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Conditional Ordering Using Nonparametric Expectiles

Yves Aragon1,2, Sandrine Casanova1,2, Ray Chambers3, and Eve Leconte1,2

Expectile regression, and more generally M-quantile regression, can be used to characterise
the relationship between a response variable and explanatory variables when the behaviour of
“nonaverage” individuals is of interest. The aim is to demonstrate how an individual
expectile-order, based on nonparametric estimation of the expectile regression function, can
also be used to define a conditional ordering of the individual’s value relative to the values of
other members of a data set. The relationship between contextual, or “grouping”, variables
and this ordering can then be investigated. In particular, we propose five estimators of
expectile-order, which we compare via simulation. The use of estimated expectile-order to
investigate grouping effects is then illustrated using data on physician prescribing behaviour
in the Midi-Pyrénées region of France during 1999.

Key words: Conditional expectile; expectile regression; asymmetric regression; local
regression; monotonization techniques; order estimation; ordering index.

1. Introduction

Regression analysis is a standard tool for modelling the average relationship between a

response variable and a set of explanatory variables. Generally this type of analysis models

the conditional mean of a response given a set of explanators. However, in some

circumstances our interest is not so much in this average relationship, but in an ordering of

all individuals based on their “distance” to the conditional mean. In the following, we

investigate an ordering of physicians in the Midi-Pyrénées region of France in 1999. This

ordering is with respect to their drug prescribing behaviour and conditions on the

characteristics of their practice and other relevant variables. A major problem in

constructing such an ordering is that of heteroskedasticity in the regression relationship. In

particular, the values associated with individuals whose behaviour deviates from the mean

may just reflect heteroskedasticity induced by explanatory variables rather than any

intrinsic characteristics of these individuals. Such heteroskedasticity is usually accounted

for by a weighted regression fit. However, such an approach typically requires some form

of parametric specification for both the regression function and the associated

heteroskedasticity, and often assumes that errors are symmetrically distributed. There

are nonparametric approaches to fitting heteroscedastic models (see Welsh 1996), but

these can be complex. In contrast, we could tackle the problem directly by modelling the
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conditional quantiles of the response given the explanators. Quantiles are part of a general

class of distributional location functionals that Breckling and Chambers (1988) refer to as

M-quantiles. Besides quantiles, this class contains the expectiles, which generalize the

expectation in the same way as quantiles generalize the median (Newey and Powell 1987),

and we base our ordering method on application of this method.

In order to motivate our approach, we consider the problem of monitoring drug

prescribing behaviour mentioned above. In particular, let Y be the average value of

prescriptions issued by a physician over some fixed period, and assume that a regulatory

body (e.g., the Social Security Administration or SSA) has an interest in ranking all

physicians in a certain region according to their values of Y. This may be because the SSA

wants to identify individual physicians whose prescribing behaviour is substantially

different from average prescribing behaviour, or it may be because the SSA is interested

in identifying whether there are “groupings” in these ranks associated with particular

subregions, indicating inequalities in subregional prescription expenditure. In either case,

suppose that one assumes that a physician with average prescription value above some

threshold, say y0, generates a “loss” for the SSA. Then the average loss per physician is:

EððY 2 y0ÞIðY . y0ÞÞ ð1Þ

while the probability of a physician exceeding this threshold is

EðIðY . y0ÞÞ ð2Þ

Clearly, from an economic point of view, the SSA is more interested in (1) than in (2). Since

the value of prescriptions issued by a physician depends on his or her personal

characteristics as well as those of the practice (e.g., age distribution), the threshold y0 must

also depend on these characteristics.

In practice y0 is unknown, but we can use the above framework to motivate an approach

to ranking individual physicians on the basis of their potential financial risk to the SSA

prescription budget. In particular, consider a physician with Y ¼ yi and X ¼ xi. Here X

denotes the (vector-valued) random variable characterizing the distribution of physician

characteristics across the region of interest. The expected additional loss to the SSA

prescription budget caused by an increase in the average value of prescriptions issued by

this physician is then

EððY 2 yiÞIðY . yiÞjX ¼ xiÞ ð3Þ

A dimension free version of this expected additional loss is obtained by dividing (3) by the

average absolute departure from yi, i.e., E(jY 2 yij jX ¼ xi), leading to the normalized

coefficient

EðjY 2 yijIðY . yiÞjX ¼ xiÞ

EðjY 2 yikX ¼ xiÞ
ð4Þ

In particular, the higher the value of this ratio, the lower the financial risk associated with

the physician, since the expected loss due to him or her increasing prescription expenditure

relative to its current level is larger. In other words, the physician is relatively cheap

