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EXTENDING MULTIPLIERS FROM SEMIGROUPS

MARCELO LACA AND IAIN RAEBURN

(Communicated by Palle E. T. Jorgensen)

Abstract. A multiplier on a normal subsemigroup of a group can be extended

to a multiplier on the group. This is used to show that normal cancellative

semigroups have the same second cohomology as the group they generate, gen-

eralising earlier results of Arveson, ChernofF, and Dinh. The main tool is a

dilation theorem for isometric multiplier representations of semigroups.

Introduction

A subsemigroup S of a group G is a nonempty subset closed under the group

operation. We assume xSx~x c S for every x £ G, and say the semigroup is

normal; in order to avoid trivialities, we also assume that 5 generates G as a

group. A multiplier on S1 is a function a from S x S into the circle group T

such that

o(x, y)o(xy, z) = o(x, yz)o(y, z)       (x,y,z£S).

The purpose of this note is to show that every multiplier on a normal subsemi-

group S extends to a multiplier on all of G. This generalizes a result of Arveson

[Arv] for S = [0, oo), which was subsequently extended by Chernoff in [Che]

to S = [a, oo), and work of Hung Dinh, who proved in [Din] that multipliers

of any discrete subsemigroup of R+ extend to multipliers of the corresponding
subgroup. Our hypothesis of normality is satisfied by any subsemigroup ob-
tained by pulling back a generating subsemigroup from an abelian quotient. In

particular, it includes the subsemigroups considered in [P-R], which are pulled

back from the positive cone in a totally ordered quotient.
In § 1 we prove that homomorphisms on normal subsemigroups extend unique-

ly to the group generated, and make a few comments about normal semigroups,

which may be ignored by those primarily interested in positive cones of or-
dered groups. In §2 we generalise a dilation theorem of Phillips and Raeburn

[P-R], which is a multiplier version of a theorem of Douglas [Dou], and use it

to extend multipliers from subsemigroups of discrete groups. Subsemigroups of
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356 MARCELO LACA AND IAIN RAEBURN

locally compact groups are discussed in §3, where, assuming that S has non-

zero Haar measure, we show that the extension result holds for Borel multipliers

on normal subsemigroups of second countable locally compact groups.

The authors thank Dana Williams for several useful comments, and George

Willis for suggesting Example 1.3.

1. Normal subsemigroups

We begin by observing that if 5 is a normal generating subsemigroup of G,

then G coincides with the set SS~~X = {st~x : s, t £ S) ; for if s, t,x,y£S,

then st~xxy~l = s(t~xxt)(yt)~x, so SS~X is a subgroup of G containing

5", hence equal to G. In the motivating examples, where S is the positive

cone of a totally ordered group, G is actually S U S~x, but the subsemigroups

S = [a, oo) of M considered in [Che] and the positive cones of partially ordered

abelian groups provide examples in which S U S~x is strictly smaller than G.

The following property of normal, generating subsemigroups is essential to

our approach. It is probably well known to semigroup theorists, but we have

been unable to find a suitable reference.

Lemma 1.1. Suppose S is a normal subsemigroup generating the group G, and

let cp be a homomorphism from S into a group. Then there exists a unique

group-homomorphism tp extending cp to all of G.

Proof. Since every element of G has the form st~x  with 5 and t in S, it

suffices to show that the map tp : st~x i-» cp(s)cp(t)~x is a well-defined group-

homomorphism on all of G.

Note that for y,t£S,

(1.1) 4>(y-lty) = 4>(y)-xcp(y)cp(y-xty) = cP(y)-x<p(t)cp(y).

Suppose now xy~x = st~x for x, y, s, t £ S; then xy~xty = sy and (1.1)

implies

<Kx)<Ky)-l<i>(t)4>(y) = 4>(x)<t>(y~x ty) = 4>(xy-[ty) = <t>(s)cj>(y).

