Image analysis of a pulsating vapour bubble

Steven Brian Harvey

University of Wollongong, sharvey@uow.edu.au

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
IMAGE ANALYSIS
OF A
PULSATING VAPOUR BUBBLE

A thesis submitted in fulfilment of the requirements for the award of the degree

HONOURS MASTER OF ENGINEERING

from

UNIVERSITY OF WOLLONGONG

by

Steven Brian Harvey BE(Hons)

DEPARTMENT OF MECHANICAL ENGINEERING
1993
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 EXPERIMENT</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Review of experimental developments</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Experimental technique</td>
<td>7</td>
</tr>
<tr>
<td>3 MATHEMATICAL THEORY OF BUBBLE DYNAMICS</td>
<td>12</td>
</tr>
<tr>
<td>3.1 History of theoretical developments</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Description of the flow field</td>
<td>14</td>
</tr>
<tr>
<td>3.3 The boundary integral method</td>
<td>15</td>
</tr>
<tr>
<td>4 COMPUTATIONAL TECHNIQUES</td>
<td>17</td>
</tr>
<tr>
<td>4.1 Experimental data preprocessing</td>
<td>17</td>
</tr>
<tr>
<td>4.2 Spherical bubble method</td>
<td>23</td>
</tr>
<tr>
<td>4.3 Nodal displacement method</td>
<td>25</td>
</tr>
<tr>
<td>4.3.1 Surface representation</td>
<td>26</td>
</tr>
</tbody>
</table>
4.3.2 Technique for computing nodal $\partial \phi / \partial n$ 32
4.3.3 Finding ϕ by the boundary integral method 36
4.3.4 Technique for computing the nodal pressures 38
4.3.5 Computing the volume and kinetic energy 44

5 VALIDATION

5.1 Spherical bubble method .. 48
5.2 Nodal displacement method 53

6 RESULTS AND DISCUSSION

6.1 Film RB3 ... 70
6.2 Film RBS30 ... 88
6.3 Film RBS31 ... 99

7 CONCLUSIONS AND RECOMMENDATIONS 109

REFERENCES 112

A IMAGE ANALYSIS OF CINÉ FILM RECORDS 115
B DATA PREPROCESSING PROGRAM 118
C PRESSURE EXTRACTION PROGRAM 127
D GRAPHIC DISPLAY PROGRAM 201
ABSTRACT

A technique is presented that enables flow quantities such as the pressure, surface velocity potential and normal surface velocity of a single vapour bubble evolving near a rigid boundary to be determined unobtrusively from its shape history. To achieve this, high-speed ciné film images of the bubble's motion are digitally analysed and the normal surface velocity determined. Application of the boundary integral method enables the potential field, and by use of the Bernoulli equation the pressure field, to be recreated.

An alternative method based on spherical motion of the bubble surface is included for comparison. The fluid is assumed ideal and the flow irrotational. Axisymmetry in the flow field and bubble shape is also assumed.

The relevance of this work lies in its application to the problem of hydraulic cavitation, where vapour bubble collapse and rebound near a solid boundary occur. This is believed to be responsible for the erosion and pitting of hydraulic equipment such as valves, dam spillways and marine propellers. A number of damage mechanisms are believed to exist and these have been numerically modelled in the past. Hence there is a need to correlate these results with experimental data.

Due to the extremely short pulsation period of a bubble (typically 20 msec) quantitative measurements are difficult to make. To this end, high-speed cinématography has been shown to be a useful unobtrusive measurement technique.
ACKNOWLEDGEMENTS

The utilisation of both experimental and theoretical techniques in order to yield useful results has never been an easy task. Any such achievements in this work would not have taken place without the valuable input of others.

So I am deeply indebted to my supervisor Dr Wee-King Soh for his guidance, comments and encouragement during the course of this project. Thanks also are due to Dr Ching-Fu Yu for his efforts in producing some of the best ciné film footage ever seen in this field of engineering.

For his assistance in the mathematical aspects of this work and constant patience I wish to thank Dr John Best of the Defence Science and Technology Organisation, Melbourne, who has clarified many of the concepts and ideas. Many thanks to Mr Darren Weise, also at the DSTO, for his work in the digital image analysis of the photographic images.

To my wife Gretel, I express my heartfelt appreciation for her understanding and forebearance throughout this project, and her interest in what at times seemed to be an abstract concept. Finally, I thank my parents for their encouragement over the past two years.

The financial support provided by a University of Wollongong Postgraduate Research Award is gratefully acknowledged.
DEDICATION

To the advancement of engineering as a tool for the benefit of mankind.
LIST OF FIGURES

