2017

Enhanced and one-way absorptance of LiNiO2 thin films in one-dimensional photonic crystals

C H. Yang
Nanjing University of Information Science and Technology, chyang@theory.issp.ac.cn

C Zhang
University of Wollongong, czhang@uow.edu.au

Zhimin Ao
Guangdong University of Technology

Guoxiu Wang
University of Technology Sydney, gwang@uow.edu.au

Publication Details
Enhanced and one-way absorptance of LiNiO2 thin films in one-dimensional photonic crystals

Abstract
The refractive index of LiNiO2 thin films is complex and exhibits both dielectric and metallic properties. With LiNiO2 thin films coated on or inserted in photonic crystals (PCs), it is possible to enhance the absorptance in the designed (AB)n LiNiO2 (BA)m PC structures. One-way absorption in the photonic bandgap of (AB) PCs has been observed via changing the optical transmitting direction. The positions, width, and strength of the absorption peaks depend on the thickness of the LiNiO2 films, the incident angles, and the transverse electric/transverse magnetic modes. The photonic band structure can be employed to determine the allowed and forbidden photonic modes and the related optical properties for (AB) PC and (AB)n LiNiO2 PCs. These novel absorption characteristics can enrich the optoelectric properties of LiNiO2 thin films.

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/aiimpapers/2910
Enhanced and one-way absorptance of LiNiO$_2$ thin films in one-dimensional photonic crystals
C. H. Yang, C. Zhang, Z. M. Ao, and G. X. Wang

Citation: Journal of Applied Physics 122, 243104 (2017);
View online: https://doi.org/10.1063/1.5007818
View Table of Contents: http://aip.scitation.org/toc/jap/122/24
Published by the American Institute of Physics

Articles you may be interested in
Broadband acoustic focusing by cavity structures with phase manipulations
Journal of Applied Physics 122, 244501 (2017); 10.1063/1.4998223

Electrical properties of in-plane-implanted graphite nanoribbons
Journal of Applied Physics 122, 244302 (2017); 10.1063/1.4995223

Theoretical solution to second-harmonic generation of ultrashort laser pulse
Journal of Applied Physics 122, 243105 (2017); 10.1063/1.4998499

Determination of electrical properties of degraded mixed ionic conductors: Impedance studies with applied dc voltage
Journal of Applied Physics 122, 244101 (2017); 10.1063/1.5006062

X-ray and optical pulse interactions in GaAs
Journal of Applied Physics 122, 243101 (2017); 10.1063/1.5005812

Effect of Cd doping on magnetocaloric effect and critical behavior analysis on perovskite Nd$_{1-x}$Cd$_x$MnO$_3$ ($x = 0, 0.1, 0.2, 0.3,$ and 0.4) manganite polycrystals
Journal of Applied Physics 122, 245109 (2017); 10.1063/1.5010427
Enhanced and one-way absorptance of LiNiO₂ thin films in one-dimensional photonic crystals

C. H. Yang, C. Zhang, Z. M. Ao, and G. X. Wang

1Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and Technology, Nanjing 210044, China
2School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
3Center for Clean Energy Technology, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
4School of Engineering Physics, University of Wollongong, Wollongong, New South Wales 2552, Australia
5Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China

(Received 3 October 2017; accepted 9 December 2017; published online 28 December 2017)

The refractive index of LiNiO₂ thin films is complex and exhibits both dielectric and metallic properties. With LiNiO₂ thin films coated on or inserted in photonic crystals (PCs), it is possible to enhance the absorptance in the designed (AB)nLiNiO₂(BA)m PC structures. One-way absorption in the photonic bandgap of (AB) PCs has been observed via changing the optical transmitting direction. The positions, width, and strength of the absorption peaks depend on the thickness of the LiNiO₂ films, the incident angles, and the transverse electric/transverse magnetic modes. The photonic band structure can be employed to determine the allowed and forbidden photonic modes and related optical properties for (AB) PC and (AB)nLiNiO₂ PCs. These novel absorption characteristics can enrich the optoelectric properties of LiNiO₂ thin films. Published by AIP Publishing.