(in terms of prescription expenditure and after accounting for personal and practice

characteristics) as far as the current SSA prescription budget is concerned (Newey and
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Powell 1987). Consequently, in order to associate a high ranking with a high risk, we work

with the complementary ratio

qi ¼
EðjY 2 yijIðY # yiÞjX ¼ xiÞ

EðjY 2 yikX ¼ xiÞ
ð5Þ

which we refer to as the “expectile-order” of the physician’s prescribing behaviour. The

higher the value qi, the more risky the physician is for the SSA prescription budget. Notice

also that (5) parallels the “quantile-order” of the physician’s average prescription

expenditure, defined by

EðIðY # yiÞjX ¼ xiÞ

Eð1jX ¼ xiÞ
ð6Þ

which corresponds to the probability that a physician with characteristic xi has an average

prescription expenditure less than or equal to yi. Since the level of expenditure is of greater

interest here than its associated rank, we argue that ranking based on expectile-order is

more suitable than ranking based on quantile-order in this situation.

The identity (5) is specific to the realized prescription value yi. We therefore now

generalize the concept of expectile-order so that it applies to arbitrary values of Y and X. In

order to do so, we provide a more rigorous definition of expectile regression. Let

F(.jX ¼ x) denote the cumulative distribution function (c.d.f.) of Y given X ¼ x.

Consider the minimization problem

u
min

ð
rqðy2 uÞdFðyjX ¼ xÞ ð7Þ

where rq is a loss function and q is fixed, 0 , q , 1. Differentiating the objective

function in (7) with respect to u leads to the estimating equationð
cqðy2 uÞdFðyjX ¼ xÞ ¼ 0 ð8Þ

where cq(u) ¼ drq(u)/du is called the influence function. It is well known that if cq(.)

equals q for positive values of its argument and equals 2 (1 2 q) for negative values of its

argument, then the solution to (7) and (8) is the q-quantile of the conditional distribution

F(.jX ¼ x). In contrast, the q-expectile of this conditional distribution is defined by

setting

cqðuÞ ¼
qu if u $ 0

ð1 2 qÞu if u , 0

(
ð9Þ

in (8). Note that this corresponds to the asymmetric least squares loss function

rqðuÞ ¼
qu2 if u $ 0

ð1 2 qÞu2 if u , 0

(
ð10Þ

The conditional q-expectile is unique (see Newey and Powell 1987) and is denoted m(q, x)

in what follows. Furthermore, the 0.5-expectile is the expectation of the conditional

distribution F(.jX ¼ x). Substituting the influence function defined by (9) into (8), one
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obtains a formal definition of m(q, x) as the solution of the equation

q ¼
EðjY 2 mðq; xÞjIðY # mðq; xÞÞjX ¼ xÞ

EðjY 2 mðq; xÞkX ¼ xÞ
ð11Þ

The general definition of the expectile-order of a sample unit with values (yi, xi) is then the

value qi that satisfies the identity m(qi, xi) ¼ yi.

Newey and Powell (1987) have shown that m(., x) is strictly monotone increasing in q,

which guarantees that q can be used to order observations (see e.g., Kokic et al. 1997).

Theoretical properties of parametric expectiles are set out in Newey and Powell (1987) and

Efron (1991). Breckling and Chambers (1988) extend the concepts of quantile and

expectile regression to M-quantile regression and also define a multivariate M-quantile.

Yao and Tong (1996) propose a nonparametric estimator of conditional expectiles based

on local linear polynomials with a one-dimensional covariate, and establish the asymptotic

normality and the uniform consistency of their estimator.

We focus here on the application of expectile-order to the problem of ordering

economic performance data, as in Kokic et al. (1997). As noted earlier, standard residuals

are inadequate in this case because they are sensitive to conditional heteroscedasticity in

the data. Instead, we use a nonparametric expectile regression model to estimate the

expectile-order. In Section 2, we propose five estimators of the expectile-order. The first

four require nonparametric estimation of conditional expectiles as a first step, whereas

the last one is obtained directly. We compare these estimators using simulated data in

Section 3. Finally, in Section 4, we apply our methods to defining an ordering of a data set

containing information about the characteristics and average prescription values of

physicians in the Midi-Pyrénées region of France in 1999.

2. Estimation of Expectile-Orders

In this section we propose five estimators of the expectile-order for the case where the

response variable Y is univariate, and the covariate X is a vector in IR p. Four of the

procedures estimate the expectiles m(q, x) on a grid of q values and then, for any given

observation, use linear interpolation or logistic smoothing to obtain the corresponding q.