2.1 Schematic diagram of experimental apparatus 7
2.2 Bubble tank experimental parameters 8
2.3 Bubble tank ... 9
2.4 High speed ciné camera and lens 10
3.1 The flow field (Best, 1991a) .. 15
4.1 Experimental ciné film records, film RB3, $\gamma = 2.041$, $\delta = 0.270$. 18
4.2 Raw data notation after initial digitisation 19
4.3 Typical raw coordinate data file 20
4.4 Processed data notation .. 21
4.5 Typical processed coordinate data file 22
4.6 Flow chart for spherical bubble method 25
4.7 Linear element representation of the bubble surface 27
4.8 Orientation of linear elements 28
4.9 Normal and tangential unit vectors at the nodes 29
4.10 Cubic spline representation of the bubble surface 30
4.11 Normal and tangential unit vectors 31
4.12 Notation used for computing nodal $\partial \phi / \partial n$ 32
4.13 Notation for backward normal displacements 34
4.14 Notation for forward normal displacements 35
4.15 Flow chart for nodal displacement method 39
4.16 Trajectory calculation .. 40
4.17 Forward trajectory of the node P 41
4.18 Backward trajectory of the node P 43
5.1 Theoretical evolution of a vapour bubble 47
5.2 Theor. p_{th} and comp. p_b pressures ($\delta t = 0.025$, 19 nodes) ... 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Rel. error in computed pressure p_b ($\delta t = 0.025$, 19 nodes)</td>
<td>49</td>
</tr>
<tr>
<td>5.4</td>
<td>Abs. error in computed pressure p_b ($\delta t = 0.025$, 19 nodes)</td>
<td>50</td>
</tr>
<tr>
<td>5.5</td>
<td>Theor. p_{th} and comp. p_b pressures ($\delta t = 0.025$, 37 nodes)</td>
<td>51</td>
</tr>
<tr>
<td>5.6</td>
<td>Abs. error in computed pressure p_b ($\delta t = 0.025$, 37 nodes)</td>
<td>51</td>
</tr>
<tr>
<td>5.7</td>
<td>Abs. error in computed pressure p_b ($\delta t = 0.0125$, 37 nodes)</td>
<td>52</td>
</tr>
<tr>
<td>5.8</td>
<td>Theoretical $\partial \phi / \partial n$ ($\delta t = 0.025$, 19 nodes)</td>
<td>54</td>
</tr>
<tr>
<td>5.9</td>
<td>Computed $\partial \phi / \partial n$ ($\delta t = 0.025$, 19 nodes)</td>
<td>54</td>
</tr>
<tr>
<td>5.10</td>
<td>Relative error in computed $\partial \phi / \partial n$ ($\delta t = 0.025$, 19 nodes)</td>
<td>55</td>
</tr>
<tr>
<td>5.11</td>
<td>Absolute error in computed $\partial \phi / \partial n$ ($\delta t = 0.025$, 19 nodes)</td>
<td>55</td>
</tr>
<tr>
<td>5.12</td>
<td>Absolute error in computed $\partial \phi / \partial n$ ($\delta t = 0.025$, 37 nodes)</td>
<td>56</td>
</tr>
<tr>
<td>5.13</td>
<td>Absolute error in computed $\partial \phi / \partial n$ ($\delta t = 0.0125$, 37 nodes)</td>
<td>57</td>
</tr>
<tr>
<td>5.14</td>
<td>Theoretical ϕ ($\delta t = 0.025$, 19 nodes)</td>
<td>59</td>
</tr>
<tr>
<td>5.15</td>
<td>Computed ϕ ($\delta t = 0.025$, 19 nodes)</td>
<td>59</td>
</tr>
<tr>
<td>5.16</td>
<td>Relative error in computed ϕ ($\delta t = 0.025$, 19 nodes)</td>
<td>60</td>
</tr>
<tr>
<td>5.17</td>
<td>Absolute error in computed ϕ ($\delta t = 0.025$, 19 nodes)</td>
<td>60</td>
</tr>
<tr>
<td>5.18</td>
<td>Absolute error in computed ϕ ($\delta t = 0.025$, 37 nodes)</td>
<td>61</td>
</tr>
<tr>
<td>5.19</td>
<td>Absolute error in computed ϕ ($\delta t = 0.0125$, 37 nodes)</td>
<td>61</td>
</tr>
<tr>
<td>5.20</td>
<td>Theoretical pressure p_{th} ($\delta t = 0.025$, 19 nodes)</td>
<td>63</td>
</tr>
<tr>
<td>5.21</td>
<td>Computed pressure p_c ($\delta t = 0.025$, 19 nodes)</td>
<td>63</td>
</tr>
<tr>
<td>5.22</td>
<td>Abs. error in computed pressure p_c ($\delta t = 0.025$, 19 nodes)</td>
<td>64</td>
</tr>
<tr>
<td>5.23</td>
<td>Rel. error in computed pressure p_c ($\delta t = 0.025$, 19 nodes)</td>
<td>65</td>
</tr>
<tr>
<td>5.24</td>
<td>Abs. error in computed pressure p_c ($\delta t = 0.025$, 37 nodes)</td>
<td>65</td>
</tr>
<tr>
<td>5.25</td>
<td>Abs. error in computed pressure p_c ($\delta t = 0.0125$, 37 nodes)</td>
<td>66</td>
</tr>
<tr>
<td>5.26</td>
<td>Max. nodal abs. errors in computed pressure p_c</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Sequence of raw images from film RB3</td>
<td>71</td>
</tr>
<tr>
<td>6.2</td>
<td>Shape history, complete evolution, film RB3</td>
<td>72</td>
</tr>
<tr>
<td>6.3</td>
<td>Volume V vs time, complete evolution, film RB3</td>
<td>72</td>
</tr>
<tr>
<td>6.4</td>
<td>Radius R vs time, complete evolution, film RB3</td>
<td>73</td>
</tr>
<tr>
<td>6.5</td>
<td>Shape history, first pulsation, film RB3</td>
<td>74</td>
</tr>
<tr>
<td>6.6</td>
<td>Kinetic energy E_k vs time, complete evolution, film RB3</td>
<td>75</td>
</tr>
<tr>
<td>6.7</td>
<td>Radius R vs time, first pulsation, film RB3</td>
<td>77</td>
</tr>
<tr>
<td>6.8</td>
<td>Radial velocity \dot{R} vs time, first pulsation, film RB3</td>
<td>77</td>
</tr>
<tr>
<td>6.9</td>
<td>Radial acceleration \ddot{R} vs time, first pulsation, film RB3</td>
<td>78</td>
</tr>
</tbody>
</table>
6.10 Theor. p_{th} and comp. p_h pressures, first pulsation, film RB3 . . 79
6.11 1st growth phase as a polytropic process, film RB3 81
6.12 1st collapse phase as a polytropic process, film RB3 81
6.13 $\partial \phi/\partial n$ vs time, complete evolution, film RB3 82
6.14 $\partial \phi/\partial n$ vs time, 1st pulsation, film RB3 83
6.15 Potential ϕ vs time, 1st pulsation, film RB3 84
6.16 $D\phi/Dt$ vs time, 1st pulsation, film RB3 85
6.17 Computed pressure p_c, 1st pulsation, film RB3 85
6.18 Theoretical pressure p_{th}, 1st pulsation, film RB3 87
6.19 Shape history, first pulsation, film RBS30 89
6.20 Volume V vs time, first pulsation, film RBS30 90
6.21 Kinetic energy E_k vs time, first pulsation, film RBS30 90
6.22 Radius R vs time, first pulsation, film RBS30 92
6.23 Radial velocity \dot{R} vs time, first pulsation, film RBS30 92
6.24 Radial acceleration \ddot{R} vs time, first pulsation, film RBS30 93
6.25 Theor. p_{th} and comp. p_h pressures, first pulsation, film RBS30 93
6.26 1st growth phase as a polytropic process, film RBS30 95
6.27 1st collapse phase as a polytropic process, film RBS30 95
6.28 $\partial \phi/\partial n$ vs time, 1st pulsation, film RBS30 96
6.29 Potential ϕ vs time, 1st pulsation, film RBS30 96
6.30 $D\phi/Dt$ vs time, 1st pulsation, film RBS30 98
6.31 Computed pressure p_c, 1st pulsation, film RBS30 98
6.32 Shape history, first pulsation, film RBS31 100
6.33 Volume V vs time, first pulsation, film RBS31 101
6.34 Kinetic energy E_k vs time, first pulsation, film RBS31 101
6.35 Radius R vs time, first pulsation, film RBS31 103
6.36 Radial velocity \dot{R} vs time, first pulsation, film RBS31 103
6.37 Radial acceleration \ddot{R} vs time, first pulsation, film RBS31 104
6.38 Theor. p_{th} and comp. p_h pressures, first pulsation, film RBS31 104
6.39 1st growth phase as a polytropic process, film RBS31 106
6.40 1st collapse phase as a polytropic process, film RBS31 106
6.41 $\partial \phi/\partial n$ vs time, 1st pulsation, film RBS31 107
6.42 Potential ϕ vs time, 1st pulsation, film RBS31 107
6.43 $D\phi/Dt$ vs time, 1st pulsation, film RBS31 108
6.44 Computed pressure p_c, 1st pulsation, film RBS31 108
LIST OF TABLES

6.1 Experimental parameters and errors for film RB3 70
6.2 Nondimensional scaling factors for film RB3 75
6.3 Experimental parameters and errors for film RBS30 88
6.4 Nondimensional scaling factors for film RBS30 91
6.5 Experimental parameters and errors for film RBS31 99
6.6 Nondimensional scaling factors for film RBS31 102
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>collocation variable</td>
</tr>
<tr>
<td>a</td>
<td>vector</td>
</tr>
<tr>
<td>b</td>
<td>collocation variable</td>
</tr>
<tr>
<td>c</td>
<td>collocation variable</td>
</tr>
<tr>
<td>C_d</td>
<td>discharge capacitance</td>
</tr>
<tr>
<td>d</td>
<td>length, collocation variable</td>
</tr>
<tr>
<td>e_x</td>
<td>Cartesian unit vector - x</td>
</tr>
<tr>
<td>e_y</td>
<td>Cartesian unit vector - y</td>
</tr>
<tr>
<td>e_z</td>
<td>Cartesian unit vector - z</td>
</tr>
<tr>
<td>E</td>
<td>error</td>
</tr>
<tr>
<td>E_k</td>
<td>kinetic energy of bubble</td>
</tr>
<tr>
<td>E_{spark}</td>
<td>available spark energy</td>
</tr>
<tr>
<td>g</td>
<td>magnitude of gravitational acceleration, function</td>
</tr>
<tr>
<td>g</td>
<td>gravitational acceleration vector</td>
</tr>
<tr>
<td>G</td>
<td>Green’s function</td>
</tr>
<tr>
<td>h_r</td>
<td>distance from inception point to rigid boundary</td>
</tr>
<tr>
<td>H</td>
<td>depth of inception point</td>
</tr>
<tr>
<td>i</td>
<td>processed surface counter, collocation counter</td>
</tr>
<tr>
<td>j</td>
<td>node counter</td>
</tr>
<tr>
<td>J</td>
<td>collocation counter</td>
</tr>
<tr>
<td>k</td>
<td>ratio of specific heats, collocation counter</td>
</tr>
<tr>
<td>$npts$</td>
<td>no. raw data nodes</td>
</tr>
<tr>
<td>n</td>
<td>no. processed nodes-1, vector component, polytropic index</td>
</tr>
<tr>
<td>n</td>
<td>normal unit vector</td>
</tr>
<tr>
<td>p</td>
<td>collocation variable</td>
</tr>
</tbody>
</table>
p point lying in the flow domain Ω
p_a ambient free surface pressure
p_b computed pressure inside bubble (uniform)
p_c computed nodal surface pressure
p_{th} theoretical pressure (adiabatic process)
p_v vapour pressure of the fluid
p_∞ hydrostatic pressure at inception point
q point lying on the bubble surface S
r cylindrical coordinate
$r_{A,\ldots,D}$ spline coefficients
r flow field geometry
R mean bubble radius
\dot{R} mean bubble surface radial velocity
\ddot{R} mean bubble surface radial acceleration
R_m maximum bubble radius
s distance between nodes
S bubble surface
t time, vector component, cumulative distance along surface
t tangential unit vector
δt timestep
T_w water temperature
u fluid velocity
V bubble volume
V_d discharge voltage
x Cartesian coordinate
y Cartesian coordinate
z Cartesian coordinate, cylindrical coordinate
$z_{A,\ldots,D}$ spline coefficients
δ buoyancy parameter, normal displacement
ϵ expansion parameter
γ standoff parameter
μ function value at bubble centroid
ρ density of surrounding fluid
ϕ velocity potential, function
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ</td>
<td>normal velocity function</td>
</tr>
<tr>
<td>Ω</td>
<td>flow domain</td>
</tr>
<tr>
<td>$\partial \Omega$</td>
<td>flow domain boundary</td>
</tr>
<tr>
<td>Σ</td>
<td>other surfaces bounding Ω</td>
</tr>
<tr>
<td>θ</td>
<td>azimuthal angle, orientation of linear elements</td>
</tr>
<tr>
<td>ξ</td>
<td>linear parameter, arclength</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