https://doi.org/10.1063/1.5007818

I. INTRODUCTION

A photonic crystal (PC) is a periodic arrangement of dielectric elements along some direction, with the distances between the adjacent units of the order of the electromagnetic wavelength of operation. PC related materials and structures exhibit unusual electromagnetic properties not seen in either dielectrics or metals. These properties lead to applications such as photovoltaics, photodetectors, biosensors, and stealth materials. By controlling and manipulating the flow of light in different wavelength ranges and/or constituting different PC structures with different widths, the reflectance, transmittance, and absorbance can be designed and modified. These properties in PC structures can be understood from the photonic bandgap structure, where photons whose energies lie in certain intervals cannot propagate in any direction.

Light can hardly penetrate bulk metals because of the large negative permittivity but positive permeability where thicknesses are larger than the skin depth. The presence of a metal material in a PC will lead to mode dispersion in the photonic bandgap or gap formation. The enhanced absorption in multilayer metal/dielectric structures has been observed experimentally and theoretically. When the thickness of a metal material is small enough, some electromagnetic wave can propagate and the one-way absorption behavior of the anti-resonant mode in one-dimensional dielectric/metal PC structures with a dielectric defect layer has been observed. The transmittance of a single metal layer can be enhanced by two orders of magnitude if it is sandwiched between two dielectric PCs to excite the tunneling modes (or propagation states) within the forbidden gap of the PC for all the angles of optical incidence for both transverse electric (TE) and transverse magnetic (TM) modes.

At present, LiNiO₂, LiCoO₂, and related materials have attracted much attention for Li-ion batteries, being considered to be the most promising energy storage devices, for applications such as hybrid electric and pure electric vehicles. Dielectric spectroscopy can be used to analyze the electronic conductivity which is one of the major and important properties in these composite materials. The I–V curves of the field effect transistor device based on Li-NiO nanowires has been investigated experimentally. LiMO₂ (M = Ni, Co, Mn) can also be fabricated into thin films. The discharge capacity in a LiCoO₂/LiNiO₂ multilayer thin film is superior to that of a single layer thin film, which indicates that this multilayer thin film is a good cathode material. An understanding of optical and transport properties of these materials can facilitate technological applications. El-Bana et al. used a conventional pyrolysis technique to synthesize LiNiO₂ thin films with thickness of 200 nm–354 nm. The transmittance and reflectance have been investigated, and the wavelength-dependent refractive index and absorption index have been obtained. The LiNiO₂ thin films exhibit both dielectric and metallic properties and can be inserted in or coated on the layered dielectric structures. It is expected that the absorptance increases and the optical transport properties can be modified in the case of multilayer dielectric structures and/or photonic crystals with a metal channel. As in monolayer graphene with novel conductivity, enhanced biosensing and enhanced optical absorption have been obtained in graphene-based 1D PCs.
This has been designed as a microcavity-integrated graphene photodetector24,25 or other graphene devices.26 Motivated by this research, in this paper, the effect of LiNiO2 thin films on optical properties will be investigated. We present the results of the absorbance as a function of the wavelength (or frequency), TE/TM polarized modes, and the incident angle in the (AB)nLiNiO2(BA)m PC structures, where n, m = 0, 1, 2, . . . , (A = 1st dielectric material and B = 2nd dielectric material). We analyze the transmittance and the photonic energy band structures calculated by the transfer matrix approach.

