2019

Improved Performance of Ballasted Tracks under Impact Loading by Recycled Rubber Mats

Ngoc Trung Ngo
University of Wollongong, trung@uow.edu.au

Buddhima Indraratna
University of Wollongong, indra@uow.edu.au

Cholachat Rujikitkamjorn
University of Wollongong, cholacha@uow.edu.au

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Improved Performance of Ballasted Tracks under Impact Loading by Recycled Rubber Mats

Abstract
Ballasted tracks at transition locations such as approaches to bridges and road crossings experience increasing degradation and deformation due to dynamic and high impact forces, a key factor that decreases the stability and longevity of railroads. One solution to minimise ballast degradation at the transition zones is using rubber energy absorbing drainage sheets (READS) manufactured from recycled tyres. When placed beneath the ballast layer, READS distributes the load over wider area and attenuate of the load over a longer duration thus decreasing maximum stress, apart from reducing the energy transferred to the ballast and other substructure components. Subsequently, the track substructure experiences less plastic deformation and degradation. These mats also provide an environmentally friendly and cost-effective alternative. In this study, a series of large-scale drop hammer impact tests was carried out to investigate how effectively the READS could attenuate impact loads and help mitigate ballast deformation and degradation. Soft and stiff subgrade were used to investigate the load-deformation response of ballast (with and without READS), subjected to impact loads from a hammer dropped from various heights (hd = 100 - 250 mm). Laboratory test results show that the inclusion of READS helps to reduce the dynamic impact load transferred to the ballast layer resulting in significantly less permanent deformation and degradation of ballast, apart from significant attenuation of load magnitude and vibration to the underlying subgrade layers.

Keywords
recycled, loading, impact, under, tracks, mats, ballasted, rubber, performance, improved

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/2680
Improved Performance of Ballasted Tracks under Impact Loading
by Recycled Rubber Mats

Trung Ngoc Ngo, PhD, MIEAust.
Research Fellow, Centre for Geomechanics and Railway Engineering (CGRE) and ARC Training Centre for Advanced Technologies in Rail Track Infrastructure (ITTC-Rail), University of Wollongong Australia, Wollongong, NSW 2522, Australia.

Buddhima Indraratna, PhD (Alberta), FIEAust., FTSE, FASCE
Distinguished Professor of Civil Engineering, Research Director, Centre for Geomechanics and Railway Engineering (CGRE) and ARC Training Centre for Advanced Technologies in Rail Track Infrastructure (ITTC-Rail), University of Wollongong Australia, Wollongong, NSW 2522, Australia.

Cholachat Rujikiatkamjorn, PhD, FIEAust.
Associate Professor, Centre for Geomechanics and Railway Engineering (CGRE) and ARC Training Centre for Advanced Technologies in Rail Track Infrastructure (ITTC-Rail), University of Wollongong Australia, Wollongong, NSW 2522, Australia.

Technical paper submitted to: Transportation Geotechnics

Author for correspondence:
Distinguished Professor Buddhima Indraratna
Faculty of Engineering and Information Sciences
University of Wollongong Australia
Wollongong, NSW 2522
Australia.
Ph: +61 2 4221 3046
Fax: +61 2 4221 3238
Email: indra@uow.edu.au
Improved Performance of Ballasted Tracks under Impact Loading by Recycled Rubber Mats

Trung Ngoc Ngo¹ MIEAust, Buddhima Indraratna² F ASCE and Cholachat Rujikiatkamjorn³

¹Research Fellow, Centre for Geomechanics and Railway Engineering (CGRE), ARC Training Centre for Advanced Technologies in Rail Track Infrastructure (ITTC-Rail), University of Wollongong Australia, Wollongong, NSW 2522, Australia.
Email: trung@uow.edu.au, Ph: +61 2 4221 3385 Fax: +61 2 4221 3238

²Distinguished Professor of Civil Engineering, Research Director, Centre for Geomechanics and Railway Engineering (CGRE), ARC Training Centre for Advanced Technologies in Rail Track Infrastructure (ITTC-Rail), University of Wollongong Australia, Wollongong, NSW 2522, Australia.
Email: indra@uow.edu.au, Ph: +61 2 4221 3046 Fax: +61 2 4221 3238

³Associate Professor, Centre for Geomechanics and Railway Engineering (CGRE), ARC Training Centre for Advanced Technologies in Rail Track Infrastructure (ITTC-Rail), University of Wollongong Australia, Wollongong, NSW 2522, Australia.
Email: cholacha@uow.edu.au, Ph: +61 2 4221 5852 Fax: +61 2 4221 3238

ABSTRACT: Ballasted tracks at transition locations such as approaches to bridges and road crossings experience increasing degradation and deformation due to dynamic and high impact forces, a key factor that decreases the stability and longevity of railroads. One solution to minimise ballast degradation at the transition zones is using rubber energy absorbing drainage sheets (READS) manufactured from recycled tyres. When placed beneath the ballast layer, READS distributes the load over wider area and attenuate of the load over a longer duration thus decreasing maximum stress, apart from reducing the energy transferred to the ballast and other substructure components. Subsequently, the track substructure experiences less plastic deformation and degradation. These mats also provide an environmentally friendly and cost-effective alternative. In this study, a series of large-scale drop hammer impact tests was carried out to investigate how effectively the READS could attenuate impact loads and help mitigate ballast deformation and degradation. Soft and stiff subgrade were used to investigate the load-deformation response of ballast (with and without READS), subjected to impact loads from a hammer dropped from various heights (h_d=100 - 250 mm). Laboratory test results show that the inclusion of READS helps to reduce the dynamic impact load transferred to the ballast layer resulting in significantly less permanent deformation and degradation of ballast, apart from significant attenuation of load magnitude and vibration to the underlying subgrade layers.