The growth and collapse of vapour bubbles in a fluid is a physical phenomenon known as hydraulic cavitation. It is directly responsible for permanent damage to mechanical hydrodynamic elements such as marine propellers, dam spillways and valves. In an engineering sense, this process is one of the few remaining practical problems to be solved.

Cavitation damage by pitting and erosion is thought to be caused by the high pressures induced upon the surface of a rigid boundary when impacted upon by the high-speed fluid jet\(^1\) created during the collapse of a nearby vapour bubble. This thesis makes no comment on the validity of such an hypothesis. Rather, it aims to develop a technique whereby the flow field around an underwater vapour bubble can be reconstructed from experimental photographic data alone.

As with any physical process, the study, analysis and simulation of cavitation is vital to its understanding. Much work has been undertaken to date in the mathematical modelling of the evolution of a single vapour bubble. This approach has its merits, these mainly being the ability of the observer to examine the dynamics of the bubble at a much slower speed and in the absence of experimental noise.

However, in order to assess the validity of computed results there is also a need to reconcile them with experimental results. A convenient source of experimental data is the spark discharge tank, capable of producing a single isolated pulsating vapour bubble near a rigid boundary. Such a device

\(^1\)The high-speed fluid jet is believed to play a major role in the process of hydraulic cavitation. Tip speeds of up to 120 m/sec (Lauterborn and Bolle, 1975) have been measured.
is employed in this work. Detailed examination of isolated vapour bubbles yields many measurable flow quantities such as centroidal movement, bubble volume, fluid jet speed and normal surface velocity.

Due to the extremely short pulsation period of a bubble (typically 20 msec), measurements must be taken at high speed. An important requirement of any measuring technique is that its sensors do not in any way perturb the quantity being measured. One technique that fulfils this criteria is high-speed cinemotography and subsequent digital image analysis which, in addition, has the advantage of enabling the recorded data to be readily visualised.

To this end, two computational techniques have been developed that analyse the shape history of a bubble as recorded in digitised photographic images. The first is based on the assumption that the bubble evolves in a spherical manner. This is a fair assumption considering that the first pulsation shape histories of typical bubbles are indeed quite spherical. By utilising the radial data derived from such histories the assumed uniform pressure inside the bubble can be estimated.

A more detailed approach is used in the second technique whereby the normal surface velocity of evenly spaced nodes on the bubble's surface is measured from its shape history. The boundary integral method has been implemented numerically to determine the potential field of the experimental bubble from these measurements. Subsequent application of the Bernoulli equation allows the pressure at any point on the surface of the bubble to be determined.

Furthermore, it has been possible to examine the behaviour of a bubble by considering its evolution as a polytropic thermodynamic process. Indeed good, correlation between theory and experiment has been achieved and this has enabled polytropic indices to be calculated and different processes identified.
Chapter 2

EXPERIMENT

This chapter is concerned with the experimental aspects of this work, the results of which are critical to any subsequent numerical analysis scheme. There are many different areas of vapour bubble analysis that can be examined by experiment, such as the formation of the high-speed fluid jet, centroidal movement of the bubble and measurement of its internal pressure. However, due to the very short lifetime of a bubble's evolution, these quantities must be investigated by specialised measurement techniques.

The majority of past works in this field have relied on high-speed cinemagraphy as an unobtrusive method to obtain physical data. In this respect the present work follows similar lines, but develops more fully the combination of digitised shape histories and the boundary integral method. In this sense it is unique and when fully developed may prove to be a very useful experimental technique.

Before progressing onto its detailed description, it is fitting that a review of relevant past and present experimental works should be undertaken.

2.1 Review of experimental developments

During the past three decades numerous experimental investigations into the dynamics of vapour bubbles have been made. Ellis (1956) pioneered a high-speed photographic technique that enabled him to observe the evolution of cavitation bubbles in an acoustic field. Framing rates of up to 1,000,000 per second were achieved by using a rotating-mirror camera. His aim was to correlate existing theories of bubble dynamics with experimental results. He
succeeded in confirming that in accordance with theory, bubble collapse is inherently much less stable than bubble growth.

Naudé and Ellis (1961) proposed a perfect fluid theory for a nonhemispherical bubble which collapses in contact with a solid boundary. High-speed motion pictures (100,000 frames per second) of spark generated bubbles were used to test the theory experimentally. It was postulated that damage to the solid boundary was due to pressures caused by the cavity wall striking it, and these were measured to be as high as 20 MPa.

Shutler and Mesler (1965) investigated the effect of nearby rigid boundaries on the damage capabilities of spark induced bubbles. The evolutions were recorded on ciné film at 8000 frames per second, with a xenon flash tube providing short exposure times. They determined that a bubble collapsing against a solid boundary can form a liquid jet which impinges upon it, but that the jet has little or no damage capability. Rather they believed pressure pulses were the main cause of boundary damage.

Not satisfied with the quality of these works, Benjamin and Ellis (1966) sought to improve the experimental results in order that the damage capabilities of the high-speed fluid jet near a rigid boundary could be observed and measured. This they did and subsequently proposed the hypothesis that the asymmetric collapse and subsequent liquid jet that was observed to thread the bubble and strike a nearby boundary was a prime cause of cavitation damage. This was contrary to the conclusions of Shutler and Mesler (1965).

Gibson (1968) supported Benjamin and Ellis’s hypothesis by capturing the evolution of a single bubble near a rigid boundary at 10,000 frames per second using a rotating drum camera. He eliminated buoyancy effects from his observations by using a free-fall cavitation tank. The bubble was generated by electric-spark discharge and the high-speed fluid jet was clearly visible.

Plesset and Chapman (1971) numerically reproduced part of the work of Benjamin and Ellis, but raised doubts as to the soundness of purely experimental methods claiming that they ‘... are difficult and give only sketchy results ...’.

Kling and Hammitt (1972) drew similar conclusions to Benjamin and Ellis (1966) as to the damage capability of the high-speed jet. Their experimental
apparatus generated a vapour cavity in a flowing system. High-speed photography at 1,000,000 frames per second was used to observe its subsequent migration and collapse toward a rigid boundary. Internal bubble pressures of up to 455 atmospheres were quoted. They commented however that while spark-generated bubbles are useful in experimental studies, they differ in important ways from cavitation bubbles.

The interaction of an individual vapour bubble with a neighbouring air bubble was investigated by Smith and Mesler (1972) using high-speed photography (35,000 frames per second). A vapour cavity was generated in water by discharging a capacitor across a pair of tungsten electrodes. They concluded that an air bubble located on a solid boundary was able to protect the surface from damage.