II. THEORETICAL APPROACHES

The optical transport properties of a multilayer structure can be investigated using the transfer matrix method. The homogeneous surfaces of layers are located in the x–y plane, and the z-axis is normal to the x–y plane. Taking into account the electric and magnetic boundary conditions, the transfer matrix for the TE mode and TM mode in the jth layer is given as

\[M_{j}^{TE} = \begin{pmatrix} \cos (k_z,\cdot j) & (i/n_{j}^{TE}) \sin (k_z,\cdot j) \\ n_{j}^{TE} \sin (k_z,\cdot j) & \cos (k_z,\cdot j) \end{pmatrix}, \]

(1)

where \(n_{j}^{TE} = k_z/(\omega \mu_{j}) \), \(k_z \) is the wavevector perpendicular to the 2D plane, and

\[M_{j}^{TM} = \begin{pmatrix} \cos (k_z,\cdot j) & -(i/n_{j}^{TM}) \sin (k_z,\cdot j) \\ -n_{j}^{TM} \sin (k_z,\cdot j) & \cos (k_z,\cdot j) \end{pmatrix}, \]

(2)

where \(n_{j}^{TM} = k_z/(\omega \epsilon_{j}) \). In the presence of the complex refractive index \(n = n + ik \), the wavevector along the z-direction can be replaced by a complex function \(k_z = \beta_z + ik_z \). The real and imaginary parts represent propagation and attenuation of the electromagnetic wave, respectively, which can be described as

\[\beta_z = \frac{1}{\sqrt{2}} \left[\sqrt{(k_0^{2} \epsilon_r' - k_0^{2})^2 + (k_0^{2} \epsilon_r'')^2} - (k_0^{2} \epsilon_r' - k_0^{2}) \right]^{1/2} \]

and \(\chi_z = \frac{1}{\sqrt{2}} \left[\sqrt{(k_0^{2} \epsilon_r' - k_0^{2})^2 + (k_0^{2} \epsilon_r'')^2} - (k_0^{2} \epsilon_r' - k_0^{2}) \right]^{1/2} \). \(k_0 \) is the vacuum wavevector, \(k_z = k_0 \sin \theta_i \) with \(\theta_i \) being the incident angle. The real \(\epsilon_r' \) and imaginary \(\epsilon_r'' \) parts of the complex dielectric constants can be written in the form of \(\epsilon_r' = n^2 - k_r^2 \) and \(\epsilon_r'' = 2nk_r \).

Using the transfer matrix, the electric field \(E \) and the magnetic field \(H \) in the first and last layers for the TE mode satisfy the following forms:

\[\begin{pmatrix} E_i \\ H_i \end{pmatrix} = M_{1}^{TE} M_{2}^{TE} \cdots \begin{pmatrix} E_f \\ H_f \end{pmatrix}. \]

(3)

The subscripts \(i \) and \(f \) indicate the initial and final layer, respectively. Therefore, the reflection (r), transmission (t) coefficients, and the absorbance (A) of LiNiO2 thin films can be readily obtained using the four elements of the transfer matrix. \(E_i = e^{ik_zd_i} + r \cdot e^{-ik_zd_i} \) for TE mode. \(r \) and \(t \) are the amplitude ratios of the reflective and transmitted electric (magnetic) field component to the incident component for the TE (TM) modes, \(d_i \) is the incident position of the light beam. For the TM wave, two field components of the column vectors are \(\begin{pmatrix} H_f \\ E_f \end{pmatrix} = A - 1 - |r|^2 - \frac{n_r}{n_i} \cos \theta_i |t|^2 \) and \(A = 1 - |r|^2 - \frac{n_r}{n_i} \cos \theta_i |t|^2 \) for the TE and TM modes, respectively. \(|r|^2 \) and \(\frac{n_r}{n_i} \cos \theta_i |t|^2 \) represent the associated reflectance and transmittance. Considering the proposed structure of \(N \) period of layers and extending the finite layers into the infinite periodic structures (i.e., PC), based on the Bloch’s theorem and the boundary condition, the photonic band structure for TE/TM modes can be obtained,

\[\cos (\beta \lambda) = \frac{1}{2} \text{Tr}(M_{1}^{TE/TM} M_{2}^{TE/TM} \cdots). \]

(4)

\(\beta \) is the vertical component of the Bloch wavevector. \(\lambda \) is a periodic thickness of the unit cell. Because of the complex refractive index, the wavevector \(\beta = \beta' + i\beta'' \). The imaginary part corresponds to the photonic bandgap and the optical absorption.