The methods are distinguished by the fact that they estimate m(q, x) by a locally constant

Nadaraya-Watson kernel estimator, a locally linear kernel estimator, a locally linear mean

preserving monotone kernel estimator and a locally linear isotonic regression kernel

estimator. The fifth estimates the expectile-order directly. The observed sample values are

denoted ðYi;XiÞ
n
i¼1 in what follows.

2.1. Expectile-order based on locally constant expectile regression

A kernel-based estimator mLC(q, x) of m(q, x) that is equivalent to fitting a local constant to

this function is the solution to the minimization problem

u[R
min

ð
rqðy2 uÞdF̂nðyjX ¼ xÞ ð12Þ
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where

F̂nðyjX ¼ xÞ ¼

Pn
i¼1 K

x2Xi

h

� �
IðYi # yÞPn

i¼1 K
x2Xi

h

� �
is the Nadaraya-Watson kernel estimator of the conditional c.d.f. F(.jX ¼ x), K is a

multivariate kernel function, h is a vector of suitable bandwidths and the loss function rq is

defined by (10). Differentiating (12) with respect to u leads to the estimating equation

Xn
i¼1

cqðYi 2 uÞK
x 2 Xi

h

� �
¼ 0 ð13Þ

with cq as in (9). Defining Vq;iðxÞ ¼ ðIi 2 2qIi þ qÞK x2Xi

h

� �
where Ii ¼ I(Yi # u) and

solving (13) leads to the estimator mLC(q, x), which can be written as a weighted average

of the sample values of Y,

mLCðq; xÞ ¼

Pn
i¼1 Vq;iðxÞYiPn
i¼1 Vq;iðxÞ

ð14Þ

For general q the estimator mLC(q, x) can only to be computed iteratively since Vq,i(x)

depends on u. This estimator is strictly monotone increasing in q, so that an estimator

qLC(y, x) of the expectile-order of an observation with Y ¼ y can be directly computed by

linear interpolation over a grid of values of q defined for each value of x. That is, if qL and

qU are the two adjacent values on this grid such that mLC(qL, x) , y , mLC(qU, x)

then the estimated expectile-order of a sample unit with values y and x is

q(y, x) ¼ a(y, x)qL þ (1 2 a(y, x))qU where

aðy; xÞ ¼
mLCðqU ; xÞ2 y

mLCðqU ; xÞ2 mLCðqL; xÞ
ð15Þ

2.2. Expectile-orders based on local linear estimators

Alternatively we consider nonparametric estimation of the expectile regression function

based on a kernel weighted local linear fit (Yao and Tong 1996). Given a p £ 1 vector u we

define u* 0 ¼ [1 u0]. A locally linear nonparametric estimator of m(q, x) is then

mLLðq; xÞ ¼ x* 0

b̂qðxÞ ð16Þ

where b̂qðxÞ is the solution to the minimization problem

b[Rpþ1
min

ð
rqðy2 x* 0

bÞdF̂nðyjxÞ ð17Þ

Differentiating (17) with respect to b leads to the estimating equation

Xn
i¼1

cqðYi 2 X* 0

i bÞK
x 2 Xi

h

� �
X* 0

i ¼ 0 ð18Þ

Let Y be the n £ 1 vector of sample data for the response variable, X* 0

¼ ½X* 0

1 : : :X* 0

n �

with X* 0

i defined similarly as u* 0 and let Vq(x) be the n £ n diagonal matrix of weights
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{Vq,i(x)}, where the Vq,i(x) were defined in the previous section. The solution to (18) is

then

b̂qðxÞ ¼ ðX* 0

VqðxÞX
* Þ21X* 0

VqðxÞY

Note that b̂qðxÞ must also be computed iteratively since the matrix Vq(x) depends on b.

The estimator mLL(q, x) is not necessarily a nondecreasing function of q at every value

of x. That is, the fitted expectile surfaces obtained by solving (18) can cross in the sample

x-data range. This problem is also discussed in Kokic et al. (1997). He describes a

restricted version of quantile regression that avoids such crossing. Craig and Ng (2001)

encounter the same problem when using smoothing splines to estimate conditional

quantiles in an analysis aimed at identifying employment subcenters in a multicentric

urban area. Here we tackle this problem by constraining the estimator mLL(q, x) so that it is

monotone with respect to the values q on a grid Q defined at every sample value of x. In

particular we adapt the technique of Mukarjee and Stern (1994) so that, for q in Q, the

estimator mLL(q, x) is replaced by the mean preserving monotone estimator mMPM(q, x)