Lauterborn and Bolle (1975) used giant pulses of a Q-switched ruby laser to generate vapour cavities in distilled water. High speed photography at 300,000 frames per second followed by computer image analysis was used to determine bubble-wall velocities. They successfully observed the non-spherical collapse of a bubble, its elongation becoming pronounced in the direction normal to a nearby rigid boundary. Realisation of one of Plesset and Chapman's numerical examples was experimentally achieved. The benefits of laser-produced bubbles and computer image-smoothing techniques were also discussed.

An ultrasonic horn was used by Singer and Harvey (1979) to produce collapsing cavitation bubbles near a stationary specimen of plasticine. Damage to the specimen was observed via the use of still photography and attributed to the impingement of high-velocity microjets. Their conclusions were that whilst the spherical pressure wave cannot be discounted, microjets remain the dominant cause of cavitation damage.

Lauterborn (1982) examined the collapse of a laser-produced bubble and detected a bubble vortex ring after jet formation. A holographic technique was used, producing up to 25,000 holograms per second. However the hologram quality was unsatisfactory, and ordinary high-speed ciné film was taken at 20,000 frames per second for comparison. Laser-induced bubble techniques are also discussed by Lauterborn and Vogel (1984), along with other optical methods in fluid mechanics.
Chapter 2. Experiment

A comparison between the behaviour of spark-generated bubbles in distilled water both with and without drag-reducing polymer additives was made by Chahine (1982) using high-speed photography at 10,000 frames per second. He concluded that the additives weaken the influence that nearby solid boundaries have in affecting the departure of spherocity of the bubble surface and hence the microjet.

Laser-produced cavitation bubbles near a stagnation flow region were examined at 1,000,000 frames per second by Ellis and Starrett (1983). Pressure measurements made at a nearby solid boundary reveal that the shape of the bubble can profoundly affect the mechanical impulse its collapse delivers. Impact pressures of the high-speed jet were recorded as high as 1 GPa and jet velocity estimated to be in the order of 5000 m/sec. They comment however that these results only apply to stagnation flow into a rigid boundary.

The mechanism of impulsive pressure generation from a single bubble collapsing in a steady fluid was studied experimentally by Tomita and Shima (1986). High-speed schlieren photography at 500,000 frames per second enabled the shock waves produced from a spark-induced vapour cavity to be captured and subsequently examined. Pressures induced on a nearby solid boundary were measured using transducers and photoelastic methods. It was noted that the transducer results were only qualitative due to non-uniform spatial sensitivity. It was found that the impulsive pressure was closely related to the behaviour of the high-speed jet.

Vogel et. al. (1989) examined the dynamics of laser-generated cavitation bubbles near a solid boundary. Jet and counterjet formation and vortex-ring development were observed and recorded using high-speed photography at up to 1,000,000 frames per second. The fluid velocity field surrounding the bubble was determined with time-resolved particle image velocimetry. Good agreement with numerical results was shown. The pressure inside the bubble during collapse was measured at up to 2.5 kbar using a hydrophone and optical detection technique. Maximum bubble radii were in the order of 3.5 mm.

Yu and Soh (1992) used high-speed photography at 6000 frames per second to visualise a toroidal vortex upon collapse of a spark-induced bubble near a rigid boundary. Gibson's (1968) bubble generation apparatus was
used to produce larger cavities (17mm maximum radii) than possible with laser techniques. This enabled bouyancy effects to be considered, which were believed to be the cause of an observed microjet away from the rigid boundary.

2.2 Experimental technique

This work employs Gibson's (1968) original experimental apparatus, as modified by Yu and Soh (1992). It enables high quality photographic images of the evolution of a single vapour cavity near a rigid boundary to be obtained. Whilst the apparatus was originally intended to be used for gravity-free tests, in this work the tank remained static so that bouyancy effects could be observed. Figure 2.1 depicts the experiment in schematic form.

![Diagram of experimental apparatus](image)

Figure 2.1: Schematic diagram of experimental apparatus

The bubble tank consists of a 260 mm internal-diameter transparent cylinder sealed at both ends. It is formed from 10 mm thick perspex and has an internal depth of 370 mm. Photographic images are obtained through a 25 mm thick flat perspex window in the wall of the tank to reduce optical distortion. A perspex rigid boundary lies at the bottom of the tank, and distilled
water fills the tank to a nominal depth of 250 mm. Two tungsten electrodes are situated above the rigid boundary and the gap between their tips is able to be adjusted as required. Figure 2.2 depicts the experimental parameters used with the bubble tank.

![Figure 2.2: Bubble tank experimental parameters](image)

The maximum bubble radius is denoted by R_m. The depth H of inception is the vertical distance from the free surface to the inception point C, and h_r is the distance from C to the rigid boundary. Both H and h_r can be varied by changing the vertical position of the electrodes. The ambient pressure inside the tank at the free surface is denoted by p_a. Thus the hydrostatic pressure p_∞ at the inception point can be expressed as

$$p_\infty = p_a + \rho g H,$$

(2.1)

where g is the gravitational acceleration and ρ the fluid density. A vacuum pump connected to the top of the tank maintains p_a at the desired value. This is normally kept as low as possible in order to ensure that a bubble of suitable volume, and hence sufficiently long lifetime, is generated. This factor is crucial since the cinématography in this work uses a relatively low framing rate compared to similar works such as that of Vogel et. al. (1989).
A bubble is generated by applying 10,000 V across the tungsten electrodes which causes a high current pulse to pass between them at C. This results in intense local vapourisation of the water between the electrodes, which in turn creates a vapour bubble in the fluid. The electrode gap is maintained at 0.5 mm in order to ensure high quality electrical discharges. A photograph of the tank is given in Figure 2.3.

![Bubble tank](image)

Figure 2.3: Bubble tank

A capacitance of 1 μF is placed across the electrodes, which at 10,000 V, avails approximately 50 J for the vapourisation process. Although Gibson (1972) suggests that only 0.5 to 10 percent of this electrical energy is dissipated in the spark, there is sufficient energy liberated to allow workable experiments to be undertaken.

Dissolved air must be removed from the test water otherwise at low p_∞ small spurious bubbles tend to nucleate on the air particles. These obscure the images of the bubble being photographed by the high-speed camera and hence impede the obtaining of good quality results from the subsequent image analysis. This degassing is achieved by vibrating and evacuating the bubble tank for up to one hour prior to each experiment.

The evolution of the single vapour bubble is captured on Kodak Tri-x
black-and-white reversal film, using a NAC E-10 high-speed ciné camera. A Micro-Nikkor 55 mm f/2.8 telephoto lens focuses the image into the camera’s optical system. The camera and lens combination are shown in Figure 2.4 below.

![High speed ciné camera and lens](image)

The framing rate used is approximately 6000 per second, and a high intensity 2.4 kW ring light provides adequate backlighting. The spark discharge apparatus is synchronised with a signal from the camera, so that when the required framing speed is reached the thyratron is triggered. This in turn discharges the capacitance across the electrodes and forms a vapour bubble.

Film processing is done on site and takes approximately 30 minutes after which the images can be viewed on a standard 16 mm film projector. Post processing in the form of digital image analysis is done off site using an image analyser which generates Cartesian coordinate files of the bubble surface for every alternate frame in the sequence. A detailed description of this process is given in Appendix A.

It is pertinent at this point to briefly describe two important experimental parameters and their use in predicting gross bubble motion. Due to the lower density of the vapour inside the bubble compared to the surrounding fluid,
a buoyancy force, proportional to the volume of the bubble, acts upon it in
the direction opposite to that of the gravity force. Gibson (1967) defines the
parameter \(\delta \) that determines the significance of this buoyancy force as

\[
\delta = (\rho g R_m / \Delta p)^{1/2},
\]

(2.2)

where \(\Delta p = p_\infty - p_v \) and \(p_v \) is vapour pressure of the fluid. In a physical sense, \(\delta \) can be thought of as the ratio of the time taken by the bubble to move \(R_m \) under gravity to the time taken to reach the end of the first expansion. In practice, buoyancy forces are only considered significant if \(R_m \) is greater
than 5 mm.