Since cp takes values on a group, this implies cf>(x)cp(y)~x = cp(s)cj>(t)~l, so tp

is well defined. On the other hand,

tp(xy~xst~x) = tp(xy~xsyy~xrx) = tp(xy~xsy(ty)~x) = cp(xy~x sy)cp(ty)~x

= cP(x)cf>(y)-x4>(s)<l>(y)ci>(y)-xcP(t)-x = tp(xy-x)tp(srx),

so tp is a homomorphism on G.   D

Remark 1.2. (i) Normal generating subsemigroups can be characterized intrin-
sically as the cancellative semigroups S for which Ss = sS for all s £ S. For

if 51 is such a semigroup, then st £ Ss n St for s, t £ S, and Ore's condi-
tion of right reversibility holds (see, e.g., [C-P, §1.10]); thus by [C-P, Theorem
1.23] and Lemma 1.1, S uniquely determines a group G in which it embeds

as a generating subsemigroup. The set {x £ G : xS = Sx} is a subgroup of
G which contains S by assumption, so S embeds as a normal subsemigroup

of G.
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(ii) Although we shall not explicitly use it later, it is worth noting here that

a normal subsemigroup makes the group it generates into a directed set. In the

case of a subsemigroup of a discrete abelian group, this fact was observed and

used by Douglas in his proof of Ito's dilation theorem [Dou], which motivated

[P-R, Theorem 2.1] and our Theorem 2.1. Suppose S is a normal generating

subsemigroup of G, and define x y y for x, y £ G to mean x £ Sy ; transitiv-

ity follows from the semigroup property, and cofinality of >- is a consequence

of normality because st = (sts~x)s £ SsnSt whenever 5, t £ S ; in particular
Ss n St is never empty. The relation >- need not be reflexive or antisymmetric,
but is nevertheless a preorder compatible with the group structure in the sense

that x y y and z £ S imply xz y yz . Conversely, if y is a cofinal transitive

relation in G satisfying this last property, then {x £ G : x y e) is a normal

generating subsemigroup of G.

Example 1.3. Normal subsemigroups are more general than the semigroups

pulled back from abelian quotients. For example, consider the semigroup

S = {(a,b): either a > 1 and b £ R, or a = 1 and b > 0}

of the 'ax + b group' G = (0, oo) x R. Calculations show that S is both

normal and generating. It turns out that if N is any normal subgroup of G

with G¡N abelian, then N must contain R = {(1, b) : b £ R}, so G/N =
(G/R)/(N/R) is a quotient of (0, oo). But S is not the inverse image of

any set in any quotient of (0, oo). This construction generalizes to semidirect

products of groups having normal generating subsemigroups compatible with

the action.

2. Isometric multiplier representations

A family of isometries {Vs : s £ S} satisfying

VSV, = o(s, t)Vst fors,t£S,

where a is a multiplier on S, is called an isometric a-representation of S.
Isometric multiplier representations exist for every multiplier, as the following

shows.

If a is a multiplier on -S, define the left regular a-representation of S on
l2(S) by

<T°f\(f\- ¡o(s,s-xt)f(s-xt)    if t£sS,
K^sJiV)     ^o otherwise

for / £ £2(S) and s £ S. The family {Las : s £ S) is an isometric o-

representation of S consisting of nonunitary isometries.

The following theorem shows that an isometric cr-representation of S is

always the restriction of a cr-representation of S by unitary operators to an

invariant subspace.

Theorem 2.1. Suppose o is a multiplier on the normal generating subsemigroup

S of the group G, and let {Vs : s £ S) be an isometric a-representation of S

on a Hubert space 77. Then there exists a unitary a-representation of S on a
Hubert space ?? containing a copy of 77 such that

(i)   Us leaves 77 invariant and US\H = Vs ; and

(ii)  \JseS US*H is dense in <%".
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Proof The proof follows the construction in [P-R, Theorem 2.1], except that

here a need only be defined on S. Let 77o be the set of functions / : S -> 77
for which there exists s £ S such that

(2.1) f(y) = (J(ys-i, s)Vys-x(f(s))       for y e Ss.

Such s will be called admissible for /. Note that if s is admissible for / and
r £ Ss, then r is also admissible for /, for then Sr c Ss, and for all y £ Sr,

f(y) = o(ys-1, s)Vys-if(s) = cr(ys-x, s) o(yr^ , rs~x)Vyr-i Vrs-tf(s)

= o(ys~x, s) o(yr~l, rs-l)o(rs~l, s)Vyr-tf(r)

= o(yr-\ r)Vyr-J(r).