![Fig. 1](image1.png)

FIG. 1. The absorptance as a function of frequency from 30 to 300 THz in (AB)n(DAB)m with the thickness of 354 nm for LiNiO2 film at normal incidence. n = 1, 3, 5, 9 for the solid (black), dashed (red), dotted (blue), and dashed-dotted (green) lines, respectively. (b) is a zoomed-in view of the resonance absorption regions.

![Fig. 2](image2.png)

FIG. 2. The transmittance as a function of frequency in (AB)n (black solid line), (AB)mD (red dashed line), and (BA)mD (blue dotted line) structures at normal incidence with a LiNiO2 thin film 354 nm thick.
LiNiO₂ thin films have been synthesized with different thicknesses. Using spectrophotometric analysis, the optical constants for these LiNiO₂ thin films have been extracted from the transmittance and reflectance spectra in the literature. When the wavelength is larger than 1 μm (1 μm = 300 THz), the complex refractive indices \((n, \kappa)\) can be treated as a constant. There are four sets of the parameters for refractive indices: (2.5, 0.24), (2.12, 0.19), (1.91, 0.13), and (1.58, 0.1) for LiNiO₂ thin films of thickness 354 nm, 325 nm, 236 nm, and 200 nm, respectively. It can be seen that the absorption increases with increasing thickness of the LiNiO₂ thin films. However, for a given thin film, the absorptance is finite and almost a constant at normal incidence. For example, the absorptance for the thickness of 354 nm is about 10%. When LiNiO₂ thin films are included as an active medium in the PC layered structure, unusual electromagnetic properties are expected. The transmittance and absorptance of LiNiO₂ films can be modified by the PC structures.

In the present work, the multilayer structures of \((AB)^{10}D\) and \((AB)^{m}D(AB)^{n}\) are designed. The layers A and B are dielectric materials. D indicates the LiNiO₂ thin film.
The refractive index and the thickness A (B) are taken as $n_A = 2.0$ ($n_B = 1.5$) and $d_A = 500$ nm ($n_AD_A = n_BD_B$). n and m are the layer numbers. The coated layer or the inserted layer is a LiNiO$_2$ thin film of different thickness with a different complex refractive index. LiNiO$_2$ can be treated as a defect layer inserted in the dielectric PC.

In Fig. 1, the dependence of the absorptance on frequency is shown for the structure $(AB)_D(AB)_{10-n}$ at normal incidence with the LiNiO$_2$ thickness of 354 nm. With only one LiNiO$_2$ thin film layer, the enhanced absorption can be modified by the dielectric PC. For different locations of the LiNiO$_2$ defect layer, the absorptance of LiNiO$_2$ thin films increases in the photonic bandgap of the (AB) PC. Another phenomenon about the dispersion relation in $(AB)_D(AB)_{10-n}$ should be mentioned is that when the LiNiO$_2$ thin film layer is included in (AB) PC, a tunneling mode (propagation state) emerges in the photonic bandgap of the (AB) PC, which induces a strong absorption in these energy regions. Changing the width of the LiNiO$_2$ thin film, the absorption can be tuned. But the dependence of absorptance on the frequency remains modified by the dielectric PC.

Fig. 5. The absorptance as a function of frequency and incident angle in $(AB)_{10}$D and $(BA)_{10}$D structures from left (right) to right (left) propagation with LiNiO$_2$ of 354 nm thickness for the TM mode. The color bar represents the value of absorptance.

Fig. 6. The absorptance as a function of frequency and incident angle in $D(BA)_{10}$ (a) and (b) and $D(AB)_{10}$ (c) and (d) structures for the LiNiO$_2$ thickness of 236 nm (a) and (c) and 200 nm (b) and (d) for the TE mode. The color bar represents the value of absorptance.
unchanged. Reducing the thickness of the LiNiO$_2$ film, the coefficient of light extinction decreases, which gives rise to weaker light absorption compared with the case for the thick LiNiO$_2$ thin film. The numerical results show that when a LiNiO$_2$ defect layer is located as far forward as possible, the absorptance can be sharply tuned by the PC. In the following, the LiNiO$_2$ thin film is placed as the first or the last layer in the multilayer dielectric structures.