Keywords: Ballast, Rail transport, Recycled rubber mats, Impact loading, Particle breakage, Load attenuation, Stress transfer
1. **Introduction**

Ballasted rail tracks are the major infrastructure for freight and passenger transport in Australia; this rail network is more than 40,000 km long and provides a vital supply chain to the agriculture and mining industries (Indraratna et al. 2011a). Australian rail infrastructure is often constructed on coastal subgrade soils that can lead to excessive settlements and unstable track conditions. In recent years traditional railway foundations have become overloaded due to increasing demand for faster and heavier trains. This demand is accelerating the deterioration of track substructure while increasing the maintenance costs (Selig and Waters 1994, Tutumluer et al. 2012, Indraratna et al. 2014, Boler et al. 2018). During operation, rail vehicles generate noise, vibration, and impact loads due to roughness and imperfections at the wheel-rail interface. Impact loads are commonly generated by: (i) differential stiffness at track transition zones such as bridge approaches, rail crossings, and turnouts; and (ii) rail abnormalities such as wheel flats and dipped rails which seriously hamper the safety and efficiency of tracks (Varandas et al. 2011, Insa et al. 2014). It is also noted that track transitions such as bridge approaches, road crossings and slab tracks in connection with ballasted tracks are common locations of accelerated track degradation due to abrupt changes in support stiffness, and associated differential settlements. Differential settlement contributes to gaps forming just beneath sleepers, hence the effective support stiffness can decrease greatly as felt by carriages.

During passage of trains, ballast aggregates spread laterally mainly due to inadequate confining pressure and they deteriorate as angular corners and sharp edges break (Indraratna et al. 2016, Powrie et al. 2007, Sayeed and Shahin 2016, Le Pen and Powrie 2011). Consequently, ballast becomes fouled, less angular and has reduced shear strength, which leads to enforced speed restrictions and more frequent track maintenance. A large proportion of track maintenance costs is related to issues with track substructure such as ballast degradation, fouling, poor drainage (mud-pumping), differential settlement, and track buckling (Tennakoon et al. 2012, Navaratnarajah et al. 2018, Ngo et al. 2017a). In NSW alone, replenishing ballast costs over $15 million per year and it has a detrimental impact on the landscape and environment. In the USA the annual cost of maintenance for ballast tamping and surface alignment is approximately $3,800 per kilometre (Chrismer and Davis 2000). Hence, there is a definite need for innovative design solutions that can minimise ballast degradation and extend the service life of tracks to cater for faster and heavier trains.
Previous studies showed that planar polymeric geogrids could improve track stability and facilitate track drainage through the interaction between ballast particles and apertures (Bathurst and Raymond 1987, Kwon and Penman 2009, Indraratna et al. 2011b). The ability of geogrid reinforcement to provide lateral constraint to ballast has been discussed by McDowell et al. (2006), Shukla and Yin (2006), Ngo et al. (2016). The effect of placing geogrid under ballast lying on stiff foundation (e.g. under concrete bridge decks or level crossings) or at transition zones may be limited because it may not adequately absorb the predominant impact loads (Nimbalkar and Indraratna 2016, Ngo et al. 2017b). In fact despite the use of geogrid, significant ballast degradation has been observed and measured in the field by Indraratna et al. (2014).

The use of resilient rubber mats in rail tracks to reduce noise and vibration has become increasingly common (e.g. Auersch 2006, Hanson and Singleton 2006, Wetschureck 1997). Rubber mats have recently been trialled for track substructure under stiff foundations to minimise permanent deformation and degradation of aggregates, while enhancing the overall track stability (Costa et al. 2012, Lakuši et al. 2010, Finegan and Gibson 1999). These studies found that the rubber mats could provide better load transfer at the interface between ballast aggregates and stiff foundation by increasing the contact area, reducing the contact forces, thus minimising track damage.

Most of these previous studies have been conducted either in controlled laboratory or field trial tests subjected to limited loading and boundary conditions; a few attempts have been made to study the effects of rubber mats under high dynamic impact loads. Given that installing rubber mats in rail tracks helps to absorb energy, attenuates impact loads and reduces track vibration, the actual interaction mechanisms between the ballast and rubber mats are complex, depending on the type of inclusions, the nature of the subgrade, and the stress state in the track environment. Moreover, studies on the performance of rubber mats under different subgrade conditions while being subjected to varying magnitudes of impact loads are limited. Müller (2008) confirmed that when rubber mats were installed in stiff foundations, they performed differently than when placed on soft subgrade.

This paper presents a study on how READS influence in mitigating ballast breakage and reducing ballast deformation by conducting a series of large-scale impact tests on ballast. The idea of the testing program in this study was to demonstrate how the rubber mats can be effectively used to decrease the deformation and degradation (breakage) of ballast under impact loads. To the authors’
knowledge, the mechanism of improvement of a recycled rubber mat when placed underneath the ballast is a combination of: (i) attenuation of the load over a longer duration thus reducing the peak; (ii) distributing the load over wider area thus decreasing the maximum stress; and (iii) the absorption of the energy imparted by impact loads that could then reduce the amount of energy transferred to the ballast layer.