In addition to buoyancy, a force known as the Bjerknes force will attract
the bubble toward the rigid boundary. The buoyancy force may either oppose
or support this force depending on the orientation of the boundary. If it lies
below the bubble then these forces compete, while the forces will act together
when the boundary is above the bubble. An indication of the influence of the
Bjerknes force may be gained by means of the standoff parameter \(\gamma \) which is
defined by Blake et. al. (1986) as

\[
\gamma = h_r / R_m.
\]

(2.3)

Essentially \(\gamma \) determines the initial location of the bubble, and the Bjerknes
force bears some inverse relationship to it.

The Kelvin impulse (Benjamin & Ellis, 1966) corresponds to the apparent
inertia of the bubble, and is useful in determining aspects of the gross bubble
motion. By utilising the concept of the Kelvin impulse it has been possible
to quantify the combined effects of the buoyancy and Bjerknes forces in the
form of the \(\gamma \delta \) relationship.

For the case of a bubble above a plane rigid boundary, it is postulated
(Best, 1991a) that if \(\gamma \delta > 0.442 \) (corresponding to a positive value of the
Kelvin impulse at the time of collapse) then the bubble will migrate away
from the rigid boundary. If it is less than 0.442 the bubble will move toward
the boundary. So it can be seen that both \(\gamma \) and \(\delta \) are important param-
eters in the verification of many numerical results since they allow direct
correlation between theory and experiment.
Chapter 3

MATHEMATICAL THEORY OF BUBBLE DYNAMICS

Because the evolution of a vapour cavity is such a high speed phenomena, physical experimentation and recording is difficult. Mathematical analysis overcomes, in a sense, this problem by being able to generate bubble motion at a more measurable pace, albeit theoretical. So, as expected, over the decades since the early pioneering work carried out by Rayleigh (1917), many theoreticians have succeeded in modelling the evolution process. Only those works that are considered to be of relevance will be reviewed here. In this work, the boundary integral method is utilised in what is believed to be a unique way - the reconstruction of the pressure field using photographic data. This chapter will describe the theory underlying this utilisation in preparation for a complete description of the two pressure measurement techniques in Chapter 4.

3.1 History of theoretical developments

The conventional theoretical models of vapour cavities assume the surrounding fluid to be incompressible and inviscid and the flow to be irrotational. Rayleigh (1917) also neglected surface tension in his work on spherically symmetric bubble growth and collapse in an infinite fluid. He derived his well-known radial motion equation

$$R \tilde{R} + \frac{3}{2} \dot{R}^2 + \frac{p_\infty - p(R)}{\rho} = 0$$

(3.1)
from the momentum equation, where R is the bubble radius, p_∞ the liquid pressure a large distance away, $p(R)$ the liquid pressure at the bubble boundary and ρ the liquid density. For the early stages of the evolution of a real bubble in an infinite fluid, (3.1) provides a valid description, the motion being symmetric. However if the bubble shape departs from spherical symmetry or is near a rigid boundary, (3.1) no longer applies and an alternative model must be sought.

Purely numerical solutions to the growth and collapse of a single vapour bubble near a rigid boundary have been leading experimental work in recent years due to the ready availability of powerful computing facilities. Plesset and Chapman's (1971) work is today regarded as a milestone in numerical thinking, and forms the basis of comparison for many other numerical studies. They were able to calculate the complete collapse history of an initially spherical bubble near a rigid boundary, including the formation of a high-speed jet, using a particle-in-cell technique. They drew the now commonly accepted conclusion that cavitation damage is likely to be caused by the impact of the high-speed jet on the solid boundary.

The method of matched asymptotic expansions was used by Chahine and Bovis (1983), where the expansion parameter ϵ is the ratio between the initial spherical bubble radius and its distance from a solid boundary. This lead to a system of differential equations describing non-spherical bubble dynamics which could be solved numerically yielding bubble shape, velocity potential and pressure field. An interesting outcome of this work was that pressures generated on the solid boundary by the collapsing non-spherical bubble were computed to be orders of magnitude higher than for the spherical case.

The modelling of the growth and collapse of axisymmetric cavitation bubbles near a rigid boundary has been made easier in recent years by the use of the boundary integral method. This technique, based on Green's formula, is able to follow the contortions of the cavity shape throughout its evolution and is discussed by Blake et. al. (1986). Whilst during the growth phase a bubble may be approximately spherical, the collapse leads to irregularities in its velocity and pressure field. The boundary integral method successfully computes these quantities and the effect that a nearby rigid boundary has on them.
Chapter 3. Mathematical theory of bubble dynamics

The present work utilises an inverse form of the boundary integral method of Taib (1985), whereby Green's formula is reduced to a Fredholm integral equation of the second kind and solved for the velocity potential on the bubble surface. This is made possible by the determination of normal surface velocity from the photographic shape history of an evolving bubble near a rigid boundary. Application of the Bernoulli equation enables the pressure field to be computed. Other parameters such as kinetic energy and volume are also able to be calculated.

3.2 Description of the flow field

We assume the fluid to be inviscid, incompressible and the flow irrotational and occupying a domain Ω. Its velocity u therefore is given by

$$u = \nabla \phi,$$

(3.2)

where the velocity potential ϕ satisfies Laplace's equation

$$\nabla^2 \phi = 0.$$

(3.3)

Surface tension at the bubble wall is neglected as is any gas flow within the bubble.

The bubble surface S is a subset of the domain boundary $\partial \Omega$ which incorporates both free and rigid boundaries, and Σ consists of all other surfaces that bound Ω. The normal interior to the bubble surface S is denoted by n. A Cartesian coordinate system is specified by the orthogonal vectors e_x, e_y and e_z as shown in Figure 3.1. Gravitational acceleration is defined as $g = -ge_z$.

Since there is no flow normal to a rigid boundary, here the velocity potential satisfies

$$\nabla \phi \cdot n = 0.$$

(3.4)
At a free boundary, such as the bubble surface S, the fluid pressure is equal to the pressure external to the fluid.

![Figure 3.1: The flow field (Best, 1991a)](image)

3.3 The boundary integral method

The motion of an axisymmetric transient cavity in an ideal fluid as defined in Section 3.2 has been successfully computed by Taib (1985). Improvements to the algorithm were made by Kucera (1993) and Best (1991a) to arrive at the numerical technique in its present form. This technique is used in an inverse way in the present work. That is, the motion of a bubble is not computed, but rather the algorithm is reversed to compute its surface velocity potential, given its normal surface velocity as obtained from experimental data.

We now examine the essential elements of the boundary integral method. By applying Green's theorem we can solve Laplace's equation (3.3) in the domain Ω yielding

$$ c(p)\phi(p) = \int_{\partial \Omega} \left(\frac{\partial \phi}{\partial n}(q)G(p, q) - \phi(q)\frac{\partial G}{\partial n}(p, q) \right) dS(q), \quad (3.5) $$
where
\[c(p) = 4\pi - \int_{\partial \Omega} \frac{\partial G(p, q)}{\partial n} dS(q) \] (3.6)
and
\[c(p) = \begin{cases}
2\pi & p \in \partial \Omega, \\
4\pi & p \in \Omega \setminus \partial \Omega.
\end{cases} \]

The boundary surface \(\partial \Omega \) is smooth and \(\Omega \setminus \partial \Omega \) denotes its complement in \(\Omega \), while the Green's function is given by \(G \). We define the normal derivative at the boundary as \(\partial / \partial n \equiv n \cdot \nabla \). The point \(p \) lies in the flow domain \(\Omega \) and we define a point \(q \) as lying on the bubble surface \(S \). For motion in an infinite fluid \(\partial \Omega \equiv S \) and the Green's function is
\[G_{\text{inf}}(p, q) = \frac{1}{|p - q|}, \] (3.7)
while for motion in the neighbourhood of a rigid boundary
\[G_{\text{rig}}(p, q) = \frac{1}{|p - q|} + \frac{1}{|p - q'|}. \] (3.8)

We reflect \(q \) about the rigid boundary to obtain \(q' \) which accounts for the presence of the boundary.