Suppose now / and g are in 77n, and 5 is admissible for both / and g

(since S is normal, the product of an admissible value for / and one for g
will do). If y £ S s, then

(f(y), g(y)) = (o(ys-x,s)Vys-J(s), o(ys-i,s)Vys-lg(s)) = (f(s), g(s)),

because Vys-\ is an isometry and a takes values on the unit circle. Thus

(f(s), g(s)) is constant on the set of values of s which are admissible for both

functions, and we can define a positive semidefinite sesquilinear functional on
770 by

(f,g) = (f(s),g(s)),

where s is any value admissible for both / and g .

Let <%* be the Hubert space completion of TTn under the corresponding semi-
norm, and notice that this identifies functions which coincide on an admissible
set of the form Ss. To embed the original Hubert space 77, define, for each

<; £ H, the function £ by Ç(s) = Vstl for s £ S. Since V is an isometric cr-

representation, £ satisfies (2.1) for any s £ S, hence ¿j € 770 and every s £ S

is admissible for ¿;. The embedding ¿; i-> t\ is isometric because each Vs is.

Suppose now that / £ 77n and t £ S, and consider the function ft defined

by ft(x) = o(x, t)f(xt) for x £ S. If s e 5 is admissible for /, then
normality implies that st is also admissible for /, and since xt £ Sst for any
x £ Ss,

o(x, t)f(xt) = o(x, t)o(xt(st)~x, St)Vxt{st)-if(st)

= o(x, t)o(xs~x, St)Vxs-if(St)

= o(xs~x, s)Vxs-i(o(s, t)f(st)),

which shows that the same s is admissible for /, ; in particular, ft £ Ho .
Evaluating the inner product at a point j admissible for both / and g, we

obtain (/,, gt) = (f,(s), g,(s)) = (o(s, t)f(st), o(s, t)g(st)) = (/, g) ; thus,

Utf = f for t £ S defines an isometry Ut on %".

If fe 77, then

(Utl)(x) = a(x, t)Vxtt¡ = VxVÁ = mx)        forx£S,
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so Ut restricts to Vt on the copy of H inside %A. Furthermore,

UsUtf(x) = a(x, s)Utf(xs) = a(x, s)a(xs, t)f(xst) = o(x, st)o(s, t)f(xst)

= o(s,t)Ustf(x)        for all x £ S and f £ HQ .

Thus U is a cr-representation of S by isometries, and it remains to prove

that these isometries are in fact unitaries. Let t £ S, and suppose that s is

admissible for g £ Ho. Consider the function defined by

(x,_\o(xt-x,t)g(xrx)    if X£ St,
8t~t[ ''{O otherwise.

Then st is admissible for gt-¡ : if x £ Sst, then xt~x £ S s is admissible for

S,and

gt-¡(x) = cj(xt-l,t)g(xrx)

= o(xt~x, t) o(xt~is-1, s)Vxt-is-ig(s)

= o(xt-ls~l, st) o(s, t)Vxt-,s-ig(s)

= o(x(st)~x, st) o(st t-x,t) Vx{st)-ig(st rx)

= a(x(st)~l, st)Vx{st)-igt-x(st),

which puts gt-i in 770 . Since

Utgt-i(x) = a(x, t)g,-i(xt) = a(x, t)o(xtt~x, t)g(xtrx) = g(x)

for x £ S,   Ut  is surjective for every  t £ S.   Thus  U is a unitary cr-

representation of the subsemigroup 5 on/, which finishes the proof of (i).

To prove (ii), assume f £ Ho and fix s admissible for /. Then for x £ S s,

Us(f)(x) = o(x,s)f(xs) = o(x,s)c(xss-i,s)VXM-tf(s) = Vx(f(s)) = /£)(*).

Hence f(x) = (Uff(s))(x) for x in the admissible set Ss, which implies

/ = U*f(s) in %A. Since 77n is dense in ^, (ii) follows,   a

Theorem 2.2. Let S be a normal generating subsemigroup of the group G. Every

multiplier on S extends to a multiplier on G.

Proof. Suppose a is a multiplier on 51, and let V he an isometric cr-represen-
tation of -S (e.g., the left regular cr-representation). Let U be the unitary

dilation given by Theorem 2.1.
For each x £ G let sx and tx be elements of S such that x = sxtxx, and

define
w = (o(x, tx)USxU;x    ifx£S,

x     \ USx U*x otherwise.