2. Experimental study

2.1. Drop weight impact testing facility

A high-capacity drop weight impact testing equipment was used to evaluate the ability of READS to attenuate dynamic impact loads and mitigate ballast degradation (Figure 1a). The impact apparatus consists of a 5.81 kN free fall hammer that can be dropped from a maximum height of 6 m, with an equivalent maximum drop velocity of 10 m/s (Remennikov and Kaewunruen 2010). The hammer is attached to rollers that are guided through low-friction runners on vertical steel columns fixed onto a reinforced concrete floor. A schematic diagram of a typical ballast sample tested in the laboratory is shown in Figure 1b. It is noted that the thickness of subgrade can influence the test results. Given the fixed dimensions of the steel mould and the surrounding cell membrane (approx. 600 mm height), the thickness of ballast and capping layers have been maintained to be 350 and 100 mm, respectively, to represent typical Australian track conditions, and also a 50mm thick subgrade layer was placed within the depth limitation of the test chamber.

A piezoelectric accelerometer was attached to the top surface of the sample assembly to measure acceleration. The accelerometer was positioned at a distance of 42 mm away from the center of the specimen, as shown in Figure 1b. A dynamic load cell was attached to the hammer to record the impact loads during testing, and a high speed camera (recording at 500 frames per second) was used to record the deformation during testing (Figure 1c). These instruments were connected to a host computer controlled data acquisition system (Figure 1d). The drop hammer was hoisted mechanically to the required height and was released by an electronic control system. During the tests, the impact load and acceleration were recorded digitally and filtered using a low-pass fourth-order Butterworth filter with a cut-off frequency of 2,000 Hz.
It is worth mentioning that typical Australian heavy haul and freight trains can have a length of up to 5 km long. These trains will generate multiple repeated impact loads due to roughness and imperfections at the wheel-rail interface or when they pass through transition zones such as bridge approaches, rail crossings, etc. In the absence of appropriate laboratory facilities to simulate actual impact of a very long train running on ballast track, the repeated hammer dropping test (impact testing facility) is considered as an appropriate test to characterize ballast performance with different track substructure components (soft and stiff subgrade). The impact testing facility was designed and built at the University of Wollongong Australia, has been widely used to test railway concrete sleepers by Remennikov and Kaewunruen (2010) subjected to high impact loading, and routinely used by railway asset owners in the state of NSW for testing track elements.

2.2. Materials tested

All tests were conducted on a simulated track substructure lying on: (a) soft subgrade, and (b) stiff subgrade (reinforced concrete base) to represent a bridge. Ballast aggregates taken from Bombo quarry near Wollongong city is latite basalt, an igneous rock form commonly found along the south coast of New South Wales, Australia. These dark aggregates have a high compressive strength and sharp angular corners when blasted and quarried. Uniaxial compressive strength of parent rock used for ballast aggregates is approximately, $\sigma_c = 130$ MPa. The ballast has been sieved, cleaned, weighed, and mixed according to the current Australian practices (AS:2758.7, 2015), shown in Figure 2. A 50 mm thick layer of sandy-clay soil, compacted at 7% moisture content to a bulk unit weight of 18.5 kN/m3, was placed at the bottom of the apparatus, and then a 100 mm thick layer of capping (sub-ballast) consisting of a sand and gravel mixture (Figure 3a) compacted to a bulk unit weight of 20.5 kN/m3 was placed on top of the subgrade layer. The capping layer was replaced by a reinforced concrete base to simulate a stiff foundation (i.e. crossings or concrete bridge decks). A recycled rubber mat, manufactured from a recycling company in Australia, was placed on top of the capping layer (Figure 3b), followed by a 350 mm thick layer of ballast. Total weight of ballast (38.3 kg) was used for each test and was divided and compacted into 3 equal sub-layers (i.e. 115 mm thick). The ballast aggregates in each sub-layer were painted in different colours to help assess the amount of degradation each layer experiences during the tests, i.e. yellow for the bottom layer, no colour for the middle layer, and red for the top layer (Figure 3c-d). A rubber pad
was attached to the vibrator to prevent particle breakage during tamping. A recycled energy absorbing drainage mat (READS) contain very small perforations to facilitate drainage and to prevent build-up of interface water pressures. These perforations also act as ‘frictional’ elements maintaining good contact with the granular layer on either side (ballast and sub-ballast). Essentially, this mat is permeable and it has a permeability coefficient approximately of 2.5×10^{-4} cm/sec. It is worth mentioning that upon repeated train loading, fine particles may accumulate on the surface of the mat, and as a result the permeability may be decreased, as observed in a field trial in Singleton (Indraratna et al. 2014). The mechanical properties of the READS used in the laboratory are presented in Table 1.

Dynamic impact loads are commonly caused by wheel or rail abnormalities such as flat wheels, dipped rails, expansion gaps between two rail segments, imperfect rail welds and rail corrugations, and transition zones (Esveld 2001, LePen 2008, Priest et al. 2010). The flange-way gap that provides clearance between the wheel flange and the point where rails intersect is also responsible for the development of large impact loads (Anastasopoulos et al. 2009). When a train passes through a rail crossing and through turnouts or transition zones, the rapid change in wheel rail contacts coupled with sudden variations in track stiffness causes the wheels to displace up and down, giving rise to impact loads (Paixão et al. 2014, Remennikov and Kaewunruen 2014, Powrie et al. 2007). Impacts at turnouts may also occur at the switch points due to the shape and flexibility of the movable blades used to control the direction of train passage (Bruni et al. 2009). At transition points such as bridge approaches, road crossings and slab track to ballasted track, a considerable change in track stiffness causes high impact forces that accelerate track deformation. This issue becomes even more critical for shared lines between faster passenger trains and heavier freight trains.