Since the bubble geometry \(S \) and \(\partial \phi / \partial n \) on \(S \) are known from experimental data, (3.5) is a Fredholm integral equation of the second kind. Solving for \(\phi \) on \(S \) as a function of time allows the pressure within the experimental bubble to be determined using the Bernoulli equation.
Chapter 4

COMPUTATIONAL TECHNIQUES

In this chapter we examine two techniques for extracting meaningful information from the photographic records of a pulsating vapour bubble near a rigid boundary. The first, rather simplistic approach utilises the Rayleigh radial motion equation (3.1) to compute the bubble pressure and assumes the bubble to remain spherical throughout its lifetime. This assumption is reasonable during the expansion stage of the bubble but breaks down as the bubble collapses asymmetrically.

The second, more realistic approach uses the shape history of the bubble to determine the normal velocity at each of its assigned surface nodes. Upon application of the boundary integral method as described in Section 3.3 the velocity potential at each node is found as a function of time. Using the Bernoulli equation the nodal pressures can then be computed. Other quantities such as volume and kinetic energy are also obtained.

Before proceeding with either method it is fitting that the physical form of the raw experimental data used in this work be considered.

4.1 Experimental data preprocessing

After the experiment has taken place using the procedure described in Section 2.2, the results are in the form of captured negative images on 16 mm ciné film. With a framing rate of 6000 per second and the pulsation period of the bubble approximately being 20 msec, there are perhaps 330 images of the evolving bubble produced per experiment. Of course, this figure will vary but in general it has been found that a sufficiently low p_∞ will yield around
120 images for the first pulsation period.

Once the bubble rebounds and then begins its second collapse, it no longer approximates a spherical geometry but tends to be toroidal in shape. Since the photographic technique can only record two-dimensional images, it becomes difficult to distinguish the bubble shape, because some parts of the bubble will move inside the surface and be obscured from view. Therefore we have confined the bounds of this work to the first pulsation only.

Figure 4.1 shows selected ciné film records of the expansion stage of a typical spark-induced bubble near a rigid boundary. The electrodes are visible, and must be filtered out in the image analysis process. In order to be able to distinguish and digitise the bubble shape the analysis equipment possesses advanced processing capabilities.

Figure 4.1: Experimental ciné film records, film RB3, $\gamma = 2.041, \delta = 0.270$

The bubble surface is found by interactively extracting the image from the background using digitisation followed by greylevel thresholding on a semi-automatic image processing system.
Data is created by assigning nodes to points on the surface of the digitised bubble image at constant angular intervals from the centroid C \((x_{cent},y_{cent})\), which is also computed by the analyser. A suitable scale is determined using the known distance between the electrode/tank intersection points.

One set of Cartesian coordinate \((x,y)\) data describing the bubble outline is created by the image analyser for every second frame in the experimental sequence, relative to a known reference point \((x_{ref},y_{ref})\), and saved in text form to a data file. The reference point usually lies on the rigid boundary, which for this work lies below the bubble. Figure 4.2 depicts this arrangement in diagrammatic form.

![Diagram of raw data notation after initial digitisation](image)

Figure 4.2: Raw data notation after initial digitisation

The number of nodes, \(npts\), is arbitrary but a minimum of 36 are typically assigned to ensure that the bubble shapes are adequately defined in two dimensions. The complete image analysis process is described in detail in Appendix A.
A typical coordinate data file would be of the form given in Figure 4.3.

<table>
<thead>
<tr>
<th>NODE</th>
<th>COORD_X</th>
<th>COORD_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>359</td>
<td>209</td>
</tr>
<tr>
<td>2</td>
<td>357</td>
<td>223</td>
</tr>
<tr>
<td>3</td>
<td>353</td>
<td>237</td>
</tr>
<tr>
<td>4</td>
<td>347</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>338</td>
<td>260</td>
</tr>
<tr>
<td>6</td>
<td>329</td>
<td>270</td>
</tr>
<tr>
<td>7</td>
<td>318</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>291</td>
<td>128</td>
</tr>
<tr>
<td>30</td>
<td>305</td>
<td>133</td>
</tr>
<tr>
<td>31</td>
<td>318</td>
<td>137</td>
</tr>
<tr>
<td>32</td>
<td>330</td>
<td>146</td>
</tr>
<tr>
<td>33</td>
<td>341</td>
<td>156</td>
</tr>
<tr>
<td>34</td>
<td>349</td>
<td>167</td>
</tr>
<tr>
<td>35</td>
<td>358</td>
<td>179</td>
</tr>
<tr>
<td>36</td>
<td>362</td>
<td>194</td>
</tr>
</tbody>
</table>

Figure 4.3: Typical raw coordinate data file

Coordinate data in the above form must be preprocessed for use in either computational method. The first stage is to translate the origin of each image to \((x_{\text{cent}}, y_{\text{ref}})\) which makes it colinear with the vertical axis of the bubble, i.e.,

\[
x \Rightarrow x - x_{\text{cent}}.
\]

(4.1)

In applying this algorithm we are assuming that the bubble centroid undergoes no horizontal translation during its lifetime. This is a fair assumption since the dominant bubble forces, i.e., Bjerknes and buoyancy, are exerted in the vertical direction only. All ordinates are translated so that the origin lies on the rigid boundary, that is,

\[
y \Rightarrow y - y_{\text{ref}}.
\]

(4.2)
Due to the inherent experimental noise contained in the raw data, some form of surface smoothing is necessary. This is done by applying the assumption of axisymmetry of the two dimensional image in the vertical axis and using the simple coordinate averaging algorithm

\[x = \frac{x_{\text{right}} - x_{\text{left}}}{2}, \]

(4.3)

where \(x_{\text{right}} \) and \(x_{\text{left}} \) represent the right and left abscissae respectively for each ordinate of the bubble surface. Note that the sign of \(x_{\text{right}} \) will be positive while \(x_{\text{left}} \) will be negative. This results in (4.3) yielding only positive values for \(x \), and tends to smooth out any major spurious surface noise. Since the bubble is now axisymmetric we need only consider its right hand side, the left hand side being a mirror image. This reduction in the total number of nodes needing analysis speeds subsequent processing time since now \(n = \frac{npts}{2} + 1 \).

The final stage of preprocessing involves renumbering the nodes of this half surface and converting them from Cartesian \((x, y)\) to cylindrical \((r, z, \theta)\) coordinates as depicted in Figure 4.4.

Figure 4.4: Processed data notation
The z axis passes through nodes 0 and n with $z = 0$ occurring at the rigid boundary, and due to the assumption of axisymmetry the azimuthal angle $\theta = 0$. The final form of the typical coordinate files is shown in Figure 4.5.

<table>
<thead>
<tr>
<th>NODE</th>
<th>R</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000000</td>
<td>0.0342912</td>
</tr>
<tr>
<td>1</td>
<td>0.0026820</td>
<td>0.0344828</td>
</tr>
<tr>
<td>2</td>
<td>0.0053640</td>
<td>0.0354406</td>
</tr>
<tr>
<td>3</td>
<td>0.0078544</td>
<td>0.0365901</td>
</tr>
<tr>
<td>4</td>
<td>0.0100575</td>
<td>0.0383142</td>
</tr>
<tr>
<td>5</td>
<td>0.0117816</td>
<td>0.0402299</td>
</tr>
<tr>
<td>6</td>
<td>0.0134100</td>
<td>0.0421456</td>
</tr>
<tr>
<td>7</td>
<td>0.0145594</td>
<td>0.0446360</td>
</tr>
<tr>
<td>8</td>
<td>0.0152299</td>
<td>0.0473180</td>
</tr>
<tr>
<td>9</td>
<td>0.0155173</td>
<td>0.0500000</td>
</tr>
<tr>
<td>10</td>
<td>0.0159962</td>
<td>0.0528736</td>
</tr>
<tr>
<td>11</td>
<td>0.0156130</td>
<td>0.0557472</td>
</tr>
<tr>
<td>12</td>
<td>0.0141763</td>
<td>0.0580460</td>
</tr>
<tr>
<td>13</td>
<td>0.0119732</td>
<td>0.0601533</td>
</tr>
<tr>
<td>14</td>
<td>0.0099617</td>
<td>0.0620690</td>
</tr>
<tr>
<td>15</td>
<td>0.0077586</td>
<td>0.0637931</td>
</tr>
<tr>
<td>16</td>
<td>0.0052682</td>
<td>0.0645594</td>
</tr>
<tr>
<td>17</td>
<td>0.0026820</td>
<td>0.0655173</td>
</tr>
<tr>
<td>18</td>
<td>0.0000000</td>
<td>0.0655173</td>
</tr>
</tbody>
</table>

Figure 4.5: Typical processed coordinate data file

Data in this form is used in both computational techniques. Appendix B contains the FORTRAN code used to preprocess the raw data files using the method just described.