mMPMðq; xÞ ¼
minq0[Q;q#q0#0:5mLLðq

0; xÞ if q [�0; 0:5�

maxq0[Q;0:5#q0#qmLLðq
0; xÞ if q [�0:5; 1½

(

An alternative approach is to use isotonic regression (Robertson et al. 1998) to construct a

monotone estimator of m(q, x). This leads to the estimator mIRM(q, x), which is the nearest

monotone estimator of m(q, x) according to the L2 norm. Let Q ¼ {q1; : : : ; qs} be the grid

of values of q with q1 # · · · # qs: Then for qi in Q, mIRM(qi, x) is defined by

mIRMðqi; xÞ ¼
{i#t}
min

{r#i}
maxAv{mLLðqk; xÞ; r # k # t}

where AvðX1; : : : ;XmÞ is the empirical mean of the sequence X1; : : : ;Xm: For both

methods of monotonization, the estimated expectile-order of each observation (y, x) is

then calculated by linear interpolation as in (15), leading to two estimators of q that we

denote by qMPM(y, x) and qIRM(y, x), respectively.

Finally, as an alternative to direct monotonization of the conditional expectiles, one can

fit a linear model to the logits of the values in the grid Q using the estimated conditional

expectile values mLL(q, x) calculated on this grid at a fixed value x as explanators. The

estimated expectile-order qLR(y, x) for a point (y, x) is then obtained as the predicted value

generated by this model at the value y.

2.3. A direct estimator of the expectile-order

From (11) we see that the value y of a data point (y, x) is the expectile m(q, x) where

q ¼
EðjY 2 yjIðY # yÞjX ¼ xÞ

EðjY 2 ykX ¼ xÞ
ð19Þ

For each (y, x), we can estimate the numerator and the denominator of (19) using weighted

Nadaraya-Watson type kernel estimators (Hall et al. 1999). The resulting estimator of the
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expectile-order is then

qALNW ðy; xÞ

Pn
i¼1 jYi 2 yjIðYi # yÞK x2Xi

h

� �
wiðxÞPn

i¼1 jYi 2 yjK x2Xi

h

� �
wiðxÞ

ð20Þ

where the wi(x)’s define a set of calibrating weights, i.e., they satisfy wi $ 0,
P

iwi ¼ 1

and

i

X
ðXi 2 xÞK

Xi 2 x

h

� �
wiðxÞ ¼ 0 ð21Þ

Equation (21) ensures that x is the mean of the Xi with the weights
K

Xi2x

h

� �
wiðxÞP

i
K

Xi2x

h

� �
wiðxÞ

.

The above constraints do not uniquely define the wi(x)’s, and so we calculate these

weights by minimizing
P

iw
2
i subject to these constraints. This ensures that wi stays close

to 1/n. Put uiðxÞ ¼ ðXi 2 xÞK Xi2x
h

� �
: The p £ n matrix U(x) is then defined by UðxÞ ¼

ðu1ðxÞu2ðxÞ: : :unðxÞÞ with �UðxÞ [ IRp the mean vector of the rows of U. Straightforward

calculation yields

ðw1ðxÞw2ðxÞ: : :wnðxÞÞ
0 ¼

1

n
1n 2

jAðxÞj

jBðxÞj
ðUðxÞ2 �UðxÞ10

nÞ
0A21ðxÞ �UðxÞ

where A(x) ¼ U(x)U0(x) and BðxÞ ¼ ðUðxÞ2 �UðxÞ10
nÞðUðxÞ2 �UðxÞ10

nÞ
0 are p £ p matrices.

Note that Hall et al. (1999) define the weights wi so that they maximize Piwi i.e., these

authors seek to minimise the Kullback distance of {wi} from 1/n. Unfortunately, we

experienced convergence problems when attempting to apply this criterion. Furthermore,

qALNW(y, x) is a nondecreasing function of y because (20) is equal to (19) when the

conditional distribution function F(yjX ¼ x) isPn
i¼1 K

x2Xi

h

� �
wiðxÞIðYi # yÞPn

i¼1 K
x2Xi

h

� �
wiðxÞ

Using the results in Hall et al. (1999), it can be shown that when x is univariate and under

the constraint (21), the numerator and the denominator of qALNW (both divided byPn
i¼1 K

x2Xi

h

� �
wiðxÞ) are local linear estimators in which the weights are K x2Xi

h

� �
wiðxÞ

instead of K x2Xi

h

� �
: Furthermore, under suitable regularity conditions, these estimators are

first order equivalent to classical local linear estimators. Finally, we observe that since the

computation of (20) is very fast, an estimator mALNW(q, x) of m(q, x) can be derived as

follows. We first calculate the estimated expectile-orders qALNW(y, x) on a very fine grid of

y values. Then, for a given value q and a fixed value of the covariate x, mALNW(q, x) is

obtained by linear interpolation.