2.3. Sample preparation and testing program

A 7 mm thick cylindrical rubber membrane having a 300mm diameter was used to assemble the ballast specimen (Figure 4a). Two halves of a steel mould that surrounds the cell membrane (Figure 4b) were used to support the sample during the compaction. The capping material (sub-ballast) was also weighed, sieved, and compacted to a thickness of 100 mm following the particle size distribution described in Figure 2. A layer of recycled rubber mat (READS -10mm thick) was placed above the capping layer.
The first layer of ballast was placed directly onto the READS and was compacted using a hand-held vibrating hammer to attain a unit weight of 15.5 kN/m³. This process was repeated for the next two layers of ballast (Figure 4c), and then a steel plate (loading plate) was fitted at the top of the ballast and fastened by steel ties. The initial height of specimen was measured and recorded at four evenly spaced points around the cell. The circumference of the cell was measured at three locations (i.e. bottom layer, middle layer, and the top layer of ballast). These initial measurements serve as references for determining the vertical and lateral deformation of the ballast assembly as the tests progress. It is noted that the use of a membrane to confine ballast does not perfectly represent the actual field conditions where the aggregates displace laterally under limited lateral confinement provided by sleepers and ballast shoulders (Indraratna et al. 2011a). A 7 mm thick cylindrical rubber membrane could include some boundary effects to the ballast grains near the walls and may affect the reflection of waves at the boundary, and this boundary influence is a limitation of the equipment. A rigid boundary with low friction (i.e. cylindrical steel tube) was also tried but it generated a large impulse shock and the ballast assembly vibrated significantly when the hammer dropped onto to the sample, hence not suitable for assembling ballast specimens. Therefore, the use of a 7 mm thick cylindrical rubber membrane is the most suitable for the impact test and the boundary condition have been maintained constantly for all the tests. An additional confining stress induced on the ballast specimen by the membrane (\(\Delta \sigma_3\)) at a given number for hammer drops can be estimated and described in Appendix 1.

A total of 16 tests were conducted on ballast with and without the inclusion of READS placed on a soft subgrade (Young’s modulus of elasticity of subgrade, \(E_{su} = 55\text{MPa}\)) and a stiff base (concrete) subjected to varying impact loads (i.e. varying drop heights of the hammer as: \(h_d = 100\) mm, 150 mm, 200 mm and 250mm), as shown in Figure 4e. These drop heights produce equivalent dynamic stresses between 250-550 kPa, simulating typical impact forces caused by wheel flats and dipped rail joints in the field (Jenkins, et al. 1974, Esveld 2001, Indraratna et al. 2011a). A previously made reinforced cylindrical concrete base (300 mm in diameter and 100 mm in thickness) was used as the stiff base, which was placed directly on the subgrade layer. The impact test program is summarised in Table 2. Every test was subjected to 15 drops; after each drop the vertical and lateral displacements of the ballast specimen were measured (Figure 4f). After each test, ballast aggregates in each layer were separately sieved to quantify the amount of breakage.
3. Results and Discussion

3.1. Measured vertical displacement

Figure 5 shows typical images captured by the high speed camera of deformed ballast assemblies, recorded before and after the 10th drop (drop height, \(h_d = 150 \text{ mm} \)). When a hammer was dropped on the top loading plate, it began to compress the ballast specimen (Figure 5a). The sample was compressed to its maximum vertical displacement at time \(t = 15 \text{ ms} \) (Figure 5b), and then the ballast assembly rebounded upwards to a residual position (Figure 5c). Upon impact loading, elastic settlement occurs, followed by plastic vertical displacement. Typical time-settlement responses of ballast assemblies measured at different drops placed on the concrete base, subjected to a drop height of \(h_d = 150 \text{ mm} \) are shown in Figure 6. It is seen that the ballast assemblies deform from their original position to a maximum displacement and then return to a residual (permanent) settlement in about 120 ms. The inclusion of READS at the interface of the ballast/capping layer resulted in decreased deformation of ballast. The maximum vertical displacement after the 15th drop, with and without the inclusion of READS, is 77.05 mm and 84.76 mm, respectively, and the corresponding residual settlement is 64.50 mm and 74.20 mm. It is noted that the presence of the mat increases the elastic range of movement before plastic deformation of the ballast can take place, and moreover by attenuating the peaks in the loading to reduce the plastic deformation (Figure 6). The presence of a rubber layer beneath the ballast layer is also helpful for stabilising the ballast contacts and improving the homogeneity of stress transfer.

Variation of the peak and residual vertical displacements of a ballast assembly placed on stiff subgrade and subjected to a given drop height of \(h_d = 150 \text{ mm} \) is plotted in Figure 7. As expected, the vertical displacement of the ballast specimen without READS is higher than the READS-reinforced ballast assembly. The laboratory test data show that ballast deformation increases with an increase in number of hammer drops due to the reorientation, rearrangement, and corner breakage of aggregates. Towards the end of testing, the deformation of ballast occurs at a diminishing rate.

Figure 8 shows the variations of the accumulated permanent vertical settlement of ballast assemblies with and without READS placed on both soft and stiff subgrade. As expected, settlement generally increases as the drop height, \(h_d \) increases. There is a distinct trend of increasing vertical settlement within the first ten impact drops followed by a gradual increase of
vertical displacement at a decreasing rate. After attaining a threshold compression after the 10th drop, the ballast resists further settlement, but promotes particle breakage.