In what follows certain conventions are adhered to. Firstly, we use the Lagrangian method to describe fluid particle motion. Secondly, all calculations using experimental data are carried out using nondimensionalised values. We scale all distances with respect to the maximum bubble radius R_m, while times are scaled w.r.t. $R_m (\rho/\Delta p)^{\frac{1}{2}}$, where $\Delta p = p_\infty - p_v$. It follows then that pressures are scaled w.r.t. Δp and velocities to $(\Delta p/\rho)^{\frac{1}{2}}$. For quantitative results these parameters are multiplied by the relevant scaling factor after the calculations have been completed.
4.2 Spherical bubble method

The spherical bubble model as presented by Rayleigh (1917) can be rearranged so that given the radial history of the bubble, its pressure as a function of time may be computed. This model assumes that the effects of a nearby boundary are small, that the bubble undergoes only spherical motion and that it has a uniform internal pressure.

It is likely to be valid only during the first pulsation of the bubble, since it begins to break down as the bubble collapses asymmetrically. However it does provide a convenient pressure measurement technique if the shape history of the bubble exhibits spherical motion. A formulation of the method follows.

For a spherical bubble in the neighbourhood of boundaries the potential is

$$
\phi \sim -\frac{R^2 \dot{R}}{|r|} - R^2 \dot{R} g(r),
$$

(4.4)

where $g(r)$ is a function of the flow field geometry r and R is the radius of the bubble (Best and Blake, 1993). Differentiating (4.4) in time yields

$$
\frac{\partial \phi}{\partial t} \sim -\frac{2R\dot{R}^2 + R^2 \ddot{R}}{|r|} - [2R\dot{R}^2 + R^2 \ddot{R}] g(r).
$$

(4.5)

Evaluating this at the surface of the bubble gives

$$
\frac{\partial \phi}{\partial t} \sim -2\dot{R}^2 - R \ddot{R} - [2R\dot{R}^2 + R^2 \ddot{R}] \mu,
$$

(4.6)

where

$$
\mu = g(r_0, s)
$$

(4.7)

and is small, and r_0 is the position of the bubble centroid at $t = 0$. The geometry of bounding surfaces to the flow domain Ω is characterised by s. For the case of a rigid boundary,

$$
\mu = \frac{1}{2|h_r|},
$$

(4.8)
and s is considered as h_r. To the required order of accuracy of this work

$$\nabla \phi \sim \frac{R^2 \dot{R}}{|r|^2}, \quad (4.9)$$

and at the bubble surface

$$|\nabla \phi|^2 \sim \dot{R}^2. \quad (4.10)$$

We now introduce the Bernoulli equation in the nondimensional form

$$\frac{\partial \phi}{\partial t} + \frac{1}{2} |\nabla \phi|^2 + p_b + \delta^2z - 1 = 0, \quad (4.11)$$

where p_b is the time-varying pressure inside the bubble which is uniform and unknown. Now $\delta = O(\mu)$, and since the calculation is done to $O(\mu)$ and μ is small we can neglect $\delta^2 = O(\mu^2)$. Substitution of (4.6) and (4.10) into (4.11) yields

$$R \ddot{R} + \frac{3}{2} \dot{R}^2 + \mu R [R \ddot{R} + 2 \dot{R}^2] - p_b + 1 = 0, \quad (4.12)$$

which can be rearranged into the more convenient form

$$p_b = R \ddot{R} + \frac{3}{2} \dot{R}^2 + \mu R [R \ddot{R} + 2 \dot{R}^2] + 1. \quad (4.13)$$

The mean radius R_t at time t is found from the bubble volume V_t computed from each raw coordinate file using the technique described in Section 4.3.5, where

$$R_t = \sqrt[3]{\frac{3V_t}{4\pi}}. \quad (4.14)$$

Using central difference approximations we readily find \dot{R}_t and \ddot{R}_t from the time history of R_t by

$$\dot{R}_t = \frac{1}{2\delta t} [R_{t+\delta t} - R_{t-\delta t}], \quad (4.15)$$

and

$$\ddot{R}_t = \frac{1}{[\delta t]^2} [R_{t+\delta t} - 2R_t + R_{t-\delta t}], \quad (4.16)$$

where δt is the scaled timestep between successive coordinate files.
The flow chart for the entire pressure extraction process is given in Figure 4.6 below.

![Flow chart for spherical bubble method](image)

Figure 4.6: Flow chart for spherical bubble method

This technique has been validated with computed coordinate data and the results of this validation are given in Chapter 5. As shall be seen in Chapter 6, the raw experimental data should ideally depict a nearly perfectly spherical bubble, in order to minimise computational error.

4.3 Nodal displacement method

Lauterborn and Bolle (1975) were successful in using computer analysis of photographic images to examine bubble surface movements. They used a digital computer to analyse the photographic history of a vapour bubble and succeeded in calculating the bubble-wall velocities. Although their measurements confirmed numerical results by Plesset and Chapman (1971), they only documented the movements in time of three points on the bubble surface.

Much more information can be gained by assigning evenly spaced nodes over the surface of a bubble. Measurement, in the Lagrangian sense, of their normal velocities as the evolution takes place can then be made from the
recorded shape history. The normal surface velocities \(\partial \phi / \partial n \) and the bubble geometry \(S \) can then be used to solve (3.5) for the velocity potential \(\phi \) at each node. Furthermore, by applying the Bernoulli equation we can obtain the pressure at each node on the bubble surface.

The nodal displacement method documented here has the advantage of being able to extract meaningful data from non-spherical bubble motion. It has been validated and these results can be seen in Chapter 5. We shall now examine each step of the technique in detail.

4.3.1 Surface representation

There are two different ways that the surface of the bubble, in its processed nodal form of Figure 4.4, is represented in this work. The first, more simpler method is that of linear interpolation between the nodes. In a physical sense this is the maximum order of interpolation that can be used with any certainty since only the nodes have known positions. We know nothing of the detailed surface between them, other than it must start and end with two consecutive nodes.

For each analysed bubble surface \(i \) we denote the linear element \(j \) as that which joins nodes \(j - 1 \) and \(j \) as in Figure 4.7. At the node \(j \) the cylindrical coordinates are \((r_j, z_j)\), the normal fluid velocity with respect to the interior normal \((\partial \phi / \partial n)_j \equiv \psi_j\) and the velocity potential is \(\phi_j \). The distance between nodes is simply the length \(s_j \) of the element \(j \) or

\[
s_j = \left[(r_j - r_{j-1})^2 + (z_j - z_{j-1})^2 \right]^{1/2}, \quad j = 1, \ldots, n, \quad (4.17)
\]

and the cumulative distance \(t_j \) along the bubble surface is given by

\[
t_0 = 0, \quad (4.18)
\]

and

\[
t_j = t_{j-1} + s_j, \quad j = 1, \ldots, n. \quad (4.19)
\]
The bubble surface and the functions ψ and ϕ are interpolated by using the linear parameter ξ where

\begin{align}
 r(\xi) &= r_j + (r_{j+1} - r_j) \frac{(\xi - t_j)}{s_{j+1}}, \quad t_j \leq \xi \leq t_{j+1}, \\
z(\xi) &= z_j + (z_{j+1} - z_j) \frac{(\xi - t_j)}{s_{j+1}}, \quad t_j \leq \xi \leq t_{j+1}, \\
\psi(\xi) &= \psi_j + (\psi_{j+1} - \psi_j) \frac{(\xi - t_j)}{s_{j+1}}, \quad t_j \leq \xi \leq t_{j+1}, \\
\phi(\xi) &= \phi_j + (\phi_{j+1} - \phi_j) \frac{(\xi - t_j)}{s_{j+1}}, \quad t_j \leq \xi \leq t_{j+1},
\end{align}

for $j = 0, \ldots, n - 1$.