If n : U(ß^) —y PU(ß?) is the quotient map from unitaries on <%* onto the

projective unitaries on %?, then s £ S h-> nUs £ PUffi) is a semigroup-

homomorphism, and since nWx = nUSx(nUtx)~x, Lemma 1.1 implies that nW

is a group homomorphism (the unique extension of nil). Thus IF is a mul-

tiplier representation of G with multiplier co characterized by Wx Wy W*y =

co(x,y)I.
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If x £ S, then xtx = sx implies that UxUtx = o(x, tx)USx, and hence that

Wx = Ux. Therefore, W extends U to all of G, and co coincides with a on

S.    D

Although it is possible to write down explicit formulas for the extension of

a once the extension W of the cr-representation U has been defined, we have

chosen the indirect approach of projective representations to avoid the lengthy

case-by-case consideration needed to verify that those formulas actually define
a multiplier. Similar comments apply to the proof of the following corollary.

As a bonus, our approach yields a direct generalisation of [P-R, Theorem 2.1],

Corollary 2.4 below, which is potentially of independent interest.

The second cohomology group of a semigroup is the quotient of the group

Z2(S, T) of all multipliers by the subgroup B2(S, T) of coboundaries, i.e.,

772(S, T) = Z2(S, T)/B2(S, T).

Corollary 2.3. Restriction of multipliers on G to multipliers on S induces a

natural isomorphism of H2(G, T) onto H2(S, T).

Proof. Restriction is clearly a homomorphism from Z2(G, T) into Z2(S, T)
and is surjective by Theorem 2.2.

Suppose a is a multiplier on G whose restriction to S is trivial, so there

is a function X : S -> T such that a(s,t) = X(st)X(s)X(t) for s, t £ S. If
U is a unitary cr-representation of G, then s £ S >-y X(s)Us is a unitary

representation of S. Let W denote its unique extension to all of G, which
exists by Lemma 1.1, and observe that n U coincides with n W on S, where

n is the quotient map in the proof of Theorem 2.2. From the uniqueness part

of Lemma 1.1 they must coincide on all of G. Therefore, Ux W* is a scalar

for each x £ G, so Ux = p(x)Wx , for some function p : G —► T. Since W is

a true representation, the multiplier o of U must equal dp . The restriction

map is thus one-to-one modulo coboundaries.   D

Corollary 2.4. Suppose V is a o-representation of S as in Theorem 2.1. If p

is a multiplier on G extending o, then there exists a unitary p-representation

R of the group G on ^ such that Rs\h = Vs for s eS.

Proof. Let W be the unitary co-representation of G constructed in the proof

of Theorem 2.2. Since p is an extension of a, it must be cohomologous to

the multiplier co of IF, so it suffices to multiply IF by a convenient scalar

function to obtain a ^-representation of G dilating V.   □

3.    SUBSEMIGROUPS OF LOCALLY COMPACT GROUPS

Throughout this section G denotes a second countable locally compact group,

and S a normal generating subsemigroup which is a Borel subset of G. In order

to extend a Borel measurable multiplier from S to G, we will have to assume

that S is not a null set; it is possible that normal generating Borel subsemigroups
are necessarily nonnull, but we do not know how to prove it.

Lemma 3.1. The following are equivalent.

(i) S has nonzero Haar measure.

(ii)  S has nonempty interior.

(iii) S1 contains a cofinal sequence, i.e., a sequence {sn} with \Jns„S~x =G.
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Proof If S is nonnull, then it contains a set A of nonzero finite measure. The

function lA * lA £ LX(G) is continuous, has support in A2 c S, and is not

identically zero because \\lA * Ulli = ¡GJG lA(x)lA(x~xy)dxdy = p(A)2. This
proves that S has nonempty interior.

Suppose now the interior of S is not empty. Let {xn} be a dense sequence

in G, which exists by second countability. For each x £ G the set xS has

nonempty interior and, therefore, x„ £ xS for some n ; this shows that {x„}
is cofinal. If necessary, substitute xn by any sn £ xnS n S to obtain a cofinal

sequence which lies in 5.