3.2. Measured lateral deformation

Under an impact load, ballast aggregates are compressed and displaced laterally. After each hammer drop, the circumference of ballast specimens was measured at the top, middle, and bottom of the ballast layers (locations: A, B, C in Figure 5a). The average accumulative lateral displacements, S_h, for each test are shown in Figure 9. Measured data indicate that in every case the lateral deformation increases with successive impacts, but the rate of increase in lateral deformation gradually reduces after the 10th drop. The initially rapid lateral displacement of ballast could be attributed to the high rate of ballast degradation that takes place at this stage. Indraratna et al. (2013) observed that ballast deformation was mainly due to the breakage of ballast particles and particle re-arrangement. With the inclusion of READS, measured lateral deformation of ballast decreases for both types of subgrade because the energy absorbing capacity of READS ensures less energy to be transferred to ballast aggregates and thereby reduce deformation. It is seen from Figs. 8 and 9 that the recycled rubber mat provides beneficial effects in decreasing the vertical and lateral deformation of ballast assemblies when placed on both soft and stiff (concrete) subgrades. Compared to a stiff subgrade, a weak subgrade itself serves as a flexible cushion to attenuate the impulse waves; hence, the beneficial role of the ballast mat remains under-utilized (i.e. less reduction in ballast deformation). The effect of subgrade stiffness is best interpreted and further discussed based on Figure 12.

3.3. Ballast breakage

Impact loads produce a series of physical phenomena such as elastic shock, plastic wave propagation, fracture and fragmentation that affects the strength and deformation of granular materials (Meyers 1994). After the impact tests, different types of particle degradation were observed such as grinding (abrasion), angular corner breakage (due to attrition), and distinct splitting across the body of particles (fracture). The ballast breakage index (BBI) was first introduced by Indraratna et al. (2005) based on the particle size distribution (PSD) curves, and it has been widely used to quantify ballast breakage. The BBI is determined on the basis of change in the fraction passing a range of sieves, where the amount of ballast breakage causes the PSD curve to shift further towards the smaller particles size region on a conventional PSD plot, as
described in Figure 10. The BBI is given by the relationship: \(BBI = \frac{A}{A + B} \), where, \(A \) is shift in the PSD curve after the load application and \(B \) is potential breakage or the area between the arbitrary boundary of maximum breakage and the final PSD curve. The BBI with and without the inclusion of READS placed on the soft and stiff subgrade, subjected to varying drop heights \((h_d = 100-250 \text{ mm}) \) are plotted in Figure 11. As expected, the maximum ballast breakage occurs in the top layer, and it decreases in the middle and bottom layers as the induced impact loads attenuate with depth. Figure 11 shows a large increase in ballast breakage when the drop height of the hammer increases (increased impact energy); this agrees with the findings of a previous study using a large-scale triaxial apparatus where ballast breakage was observed to increase with an increase in cyclic loads (Sun et al. 2018).

The highest value of \(BBI = 0.352 \) was obtained for test CN250 where ballast was placed on stiff subgrade (without READS), and the lowest breakage \((BBI = 0.077) \) was measured for the test SY100 (placed on soft subgrade with READS). When placed on stiff subgrade, it was observed that ballast at the bottom layer still experienced considerable breakage, unlike the ballast in the middle layer which experienced the least (Figure 11c). This is possibly because the ballast aggregates at the bottom layer are restrained against downward movement by the rigid concrete base, whereas the aggregates in the middle layer are relatively free to displace and rotate due to the underlying flexible ballast layer.

The measured data is best interpreted by Figure 12, which plots the final values of ballast deformation (Figure 12a-d), the percentage reduction of ballast breakage \((R_b) \), and the relative deformation factors \((R_v, R_h) \) with varying drop heights (Figure 12e-f). The relative deformation factors for vertical \((R_v) \) and horizontal displacement \((R_h) \) are defined as follows:

Vertical settlement (%): \[
R_v = \frac{S_v(\text{No READS}) - S_v(\text{With READS})}{S_v(\text{No READS})} \times 100
\]

Lateral deformation (%): \[
R_h = \frac{S_h(\text{No READS}) - S_h(\text{With READS})}{S_h(\text{No READS})} \times 100
\]

Reduction in breakage (%): \[
R_b = \frac{BBI_{\text{No READS}} - BBI_{\text{With READS}}}{BBI_{\text{No READS}}} \times 100
\]

It is seen that the vertical and lateral deformations with READS are less than those without READS for a given drop height. The beneficial effects of READS are more pronounced on the stiff
subgrade, and this corroborates with the energy absorbing nature of READS whereby less energy is transferred to the ballast and other substructure components, thus reduced deformation and degradation. The effect of READS is reflected by reduction factors presented in Figure 12e-f. It is seen that READS could decrease the deformation of ballast around 7-15% for a given drop height. The reduction in breakage, R_b was measured up to 28% (stiff subgrade) while R_b fluctuated around 10 to 17% for the soft subgrade (average for three layers).

3.4. Measured impact forces

Figure 13 shows the impact forces measured with and without READS placed on soft subgrade and subject to varied drop heights, $h_d = 100-250$ mm. Data was recorded during the first 200 milliseconds (ms) and was measured at the 10^{th} drop ($N=10$). Subject to a free-fall hammer, multiple P_1 type peaks occur followed by the distinct P_2 type peak. It is noted that all tests have a similar response pattern with multiple peak forces (P_i) followed by another peak of smaller magnitude (the so-called P_2 force). An instantaneous sharp peak with very high frequency known as P_i, and a gradual peak of smaller magnitude and with a relatively lesser frequency, known as P_2. The impact force P_1 comes from the inertia of the rail and sleepers that resist the downward motion of the wheel, and this leads to compression in the contact zone between the wheel and the rail. The force P_2 prevails over a longer duration and is attributed to the mechanical resistance of the track substructure leading to significant compression. P_2 directly causes ballast breakage and it can be estimated based on the mathematical model proposed by Jenkins et al. (1974):

$$P_2 = P_0 + 2\alpha V \times \left[\frac{M_u}{M_u + M_t} \right]^{0.5} \times \left[1 - \frac{C_t \pi}{4[K_t(M_u + M_t)]^{0.5}} \right] \times [K_t M_u]^{0.5}$$

where, P_0: static wheel load (kN); M_u: vehicle unsprung mass (kg); 2α is the total joint dip angle (rad); V: train speed (m/s); K_t: equivalent track stiffness (MN/m); C_t: equivalent track damping (kNs/m); and M_t: is the equivalent track mass (kg).