3. A Simulation Study

3.1. Description

In this section we investigate the finite sample performance of the five estimators of the

expectile regression functions that were defined in the previous section, as well as their

corresponding estimators of the expectile-orders of the sample values. Data values for

S ¼ 500 samples, each of size n ¼ 200, were simulated, with the covariate X defined as
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the sum of two independent variables uniformly distributed on [0, 2.5] and the value of Y

given X ¼ x drawn from a Gaussian distribution with mean m(x) ¼ 20 þ (0.8x 2 2)3 and

standard deviation 2.5. With this definition, the corresponding conditional q-expectile of Y

at X ¼ x is m(q, x) ¼ m(x) þ 2.5 eq, where eq is the q-expectile of a standard Gaussian

distribution. All kernel-based estimators used the Epanechnikov kernel. We chose three

bandwidths (one for each of the estimators mLC, mLL and qALNW) using three separate cross

validation exercises. Since the choice of bandwidth precedes monotonization, the

estimators mMPM and mIRM used the same bandwidth as mLL. Bandwidth choice for the

estimators mLC and mLL was based on extending the classical least squares cross-validation

technique to the case of expectiles, with the selected bandwidth minimizing

Xn
i¼1

rqðYi 2 mEST ;2iðq;XiÞÞ

on a grid of 20 regularly spaced bandwidth values in [0.8, 5] (the length of this interval

roughly corresponds to the range of the covariate). Here EST denotes the type of smoother

used (LC or LL) and mEST,2i is calculated using the data set {(yj, xj), j – i}.

A cross-validation criterion was also used to determine the bandwidth for the direct

estimator of expectile-order. For a given observation (yi, xi), we define the random

variables

Y1i ¼ jY 2 yijIðY # yiÞ and Y2i ¼ jY 2 yij

Let ðY1ij;XjÞ
n
j¼1 and ðY2ij;XjÞ

n
j¼1 be the observed sample data. Let m1i(x) ¼ E(Y1ijX ¼ x)

and m2i(x) ¼ E(Y2ijX ¼ x). The true expectile-order of the observation (yi, xi) is then

qðyi; xiÞ ¼
m1iðxiÞ
m2iðxiÞ

and the estimator qANLW(yi, xi) is m̂1iðxiÞ
m̂2iðxiÞ

where m̂kiðxiÞ; k ¼ 1; 2; is the

weighted Nadaraya-Watson estimator of the conditional mean mki(xi). Optimal

bandwidths for the m̂kiðxiÞ; k ¼ 1; 2; i ¼ 1; : : : ; n are then obtained by minimizing

Xn
i¼1

Xn
j¼1

ðYkij 2 m̂ki;2jðxiÞÞ
2; k ¼ 1; 2 ð22Þ

where m̂ki;2j; k ¼ 1; 2; is calculated using the data set {(yl, xl), l – j}. A Taylor expansion

of qALNW in the neighborhood of (m1i(xi), m2i(xi)) leads to the approximation

qALNW ðyi; xiÞ .
m1iðxiÞ

m2iðxiÞ
þ aiðm̂1iðxiÞ þ bim̂2iðxiÞÞ

with ai ¼
1

m2iðxiÞ
and bi ¼ 2 m1iðxiÞ

m2iðxiÞ
: The same bandwidth is then used in both numerator and

denominator of qALNW, and is chosen so that

Xn
i¼1

Xn
j¼1

{ðY1ij 2 m̂1i;2jðxiÞÞ þ biðY2ij 2 m̂2i;2jðxiÞÞ}
2

is minimized. The coefficients bi in this expression are estimated using the component

specific optimal bandwidths determined by minimizing (22).

