by applying eq. 2.

\[
G = \frac{R_s q}{h \nu}
\]

(2)

It can be observed from fig. 8a that responsivity and photocurrent gain vary almost linearly with the bias voltage due to the increased drift velocity of the charge carriers. The maximum photocurrent gain obtained as high as \(3.45 \times 10^4 \) at a bias voltage of 5 volts. The sensitivity, which is defined as the ratio of photocurrent to the dark current is about 1.7. This value is comparable with the recent excellent reported photodetectors that are synthesized via expensive and complex techniques [45, 46, 65].

Fig. 8b displays the time-dependent response photocurrent in GO/ZnO-NWs device for 3 min UV exposure at a bias voltage of 5 V. A sudden rise in photocurrent has been observed that quickly reaches its maximum value. This can be characterized by the rise time \(\tau_r \), which is defined as the time needed to reach 90 % of the maximum current. Whereas the decay time \(\tau_d \) defined as the time needed to drop to 10 % from the maximum current. Fig. 8b reveals a fast rise and decay times of about 11.2 s and 81 s, respectively. This relatively fast response performance is in a good agreement to the previous reported experimental results (see table 1). The outcomes of the prepared ZnO-NWs/GO photoconductor analysis exhibits a very good
optoelectronics properties. These findings could be promising for potential enhanced UV-d Detectors and flexible optoelectronics devices.

4. Conclusion

High-dense ZnO nanowires have been successfully grown directly on graphene oxide sheets by simple cost-effective and low temperature hydrothermal method. EDX, XRD, FTIR measurements of the fabricated ZnO-NWs/GO nanocomposites confirmed the exact chemical compositions of the intended structure with high purity. All samples of ZnO-NWs/GO with various relative ratios of 1:1, 1:5, and 1:25 exhibited UV light absorption at a band centered at 370 nm. The absorbed UV light has been observed to increase with the increase of the ZnO-NWs concentration in the samples. The photocurrent under UV irradiation was considerably enhanced compared in the dark conditions. This enhancement is attributed to the adsorbed oxygen on ZnO-NWs surface and the photogenerated holes, which ultimately can neutralize the oxygen. As a result, this can promote spatial separation of electrons and photogenerated holes, thereby decreasing their recombination rate. In addition, to the enhanced transport mobility in the presence of graphene, which increases the recombination life time of the photogenerated carriers and thereby increase the photocurrent in ZnO-NWs/GO based devices.

Acknowledgments

We gratefully thank the financial and technical support provided by the institute of nanotechnology at the Jordan University of Science and Technology.
Figure Captions:

Fig. 1: Schematic of UV-photodetector based on ZnO-NWs/Go/Si hybrid structure.

Fig. 2: XRD of ZnO-NWs/GO nanocomposite on Si substrate sample with relative ratio of 1:5.

Fig. 3: EDX measurement of ZnO-NWs/GO/Si with relative ratio 1:5. The inset shows SEM image of the same with high density ZnO-NWs on graphene sheets.

Fig. 4: SEM images of ZnO-NWs/GO nanocomposites on Si substrate with different relative ratios. (a) 1:1, (b) 1:5 and (c) 1:25, respectively.

Fig. 5: FTIR spectrum of ZnO-NWs/graphene nanocomposite with 1:5 relative ratios.

Fig. 6: UV-VIS absorption spectra of zinc oxide nanowires ZnO-NWs and some ZnO nanoparticles (pink), graphene oxide (GO) (black), and ZnO-NWs/GO ratios of 1:1 (blue), 1:5 (amber), and 1:25 (red). All solutions were in water.

Fig. 7: (a) Current – Voltage (I-V) characteristics of ZnO-NWs/GO nanocomposite: (Black) I-V curve in dark, (blue) I-V curve under UV illumination for the sample with ratio 1:1. (red) I-V curve under UV illumination for the sample with ratio 1:5. (b) Current – Voltage (I-V) characteristics of ZnO-NWs/GO nanocomposite: (Black) I-V curve in dark, (red) I-V curve under UV illumination at 300 °C, (blue) I-V curve under UV illumination at 25 °C.

Fig. 8: (a) ZnO-NWs/GO spectral responsivity and photocurrent gain as a function of bias voltage. (b) Time-dependent photoresponse current of ZnO-NWs/GO hybrid under UV-illumination and dark conditions at 5 V bias.
Table caption:

Table. 1: Responsivity and time-dependent photocurrent response comparison between the present work and similar reported UV-photodetectors structures.

<table>
<thead>
<tr>
<th>UV-Sensor Structure</th>
<th>Rise Time (s)</th>
<th>Decay Time (s)</th>
<th>λ (nm)</th>
<th>Bais (V)</th>
<th>R_s (A/W)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO Nanorods/Graphene</td>
<td>n/a</td>
<td>n/a</td>
<td>370</td>
<td>20</td>
<td>22.7</td>
<td>[43]</td>
</tr>
<tr>
<td>ZnO NWs/Graphene foam</td>
<td>9.5</td>
<td>38</td>
<td>365</td>
<td>5</td>
<td>6</td>
<td>[44]</td>
</tr>
<tr>
<td>ZnO Nanorods</td>
<td>3.7</td>
<td>63.6</td>
<td>325</td>
<td>n/a</td>
<td>n/a</td>
<td>[61]</td>
</tr>
<tr>
<td>ZnO NWs</td>
<td>2</td>
<td>100</td>
<td>360</td>
<td>1</td>
<td>39</td>
<td>[62]</td>
</tr>
<tr>
<td>ZnO NWs/G</td>
<td>269</td>
<td>139</td>
<td>352</td>
<td>3</td>
<td>728</td>
<td>[63]</td>
</tr>
<tr>
<td>ZnO NWs</td>
<td>229</td>
<td>547</td>
<td>310</td>
<td>3</td>
<td>n/a</td>
<td>[65]</td>
</tr>
<tr>
<td>Graphene/ZnO NWs</td>
<td>11.9</td>
<td>240</td>
<td>365</td>
<td>5</td>
<td>32000</td>
<td>[45]</td>
</tr>
<tr>
<td>Graphene/ZnO NW/Graph</td>
<td>3</td>
<td>0.47</td>
<td>365</td>
<td>5</td>
<td>23</td>
<td>[46]</td>
</tr>
<tr>
<td>ZnO NWs/Graphene</td>
<td>11.2</td>
<td>81</td>
<td>370</td>
<td>5</td>
<td>10230</td>
<td>This work</td>
</tr>
</tbody>
</table>
References:

Figure (5)

Figure (6)
Figure (7a)

Figure (7b)
Figure (8a) shows the relationship between voltage and responsivity. The graph plots responsivity $x 10^{-3}$ [A/W] on the y-axis against voltage [V] on the x-axis. Two lines are shown: a red dot line labeled 'Responsivity' and a blue square line labeled 'Photocurrent Gain'.

Figure (8b) displays a current [µA] vs. time [s] graph. The current is indicated by a black line, with shaded regions indicating UV-ON and UV-OFF periods. The times $\tau_d = 81$ s and $\tau_r = 11.2$ s are marked for the decay and recovery phases, respectively. The red dotted line represents the 90% threshold, while the red dashed line shows the 10% threshold.