The first peak has a sharp triangular shape and a high amplitude between 160 kN to 375 kN for $h_d = 100-250$ mm within relatively short time duration (about 15 ms). The second peak was measured approximately 20 ms after the first peak, followed by several local triangular shaped peaks of around 40 kN (about 100 ms from the first peak). Remennikov and Kaewunruen (2010) found that the inertial force peak induces the specimen to vibrate during the first 15 ms. Any further vibration could separate the hammer and the ballast specimen, as shown by a sharp reduction in the impact...
force to almost zero for a short period of 10-30 ms (after the first P_1 force). The deformation of
the ballast assembly continues to rapidly absorb the additional kinetic energy of the impactor but
with smaller impact forces. This process repeated itself several times until the impact load
remained at a stable value of around 40 kN (P_2 force).

Figure 14 illustrates the overlaying plot of impact forces onto the plot of measured vertical
displacements to identify where along the displacement plot in each scenario the peak P_1 force
occurs for a soft subgrade soil for $h_d=100$mm. It is seen that the P_1 occurs within the first 40 ms
during the impact where a significant elastic deformation of ballast occurs. Figure 15 shows
comparison of the maximum impact forces P_1 and P_2 after the 15th drop for soft and stiff subgrades.
The magnitude of impact force P_1 varies from 154 kN to 500 kN with a short duration of 1 to 15 ms, while the P_2 forces vary from 32 kN to 98 kN. Ballast on stiff subgrade experiences higher
maximum impact forces P_1, P_2 than ballast on the soft subgrade; this results in a higher
deformation as shown in Figure 12. The inclusion of READS substantially reduces the magnitude
of the P_1 and P_2 impact force.

3.5. Measured acceleration responses

Typical acceleration of ballast under soft and stiff subgrade (with and without READS) measured
at the 10th drop ($N=10$) subjected to a drop height of $h_d = 100$ mm is shown in Figure 16. It is
noteworthy that the inclusion of recycled rubber mats reduces the peak acceleration and helps to
attenuate vibration faster for soft and stiff subgrades. There are several peaks that corroborate with
P_1 force, as shown in the impact force-time plots, and the acceleration becomes negligible after
100 ms. When the hammer first hits the specimen the maximum force P_1 is observed. With soft
subgrade, maximum accelerations are around 66 g and 105 g for the ballast assembly with and
without READS, respectively. The accelerations measured approximately 110 g (with READS)
and 169 g (without READS) for stiff subgrade. When the P_2 force is reached, the mean acceleration
is measured around 12 g and 20 g for soft and stiff subgrade, respectively. Also, the inclusion of
READS helps to attenuate vibration faster, as shown in Figure 16b.

Measured accelerations for stiff subgrade are always larger than those for the soft subgrade, which
indicates higher levels of vibration at the sleeper-ballast interface. In order to provide further
quantitative information related to the energy absorbing characteristics of the recycled rubber mat
used in this study, the estimation of energy absorption of the mats based on the strain energy
concept (i.e. based on the measured deformation of ballast specimen) is described in Appendix 2. It is therefore recommended that the use of READS as a promising approach to be considered for transition zones to reduce vibration and prevent excessive ballast deformation and breakage. This can increase safety and passenger comfort due to vibration attenuation, and lead to a more economical track design due to the subsequent reduction in ballast degradation.

4. Conclusions

This paper presented the laboratory results from large-scale impact tests to investigate the role that rubber energy absorbing drainage sheet (READS) could provide by reducing deformation and degradation of railway ballast under varied impact loading conditions. From measured test data, the following salient conclusions can be drawn:

- Test data showed that vertical and lateral deformation of ballast increased with the number of impact blows. These observations were more pronounced during the first ten impact drops due to initial densification and further grain packing caused by particle breakage. But once the ballast began to stabilise, the rate of deformation gradually decreased for the subsequent impact drops. The inclusion of READS attenuated both the axial and lateral deformation of ballast, as well as particle degradation under impact loading.

- Two distinct types of force peaks were measured: multiple instantaneous P_1 peaks followed by a gradual P_2 peaks of smaller magnitude and longer duration. The magnitude of impact force P_1 varied from 154 kN to 500 kN with a short duration of around 15 ms, where the P_2 forces were around 32 kN to 98 kN. Note that the maximum values of P_1 and P_2 forces increased progressively throughout successive impact blows as the ballast assembly became denser, but these peak values decreased when READS were provided below the ballast layer. READS (energy absorption layer) could reduce the dynamic impact that would have otherwise been transmitted into the ballast and underlying sub-layers. Ballast layer placed on stiff subgrade experienced higher maximum impact forces P_1 and P_2 than the one placed on soft subgrade. In addition, laboratory measurements showed that less vibration (acceleration) occurred when READS was installed.

The laboratory results obtained in this study provided a better understanding of the capacity of READS to attenuate and distribute the load over wider area, and thus reduce the deformation and
degradation of ballast. In essence, this study presented a quantitative understanding of the extent that the READS could reduce impact-induced forces in ballast while attenuating vibration, as well as substantially reducing ballast breakage.