The estimators mLC(q, x), mLL(q, x), mMPM(q, x), mIRM(q, x) and mALNW(q, x) of the

conditional expectile function were then computed for a set of M ¼ 49 regularly spaced

values {x1; : : : ; xM} of x in [0.1, 4.9] and for a grid of L ¼ 9 values of q, corresponding to
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Q ¼ {.01, .05, .1, .2, .5, .8, .9, .95, .99}. Since we know the true conditional expectile

function, the mean squared error (MSE) of each estimator mEST(q, x) of m(q, x) can be

evaluated as

MSEðmEST ; q; xÞ ¼
1

S

XS
s¼1

ðmESTs
ðq; xÞ2 mðq; xÞÞ2

where mESTs
denotes the estimator of m for the sth sample. We also compute the mean

averaged squared error (MASE) defined by

MASEðmEST ; qÞ ¼
1

SM

XS
s¼1

XM
m¼1

ðmESTs
ðq; xmÞ2 mðq; xmÞÞ

2

For EST in the set {LC, MPM, IRM, LR, ALNW}, the performance of an estimator

qEST ðy; xÞ of the expectile-order of a data value (y, x), based on corresponding estimated

conditional expectile functions at each value q in the grid Q, is then evaluated by

calculating its mean absolute deviation error (MADE) for each sample s (see Hall et al.

1999):

MADEðqESTs
Þ ¼

1

LM

XL
l¼1

XM
m¼1

jqESTs
ðylm; xmÞ2 qlj; s ¼ 1; : : : ; S

where ylm satisfies m(ql, xm) ¼ ylm

3.2. Results

3.2.1. Estimators of conditional expectile functions

Table 1 shows the values of MASE for q in Q. Notice that the estimator mLL performs

better than the estimator mLC and that monotonization leads to an improvement in MASE.

The monotonized estimators mMPM and mIRM have similar performances, with mMPM

performing better for extreme values of q and mIRM performing better for values of q close

to q ¼ 0:5: The estimator mALNW performs best for extreme values of q, but is inefficient

for intermediate values.

Table 1. Values of MASE for estimators of conditional

expectiles at the values of q in Q

q mLL mMPM mIRM mLC mALNW

.01 1.8239 1.7425 1.7781 2.6970 0.8712

.05 1.2641 1.1527 1.1787 1.9860 0.9757

.1 .84825 .82594 .82987 1.3145 0.9313

.2 .71979 .71043 .69274 1.1940 0.8718

.5 .61578 .61578 .59281 1.1305 0.8718

.8 .71693 .71042 .69471 1.1924 0.8917

.9 .88439 .85448 .84264 1.3061 0.9562

.95 1.2637 1.1829 1.1906 2.0011 1.0164

.99 1.8681 1.8054 1.8239 2.7129 0.9126

Aragon et al.: Conditional Ordering Using Nonparametric Expectiles 625



3.2.2. Estimators of expectile-orders

Boxplots of MADE for the five estimators qMPM, qIRM, qLC, qLR and qALNW of expectile-

orders are shown in Figure 1. As with estimation of conditional expectiles, the estimators

qMPM and qIRM based on local linear regression perform better than the estimator qLC based

on locally constant regression and the direct estimator qALNW. The median MADE value

for the estimator qLR is only marginally higher than the median MADE values for qMPM

and qIRM. However, its variability is larger. On the basis of these rather limited simulation

results, it appears that the expectile-order estimators qMPM and qIRM based on monotonized

expectile fits may be preferable.

4. An Application

4.1. The data set

We focus on a data set that contains measurements on 2,801 physicians in the Midi-

Pyrénées region of France during 1999, including most of the general practitioners in this

region. The study variable, denoted Y, measures the drug prescribing activity of a

physician, and is defined as the logarithm of the ratio of the value of drug prescriptions

issued by the physician over the year divided by the number of “acts” carried out by the

physician over the same period. An act may be a house call or a consultation. In addition to

this variable, the data set contains a number of indicators of a physician’s practice and

activity characteristics as well as the physician’s age and gender. These variables are

denoted X1; : : : ;X15 and are listed in Table 2. Each physician works in a canton (a small

county). For each canton we also have demographic statistics and other characteristics,

e.g., level of education and level of unemployment. These variables are denoted

Z1; : : : ; Z11 and are listed in Table 3. We do not have direct measures of the health status

of the patients for whom the prescriptions are issued. Two levels of explanatory variables

are thus available – physician level and canton level. We use these data to quantify the
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Fig. 1. Boxplots of the MADE values of the estimated conditional expectile-orders generated by the five

methods for S ¼ 500 samples. The corresponding means are 0.0545, 0.0544, 0.0575, 0.0708 and 0.0624
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prescribing performance of a physician. In particular we calculate each physician’s

expectile-order based on the physician’s value of drug prescription per act, given his or her

characteristics, including practice characteristics. Our aim is to investigate the extent to

which variation in these expectile-orders can be “explained” using the canton-level

variables defined in Table 3.

4.2. Dimension reduction

Nonparametric regression can become unstable if there are many covariates. Since the

ordering methodology described here depends on a predictive, rather than interpretative,

regression model, it is advisable to reduce the dimension of the covariate space by taking

into account the dependence between the covariates and the response variable. This can be

done through a Sliced Inverse Regression (SIR) analitical (Li 1991, and Cook 1994, 1996).