In Fig. 2, the transmittance as a function of frequency for three structures, (AB)$_{10}$ PC and PC coated with a LiNiO$_2$ thin film, has been obtained. Because of the conductivity of the LiNiO$_2$ thin film, the average transmittance decreases with increasing optical frequency, together with similar oscillating structures and energy bands for (AB) PC in the transmittance spectrum. When LiNiO$_2$ thin film is included, the newly occurring propagation state in the photonic forbidden gap of (AB) PC is observed (see Fig. 7). The absorptance (reflectance) exhibits the maximum (minimum) and minimum (maximum) value when the LiNiO$_2$ film is the first or the last layer. However the transmittance is same for the D(AB)$_{10}$ and (BA)$_{10}$D structures.

Figure 3 shows the frequency-dependent absorptance for the layered structures (AB)$_{10}$D and (BA)$_{10}$D. The effect of the optical transmitting direction has been investigated. The normal incident electromagnetic wave from one side to the other side shows strong absorptance, which indicates that the electromagnetic wave penetrates into the structure. However, when the light is incident from the other end, almost total reflection occurs. This one-way absorption in the photonic bandgap of (AB) PC can be used in selective-wavelength opto-electrical applications. Converting the dielectric film order from (AB) to (BA), the absorption strength can be further adjusted as shown in Figs. 3(a) and 3(b). For the LiNiO$_2$(AB)$_{10}$ structure, over 95% absorption indicates that the electromagnetic wave can hardly reflect and attenuates quickly when propagating through the total system. Decreasing the thickness of LiNiO$_2$ films, the absorptance decreases as shown in Figs. 3(c) and 3(d). For all cases, a stronger absorption in the higher energy gap can be observed.

The dependence of absorptance on the frequency and the incident angle for both TE and TM modes are given in Figs. 4–6 for different LiNiO$_2$ thin film thicknesses. It can be seen that there are two one-way strong absorption regions. When the LiNiO$_2$ thin film is the first layer, the stronger absorption peak in the photonic bandgap of (AB) PC can be observed. The absorption peak shifts to higher energy as the incident angle increased which can be understood from the resonance condition $k \cos \theta \propto m$ with θ and m being the incident angle and an integer. The detailed absorption peak width and strength at different incident angles depends on the thickness of the LiNiO$_2$ thin film and the TE/TM modes. The higher energy absorption peak for LiNiO$_2$(AB)$_{10}$ and LiNiO$_2$(BA)$_{10}$ structures for the TM mode exhibits strong absorption for broader incident angles from normal incidence to grazing.

![Dispersion relation between ω and the complex Bloch wavevector for (AB)$_{10}$ (a) and (AB)$_{10}$D (b) PC at normal incidence. The thickness of LiNiO$_2$ film is 354 nm. The solid (black) and dotted (blue) lines refer to the real β' and imaginary β'' parts of the complex Bloch wavevector.](image1)

![The photonic energy band structure for (AB)$_{10}$ PC. The dependence of the real (a) and (c) and imaginary (b) and (d) Bloch wavevectors on the incident optical energy and incident angle. (a) and (b) and (c) and (d) are for the TE and TM modes, respectively. The color bar represents the value of the real and imaginary Bloch wavevectors.](image2)
incidence. Decreasing the thickness of the thin films, the sharp and strong absorption peaks can be clearly seen for the thickness of 236 nm and 200 nm for the TE mode at large incident angles in Fig. 6.