5. Acknowledgements

This research was conducted by the Australian Research Council Industrial Transformation Training Centre for Advanced Technologies in Rail Track Infrastructure (IC170100006). The authors also greatly appreciate financial support from the Rail Manufacturing Cooperative Research Centre, with subsequent support from organizations including the Australasian Centre for Rail Innovation (ACRI), Tyre Stewardship Australia (Project R2.5.1). The authors thank to graduate student, Timothy Beckmans for their help during laboratory test. The authors appreciate Tim Neville (ARTC) for encouraging the use of recycled rubber mats in real-life tracks. The authors are also grateful to Alan Grant, Cameron Neilson, and Duncan Best for their assistance during the laboratory work. The authors thank Robert Clayton (English editor) for proofreading and professionally editing the manuscript.
Appendix 1: Estimation of induced lateral confinement provided by the membrane

Subjected to impact loads, the membrane deforms laterally. Additional lateral confinement (i.e. induced lateral confinement, $\Delta \sigma_3$) provided by the membrane can be estimated using the hoop tension theory. Using the Hooke’s law, the circumferential stress (σ_c) can be estimated by:

$$\sigma_c = \frac{M_m}{(1+\nu_r)(1-2\nu_r)} \times [(1 - \nu_r)\varepsilon_c + \nu_r(\varepsilon_3 + \varepsilon_z)]$$ \hspace{1cm} (5)

where, M_m is mobilised modulus of the membrane; ε_c and ε_3 are circumferential and radial strains, respectively. It is noted that, $\varepsilon_c = k \cdot \varepsilon_3$; and the ratio, k can be estimated as 0.42 for rubber. ν_r is the Poisson’s ratio of recycled rubber mat ($\nu_r = 0.44$)

The loading plate can move downward inside the membrane and $\varepsilon_z = 0$, and the Eq. (5) can then be simplified to:

$$\sigma_c = \frac{M_m}{(1+\nu_r)(1-2\nu_r)} \times [(1 - \nu_r)k\varepsilon_3 + \nu_r\varepsilon_3]$$ \hspace{1cm} (6)

Due to symmetry of the cylindrical membrane, the lateral confinement applied by the membrane ($\Delta \sigma_3$) can be calculated as:

$$\Delta \sigma_3 = \frac{2\sigma_c}{D}$$ \hspace{1cm} (7)

where, D is diameter of equivalent circular area of the membrane.

Substituting Eq. 6 into Eq. 7, gives:

$$\Delta \sigma_3 = \frac{2M_m}{D} \times \frac{(1-\nu_r)k + \nu_r}{(1+\nu_r)(1-2\nu_r)} \times \varepsilon_3$$ \hspace{1cm} (8)

Based on measured changes in the circumference (i.e. ε_3) of a ballast specimen (Figure 9), the induced confining stresses onto the ballast specimen by the membrane can then be calculated. Figure 17 presents estimated values of $\Delta \sigma_3$ for both soft and stiff subgrade under 2 different drop heights, i.e. $h_d = 100, 200$mm. It is seen that the calculated values of $\Delta \sigma_3$ vary from 10-20 kPa. It is noted that the ASTM D4767-11 recommends the use of a correction factor for rubber membrane stiffness when determining the deviatoric stress in triaxial testing; for ballast assemblies, the required correction for deviator stress is around 10-15 kPa (Lackenby et al. 2007, Sun et al. 2018).
Appendix 2: Estimation of energy absorption of the mats

As the hammer having a weight of \(W \) falls from rest at a given height \(h_d \), its gravitational potential energy is converted to kinetic energy. Adopting the principle of energy conservation \((Mgh_d = \frac{1}{2}MV_h^2) \), the total kinetic energy \((E_K) \) and velocity of hammer when it hits the ballast specimen can be calculated by:

\[
E_K = \frac{1}{2}MV_h^2 \quad \text{and} \quad V_h = \sqrt{2gh_d}
\]

(9)

The total work done \((W) \) by ballast specimen upon the impact load can then be estimated as:

- No rubber mat: \(W = \frac{1}{2}MV_h^2 = \sigma_3 \delta V_0 + (\sigma_1 - \sigma_3)A\delta s_0 \)

(10)

- With rubber mat: \(W = \frac{1}{2}MV_h^2 = \sigma_3 \delta V + (\sigma_1 - \sigma_3)A\delta s + E_{RM} \)

(11)

where, \(\sigma_1 \) and \(\sigma_3 \) are the major and minor principal stresses, respectively; \(\delta V \) is the volume change of the specimen; \(\delta s \) is the vertical displacement; \(A \) is cross-section area of the ballast sample; \(E_{RM} \) is the estimated energy absorbed by the mat, and this can be approximately determined by subtracting Eq.11 from Eq.10.

It is noted that for impact tests carried out in this study, \(\sigma_1 \) and \(\sigma_3 \) were not directly measured. For the purpose of simplicity, \(\sigma_1 \) can be estimated from the measured \(P_2 \) forces (i.e. applied over a long duration and causing ballast deformation), and \(\sigma_3 \) is estimated as the applied confining stress by the membrane (i.e. 20 kPa as estimated in Appendix 1).