This method is a fast exploratory analitical tool producing a small number of synthetic

indices (linear combinations of the covariates). Nonparametric regression modelling then

Table 2. Physician and practice variables

Y Logarithm of the value of prescriptions per act

X1 Physician seniority (years)
X2 Total practice size
X3 % of practice less than 16
X4 % of practice from 60 to 69
X5 % of practice more than 70
X6 % of practice who do not pay medical fees
X7 % of practice who are farm employed
X8 % of practice who are self employed
X9 Number of consultations and house calls
X10 Proportion of house calls
X11 Number of consultations per patient
X12 Number of house calls per patient
X13 Average fee per patient
X14 Age of physician
X15 Gender of physician

Table 3. Canton variables

Z1 Mean income per capita (1996)
Z2 Density of population
Z3 % of population less than 15
Z4 % of population from 60 to 69
Z5 % of population more than 70
Z6 Number of deaths per 1,000 inhabitants
Z7 Number of births per 1,000 inhabitants
Z8 Retirement rate (in %)
Z9 Unemployment rate (in %)
Z10 Employment rate (in %)
Z11 Number of physicians per 1,000 inhabitants
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proceeds using these indices as covariates. A SIR of the response variable based on the

physician and practice variables in Table 2 gives six major eigenvalues (see Table 4).

These eigenvalues fall sharply after the second eigenvalue. Consequently we use the

first two SIR indices as covariates in the nonparametric regression fit to the expectiles of

the value of drug prescription per act. These indices are denoted EDR1 and EDR2 in what

follows. Table 5 shows the correlations between these two indices and the variables

Y;X1; : : : ;X15 used in the SIR. The dependent variable appears first.

It can be seen that both indices are highly associated with the proportion of house calls

and the number of house calls per patient. EDR1 is also highly associated with the level of

activity of the physician, the percentage of old persons in the practice and the average fee

per patient. In contrast EDR2 is highly associated with the percentage of young people in

the practice and the percentage of people in the practice aged from 60 to 69.

In an effort to improve the estimation of these expectiles and of the consequent

expectile-orders, we also investigated bringing the canton variables in Table 3 into the

regression model. Here we performed a SIR of the amount of drug prescription per act on

the combined set of variables X1; : : : ;X15; Z1; : : : ; Z11; with values of the variables

Z1; : : : ; Z11 replicated for each physician in a canton. From an inspection of the resulting

eigenvalues we again decided to retain two indices. Both were highly correlated with the

corresponding indices identified from the first SIR (correlations of .984 and .959

respectively). Consequently, the introduction of canton-level effects did not lead to any

real change in the SIR indices, and so we proceeded to estimate the expectile-orders of the

Table 4. Eigenvalues of SIR

0.3206 0.1841 0.0330 0.0203 0.0134 0.0107

Table 5. Correlations between SIR indices and physician and practice

variables

Variable EDR1 EDR2

Y 0.542 20.015
X1 0.203 0.000
X2 0.409 0.015
X3 0.040 0.676
X4 0.311 20.709
X5 0.567 20.429
X6 0.348 20.140
X7 0.280 20.061
X8 20.099 20.118
X9 0.569 0.271
X10 0.636 0.163
X11 20.075 0.360
X12 0.582 0.309
X13 20.066 0.029
X14 0.078 20.124
X15 20.251 20.060
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physicians in our data set conditioning only on the SIR indices EDR1 and EDR2 based on

Y and X1; : : : ;X15:

4.3. Measuring the quality of an expectile fit

In standard linear regression, the adjusted coefficient of determination is used to measure

the quality of the regression fit, with a low value of this coefficient indicating low

explanatory power or the presence of misspecification. To avoid misspecification issues,

we use local regression techniques to estimate conditional expectiles. Replacing the

“square” function by the loss function rq defined by (10), we adapted the adjusted

coefficient of determination to the case of local expectile regression, leading to the

coefficient

R2
q ¼ 1 2

Pn
i¼1 rqðyi 2 mEST ðq; xiÞÞ=ðn2 n ðqÞÞPn

i¼1 rqðyi 2 m̂ðqÞÞ=ðn2 1Þ

Here m̂ðqÞ denotes the unconditional empirical q-expectile of Y, that is the value of u that

minimizes
Pn

i¼1 rqðyi 2 uÞ; and EST belongs to {LL, LC}. The local regression estimator

mEST(q, x) is linear in y, and so for each x can be written mEST ðq; xÞ ¼
Pn

i¼1 liðq; xÞyi
(see Loader 1999). As in linear regression, the constant n(q) is therefore defined as the

trace of the matrix LðqÞ ¼ ½ljðq; xiÞ�
j¼1; : : : n
i¼1; : : : n.