The energy dispersion curves for the (AB)\(^{10}\) and (AB)\(^{10}\)LiNiO\(_2\) PC structures at normal incidence are shown in Fig. 7. There are two obvious energy gaps between 69–81 THz and 219–232 THz for (AB)\(^{10}\) PC. In the presence of the LiNiO\(_2\) thin film, the energy gap region broadens. But the real part of the Bloch wavevector \(\beta'\Lambda\) increases from 0 to \(\pi\) and decreases from \(\pi\) to 0 in the lower and higher energy bandgaps, respectively, instead of being 0 with the imaginary part \(\beta''\Lambda\) being a finite value. These apparent tunneling modes indicate that electromagnetic waves with frequency in the energy gap of (AB) PC can propagate but is attenuated by the propagating process which corresponds exactly to the absorption peaks in Fig. 3. From normal incidence to oblique incidence, the dependence of the complex Bloch wavevector as a function of frequency and incident angle for (AB)\(^{10}\) and (AB)\(^{10}\)LiNiO\(_2\) PC has been shown in Figs. 8 and 9, respectively. In a (AB)\(^{10}\) PC structure, the well-defined photonic bands and bandgaps have been displayed. With LiNiO\(_2\) included, because of the dielectric characteristic of the LiNiO\(_2\) thin film, the phase of the interfering resonance shifts to lower frequency. And one can see that the degenerate tunneling modes within the lower energy bandgap split into

![Diagram](https://via.placeholder.com/150)

FIG. 9. Same as Fig. 8 except for (AB)\(^{10}\)D PC. The thickness of LiNiO\(_2\) film is 354 nm. The color bar represents the value of the real and imaginary Bloch wavevectors.

![Diagram](https://via.placeholder.com/150)

FIG. 10. The transverse electric field distribution in the structures (AB)\(^{10}\)D and D(BA)\(^{10}\) at the frequencies 67 THz and 217 THz in the middle of the (AB) PC gap. The light and dark gray regions indicate the dielectric A and LiNiO\(_2\) film with the thickness of 354 nm.
two discrete modes at a large incident angle for the TE mode and at a small incident angle for the TM mode. These non-zero imaginary parts of the Bloch wavevector give rise to strong absorption. But when LiNiO$_2$ layer is coated on the top or the bottom layer, the absorptance is very different which can be understood from Fig. 10. To further illustrate the absorption property, Fig. 10 plots the distribution of the modulus of the electric field for (AB)$_{10}$D and D(AB)$_{10}$ structures at the frequency 67 THz and 217 THz in the middle of the two energy gaps along the propagation direction z. The electric field amplitude of the incident wave is supposed to be 1. As can be seen from Fig. 10, the electron motions are damped much more when LiNiO$_2$ film is located as the first layer. When the light beam is transmitted to the LiNiO$_2$ film surface, the electric field distribution at the LiNiO$_2$ interface in (AB)$_{10}$D is much lower than in D(AB)$_{10}$ which leads to different optical absorption of the LiNiO$_2$ film. Therefore, the strong and the weak absorptance have been observed in D(AB)$_{10}$ and (BA)$_{10}$D structures, respectively.

In summary, the optical transport properties of a LiNiO$_2$ thin film/PC hybrid structure have been analyzed theoretically and numerically. The optical propagating direction, normal incidence or oblique incidence, and TE/TM modes have been investigated. Our main findings are as follows: (i) only one layer of the LiNiO$_2$ thin film in the (AB) PC structures can enhance the absorption of the optical energy when the electromagnetic wave goes through the multilayer structures. (ii) The strongest and weakest absorptions can be observed in the photonic forbidden gap of the (AB) PC. (iii) The optical propagating direction can give rise to one-way absorption at the same wavelength (frequency). (iv) Decreasing the LiNiO$_2$ thin film thickness, the coefficient of light extinction decreases which reduces the optical absorption. (v) Tunneling modes have been obtained in the photonic energy gap of (AB) PC with the LiNiO$_2$ film included which leads to the modified absorption. The absorptance is dependent on the location of the defect layer. (vi) The absorption spectrum width and position can be modified effectively by the incident angle and the TE/TM modes. Our results on optical properties of (AB) PC with LiNiO$_2$ thin films included can be useful for developing related optoelectrical devices.

ACKNOWLEDGMENTS

This work was supported by the China Scholarship Council (CSC), the Natural Science Foundation of Jiangsu Province (BK20131428), and the National Natural Science Foundation of China (11547030, 21607029, and 21777033).