Figure 18 presents the estimated energy absorbing capacity of recycled rubber mat placed on the soft and stiff subgrade after a given number of hammer drops for drop heights of \(h_d=100, 200 \) mm. It is seen that the measured \(E_{RM} \) of the mat increases with an increase in the number of hammer drops, and the recycled rubber mats perform better when placed on the stiff subgrade.
6. References

Table 1. Mechanical characteristics of READS

<table>
<thead>
<tr>
<th>Material properties</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness, (t) (mm)</td>
<td>10</td>
</tr>
<tr>
<td>Area weight, (\text{kg/m}^2)</td>
<td>8.23</td>
</tr>
<tr>
<td>Tensile strength, (\tau) (N/mm(^2))</td>
<td>0.58</td>
</tr>
<tr>
<td>Tensile strain at failure, (\varepsilon_{\text{ult}}) (%)</td>
<td>56</td>
</tr>
<tr>
<td>Permeability coefficient, (k) (cm/sec)</td>
<td>(2.5 \times 10^{-4})</td>
</tr>
<tr>
<td>Static bedding modulus, (C_{\text{stat}}) (N/mm(^3))</td>
<td>0.142(^a)</td>
</tr>
<tr>
<td>Dynamic bedding modulus, (C_{\text{dyn}}) (N/mm(^3))</td>
<td>0.107(^a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test no.</th>
<th>Test name</th>
<th>Subgrade condition</th>
<th>READS used</th>
<th>Drop height, h_d (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SY100</td>
<td>Soft</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>SN100</td>
<td>Soft</td>
<td>No</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>CY100</td>
<td>Concrete</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>CN100</td>
<td>Concrete</td>
<td>No</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>SY150</td>
<td>Soft</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>SN150</td>
<td>Soft</td>
<td>No</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>CY150</td>
<td>Concrete</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>CN150</td>
<td>Concrete</td>
<td>No</td>
<td>150</td>
</tr>
<tr>
<td>9</td>
<td>SY200</td>
<td>Soft</td>
<td>Yes</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>SN200</td>
<td>Soft</td>
<td>No</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>CY200</td>
<td>Concrete</td>
<td>Yes</td>
<td>200</td>
</tr>
<tr>
<td>12</td>
<td>CN200</td>
<td>Concrete</td>
<td>No</td>
<td>200</td>
</tr>
<tr>
<td>13</td>
<td>SY250</td>
<td>Soft</td>
<td>Yes</td>
<td>250</td>
</tr>
<tr>
<td>14</td>
<td>SN250</td>
<td>Soft</td>
<td>No</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>CY250</td>
<td>Concrete</td>
<td>Yes</td>
<td>250</td>
</tr>
<tr>
<td>16</td>
<td>CN250</td>
<td>Concrete</td>
<td>No</td>
<td>250</td>
</tr>
</tbody>
</table>

Notation of the test name - for example SY100: S = soft subgrade (C=Concrete / stiff subgrade); Y = with recycled rubber mat; drop height, h_d
Figure 1. (a) High capacity drop weight impact apparatus; (b) Schematic diagram of ballast sample; (c) High speed camera set up; and (d) Data acquisition unit
Figure 2. Particle size distributions of the ballast and capping used in the study.
Figure 3. Typical images of capping, ballast particles and recycled rubber mat (READS) used in the laboratory.

(a) Sub-ballast (capping)

(b) Recycled rubber mat tested in laboratory

(c) Clean and dry ballast aggregates

(d) Ballast particles painted in different colours
Figure 4. Sample preparation: (a) cell membrane; (b) steel mould, (c) ballast at bottom layer; (c) ballast on top layer; (d) ballast specimen; and (f) deformed shape of ballast specimen.
Figure 5. Typical images of the deformed ballast assembly recorded before and after the 10th drop, taken by the high-speed camera.
Figure 6. Measured vertical displacement of ballast assemblies at different drops placed over stiff subgrade: (a) with READS; (b) without READS
Figure 7. Variation of the peak and residual (permanent) vertical displacement of ballast assemblies with the number of drops
Figure 8. Accumulated permanent vertical settlement of ballast with and without READS: (a)-(b) soft subgrade; (c)-(d): stiff (concrete) base
Figure 9. Average lateral displacement of ballast with and without READS: (a)-(b) soft subgrade; (c)-(d): stiff (concrete) base
Figure 10. Quantification of ballast breakage using the ballast breakage index, BBI.
Figure 11. Ballast breakage index (BBI) for soft and stiff subgrades at different ballast layers subject to varying drop heights: (a) top layer; (b) middle layer; and (c) bottom layer.
Figure 12. Variation of final vertical and lateral deformation of ballast placed on soft and stiff subgrades with and without READS at varied \(h_d \): (a-b) vertical displacement; (c-d) lateral displacement; (e-f) percentage reduction of ballast deformation and breakage.
Figure 13. Typical impact force responses of ballast with and without READS placed on soft subgrade measured at the drop $N=10$, under varying drop heights: (a) $h_d=100$ mm; (b) $h_d=150$ mm; (c) $h_d=200$ mm; and (d) $h_d=250$ mm.
Figure 14. Measured impact load and vertical displacement of ballast subjected to $h_d=100$mm
Figure 15. Measured impact forces, P_1, P_2 for ballast with and without READS under soft and stiff subgrades after 15 drops ($N=15$): (a) P_1 - soft subgrade; (b) P_1 - stiff subgrade; (c) P_2 - soft subgrade; and (d) P_2 - stiff subgrade
Figure 16. Measured acceleration of ballast under a drop height of $h_d = 100$ mm, at the 10th drop ($N=10$) placed on: (a) soft subgrade; and (b) stiff subgrade.
Figure 17. Lateral confining stress applied by the membrane during the loading
Figure 18. Estimated energy absorbing of recycled rubber mat (E_{RM}) that is placed on the soft and stiff subgrade materials.