By definition R2
q is a global measure of the quality of the local expectile regression of

order q. As with the usual coefficient of determination, a low value of R2
q indicates low

dependence of Y on X, so that the conditional distribution of Y is not well described by

X. In such a situation the resulting expectile-order estimates will not be reliable. Notice

that R2
q can also be used as a model-selection tool.

4.4. Expectile modelling of the physician and practice variables

We estimated the expectile-orders of the physicians using the estimator qMPM described in

Section 2, with an interpolation grid Q ¼ {.01, .1, .2, .5, .8, .9, .99}. As in the simulations,

we used a locally linear smoother with a bivariate Epanechnikov kernel; we set the

bandwidths to 20% of the range of each SIR index. Figure 2 is the histogram of

the resulting estimated expectile-orders. Physicians with estimated expectile-orders in the

tails of this distribution can be considered to have displayed extreme prescribing

behaviour (in both a negative and a positive sense) relative to physicians with similar

characteristics in the Midi-Pyrénées region in 1999. Note that the “high cost” physicians

are more numerous than the “low cost” physicians. This can be contrasted with quantile

orders, which are necessarily uniformly distributed.

A question of some interest is the extent to which the variation in expectile-orders of

individual physicians can be explained by canton-level effects. The presence of such

effects in these estimated expectile-orders can be seen in Figure 3. This shows the box-

plots of estimated expectile-orders for the twelve larger cantons. Note that the median of

these orders varies significantly between cantons. Thus, for the canton of Rodez, a rich

rural canton, the median is close to 0.8, whereas for the canton of Auch it is just above 0.4.

For the canton of Toulouse, the main city of the Midi-Pyrénées region, the median is near
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0.6. An analysis of variance of the logit of the expectile-orders with respect to the canton

variable indicates that the average value of the estimated expectile-order varies

significantly between cantons ð p ¼ 0:030Þ.

Finally, in Table 6 we show the values of the R2
q coefficient for different values of q

and two sets of explanatory variables: the first where the nonparametric regression

fit is carried out using only the first SIR index EDR1 and the second one where this fit

is based on both EDR1 and EDR2. Notice that taking EDR2 into account improves the fit

at each value of q. Notice also that R2
q is a decreasing function of q in Table 6. Justification
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Fig. 3. Boxplots of the estimated conditional expectile-orders for the 12 larger cantons
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for this behaviour can be seen in Figure 4. This shows that, conditionally on EDR1, small

values of Y (corresponding to small expectile-orders) are more sensitive to variation in

EDR1 than large ones.

The conditional expectile-orders of physicians in the Midi-Pyrénées region were also

estimated directly using qALNW. Computation of this estimator is extremely fast (typically

1,000 times quicker than for the estimator qMPM). A scatterplot of qALNW versus qMPM

Table 6. Values of adjusted Rq
2 coefficient for one and two SIR indices and for different values of q

q .01 .1 .2 .5 .8 .9 .99

EDR1 0.58757 0.48200 0.42672 0.31870 0.21071 0.15333 0.04549
EDR1
and EDR2

0.68036 0.54896 0.48168 0.35914 0.26604 0.23798 0.22776
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Fig. 4. Plot of Y vs. EDR1
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(see Figure 5) shows that these estimators coincide for most physicians in the data set, with

a correlation of 0.99. Note that direct estimation of the expectile-order is appropriate when

comparison of sample individuals is of primary interest. On the other hand, estimators of

the expectiles curves may be useful when a global description of the conditional

distribution is required.

5. Discussion

We introduce the concept of the expectile-order of an observation and show how it can be

estimated via nonparametric expectile regression. We also demonstrate its application in

the context of an analysis of the prescribing behaviour of a population of physicians. In

particular, we show how the relationship between these expectile-orders and contextual

variables (e.g., cantonal affiliation) can be easily tested. In this context our approach can

be seen as offering a nonparametric alternative to more standard multilevel parametric

modelling of data with group structure. Finally, we note that all the ideas presented here

can be generalized to standard quantiles, and more generally to M-quantiles (Breckling

and Chambers 1988). Such generalizations offer the promise of orderings that are robust to

outlying values in Y (since they are based on bounded influence functions). However, they

also lack the interpretability of expectile-ordering, in the sense that they do not rank on the

basis of expected loss.
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