If {sn} is a cofinal sequence, then for some n £ N the set snS~x has nonzero

measure because (J«5«^-1 = G ; therefore, S has nonzero measure.   D

Assume from now on that S is not a null set, and let {sn} be a cofinal

sequence in S ; for each x £ G define sx to be s„ where n is the smallest
positive integer for which x £ s„S~x. This defines a Borel function on all

of G because {x : sx = sn} = snS~x \ Uk<n (skS~x) is a Borel set for each

n. Let tx = x~xsx to obtain a Borel map x *-+ (sx, tx) from G into 5x5

such that x = sxt~x. The immediate consequence is that Lemma 1.1 holds for

a Borel homomorphism of S into a topological group, giving a unique Borel
group-homomorphism extension.

The appropriate measurability condition for isometric multiplier represen-

tations corresponding to Borel multipliers is that of weak Borel measurability,

i.e., that the maps s>-+ (Vs£,n) are Borel maps for all ä,, n £ H. If the Hubert

space 77 is separable, this coincides with strong Borel measurability ( if {e„}

is an orthonormal basis, then Vsc; = Y,n(Vsc;, e„)e„).

The left regular a-representation of S is defined on the (nontrivial) subspace

L2(S) of L2(G) consisting of functions vanishing almost everywhere outside

5. For each s £ S,

(T<>f\(f\- jo(s,s-xt)f(s-xt)    if te sS,
\^sJ)V)-\q otherwise

gives a cr-representation of S as isometries on L2(S). To verify that the

correspondence s h-> L"s is weakly Borel, consider functions / and g in L2(S) :

the map

s^(L°f,g) = [ e(s,s-xt)f(s-xt)g(ï)dt= Í o(s,u)f(u)g(su)du
JsS JS

is Borel because the integrand can be written as a linear combination of four
nonnegative Borel functions to which Tonelli's theorem applies.

Theorem 3.2. Suppose o is a Borel multiplier on S, and let {Vs : s £ S) be a

Borel isometric a-representation of S on a separable Hubert space 77. Then
there exists a Borel unitary o-representation U of S on a separable Hubert
space ^ containing a copy of 77 such that

(i)   Us leaves 77 invariant and Us\n = Vs; and

(ii)  Uses Us* H íJ dense in 3?.

Proof. The proof of Theorem 2.1 carries over to the present situation. Since V

is strongly Borel measurable, the admissibility condition (2.1) shows that any

f £ Ho coincides with a Borel function from S to 77 on a set of the form Ss,
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proving that the Borel functions in 77o give a dense set in the completion MA.

In order to prove that the map t y-y Ut is weakly Borel, take Borel functions

f, g £ Ho and let s £ S be a fixed admissible value for both. The formula

(Utf, g) = (f(s), g(s)) = (o(s, t)f(st), g(s)) defines a Borel function of t.

Since Borel functions in 770 are dense in MA, the. Borel measurability of U

follows.
It only remains to check that MA is separable. By the cofinality of {sn},

which is equivalent to UnS~xsn = G because S is normal, for each s £ S

there exists n £ N and t £ S with s„ = ts, hence UtUs = o(t, s)USn. Thus

U*H = U*n UtH, and since Ut leaves 77 invariant, the union in (ii) can be taken

over the cofinal sequence {sn} without altering the result; the separability of

77 then implies that of M'.   □

Using the Borel version of Lemma 1.1, and Theorem 3.2 in place of Theo-

rem 2.1, we can extend Borel multipliers on S and deduce the same corollaries.

Theorem 3.3. Every Borel multiplier on S extends to a Borel multiplier on G.

Proof. Theorem 3.2 applies to the left regular o -representation of S, giving a

minimal unitary dilation on a separable Hubert space MA. Since there exists

a Borel map x »-+ (sx, tx) with x = sxtxx, the same argument used to prove

Theorem 2.2 can be used here.   □

Corollary 3.4. Restriction of Borel multipliers on G to Borel multipliers on S

induces a natural isomorphism of H2(G, T) onto H2(S, T).

Corollary 3.5. In the situation of Theorem 3.2, the original o-representation of

S can be dilated to a unitary p-representation of G, where p is any Borel

multiplier extending a.
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