In order to be able to compute the normal surface velocity it is convenient to analyse the surface of the bubble using the normal-tangential (n,t) coordinate system. In the linearised case we must first specify the orientation of each element. Consider the notation given in Figure 4.8.
We introduce $\theta_{j-\frac{1}{2}}$ to denote the orientation of the linear element j. It is given by

$$\theta_{j-\frac{1}{2}} = \arctan \left(\frac{r_{j-1} - r_j}{z_j - z_{j-1}} \right), \quad j = 1, \ldots, n.$$

(4.24)

To find the orientation θ_j of the surface at the nodes we use the weighted approximation (Best, 1992)

$$\theta_j = \frac{s_j \theta_{j+\frac{1}{2}} + s_{j+1} \theta_{j-\frac{1}{2}}}{s_j + s_{j+\frac{1}{2}}}, \quad j = 1, \ldots, n - 1,$$

(4.25)

and at the extremities of the surface

$$\theta_0 = -\frac{\pi}{2},$$

(4.26)

and

$$\theta_n = \frac{\pi}{2},$$

(4.27)

since the bubble is axisymmetric. It follows that the normal \mathbf{n} and tangential
t unit vectors at each node are given by

\[n_j = (n_r, n_z)_j = (-\cos \theta_j, -\sin \theta_j), \]
\[(4.28) \]

\[t_j = (t_r, t_z)_j = (-\sin \theta_j, \cos \theta_j), \]
\[(4.29) \]

noting the *inward* orientation of the normal vector in Figure 4.9 below.

![Diagram of normal and tangential unit vectors at the nodes.](image)

Figure 4.9: Normal and tangential unit vectors at the nodes.

The second, more complex method employs a cubic spline representation of the bubble surface, constrained to pass through the \(n + 1 \) node points of each processed surface. Cubic elements, while offering no more certainty of the detail of the interpolated surface than linear elements, have the advantage of achieving a smooth directional transition at the nodes.

The spline parameter is the numerically found arclength \(\xi \) along the bubble surface. If \(\xi_j \) is the arclength from node 0 to node \(j \) then

\[\delta \xi_j = \xi_j - \xi_{j-1}, \quad j = 1, \ldots, n, \]
\[(4.30) \]

is the arclength between adjacent nodes, noting that \(\xi_0 = 0 \). Figure 4.10 illustrates this geometry.
Chapter 4. Computational techniques

Figure 4.10: Cubic spline representation of the bubble surface.

The spline functions $r(\xi)$ and $z(\xi)$ are expressed as

$$
r(\xi) = r_{A_j} + r_{B_j}(\xi - \xi_j) + r_{C_j}(\xi - \xi_j)^2 + r_{D_j}(\xi - \xi_j)^3, \quad (4.31)
$$

$$
z(\xi) = z_{A_j} + z_{B_j}(\xi - \xi_j) + z_{C_j}(\xi - \xi_j)^2 + z_{D_j}(\xi - \xi_j)^3, \quad (4.32)
$$

for

$$
\xi_j < \xi < \xi_{j+1}, \quad j = 0, \ldots, n - 1, \quad (4.33)
$$

and are clamped at the end nodes 0 and n to ensure axisymmetry. The arclength ξ and the spline coefficients are obtained using the iterative improvement technique of Kucera (1993). Clearly at the node points j the interval $\xi - \xi_j = 0$ so that $r_j = r_{A_j}$ and $z_j = z_{A_j}$.

The components of the inward normal n and tangential t unit vectors at any point on the splined surface are readily found by firstly differentiating (4.31) and (4.32) to give

$$
\frac{dr}{d\xi} = r_{B_j} + 2r_{C_j}(\xi - \xi_j) + 3r_{D_j}(\xi - \xi_j)^2, \quad (4.34)
$$
and
\[
\frac{dz}{d\xi} = z_{Bj} + 2z_{Cj}(\xi - \xi_j) + 3z_{Dj}(\xi - \xi_j)^2,
\]
whereby
\[
n = (n_r, n_z) = \left(\frac{dz}{d\xi}, \frac{dr}{d\xi}\right)
\]
and
\[
t = (t_r, t_z) = \left(\frac{dr}{d\xi}, \frac{dz}{d\xi}\right).
\]
The orientation of these components is given in Figure 4.11.

![Figure 4.11: Normal and tangential unit vectors](image)

At the nodes,
\[
n_j = (-z_B, r_B)_j,
\]
and
\[
t_j = (r_B, z_B)_j.
\]

In comparing linear and cubic spline methods we can say that both are valid in representing the surface of the bubble and indeed each has certain advantages over the other. However, as will be explained in Chapter 6 it was found that the linear representation lacked directional coherence at the
node points. This meant that it was difficult to determine the normal surface velocities and therefore the bubble pressures there. Hence the cubic spline representation was used exclusively throughout this work in order to obtain acceptable results.

4.3.2 Technique for computing nodal $\partial \phi / \partial n$

Critical to the proper behaviour of the nodal displacement method is the correct determination of the nodal normal surface velocities $\partial \phi / \partial n$, which are used in the boundary integral method. The method described here lends itself to experimental bubble dynamics, being able to process the coordinate data of a non-spherical bubble evolution in a robust manner, yielding the normal surface velocity at each node.

Consider the notation of Figure 4.12:

![Figure 4.12: Notation used for computing nodal $\partial \phi / \partial n$](image)

We define the distance propagated by a node on the ith surface in the direction normal to the $(i - 1)$th surface from the $(i - 1)$th surface to the ith surface as the backward normal displacement δ_b. The forward normal displacement of the node from the ith surface to the $(i + 1)$th surface in the
direction normal to the \(i\)th surface is denoted by \(\delta_f\). We evaluate the normal surface velocity \(\partial \phi / \partial n\) by combining these two displacements in the central difference equation

\[
\frac{\partial \phi}{\partial n} = -\left(\frac{\delta_b + \delta_f}{2\delta t}\right),
\]

(4.40)

where \(\delta t\) is the scaled timestep between each successive coordinate file. This calculation is done nodewise \((i = 2, \ldots, n - 1)\) over the first pulsation of the bubble. If the velocities are to be given in physical units then the scaled values of (4.40) must be multiplied by the scale factor \((\Delta p / \rho)^{\frac{1}{2}}\).

Note that \(\partial \phi / \partial n\) is a signed variable and is calculated with respect to the interior normal. Thus the method is useful in that it can detect, for instance, when the \((i + 1)\)th surface lies within the \(i\)th surface, as is the case for a collapsing bubble.

We now consider, in more detail, the calculation of the normal displacements \(\delta_b\) and \(\delta_f\). The cubic spline surface representation is chosen to illustrate the method, although linear elements have also been used, but with limited success.

Backward normal displacement

Consider two consecutive bubble surfaces each having of format given in Figure 4.4. We adopt the usual notation, designating the former surface \(i - 1\), occurring at time \(t - \delta t\), and the latter \(i\) occurring at time \(t\). It is required that the backward normal displacement \(\delta_b\) of the node \(P\) on the surface \(i\) along the direction of the normal \(n\) from the surface \(i - 1\) be determined.

We define a vector \(\mathbf{a}\) from a sliding point \(Q(\mathbf{r}(\xi), \mathbf{z}(\xi))\) on the surface \(i - 1\) to the node \(P(\mathbf{r}_P, \mathbf{z}_P)\) as

\[
\mathbf{a} = ([\mathbf{r}(\xi) - \mathbf{r}_P], [\mathbf{z}(\xi) - \mathbf{z}_P]),
\]

(4.41)

and this is shown in Figure 4.13. The length \(d\) of the vector \(\mathbf{a}\) and hence the distance between \(P\) and \(Q\) is given by

\[
d = \left[|\mathbf{r}(\xi) - \mathbf{r}_P|^2 + |\mathbf{z}(\xi) - \mathbf{z}_P|^2\right]^{\frac{1}{2}}.
\]

(4.42)
If Q is moved along the spline until d^2 is at its minimum or

$$\frac{d(d^2)}{d\xi} = 2[r(\xi) - r_P] \frac{d}{d\xi} r(\xi) + 2[z(\xi) - z_P] \frac{d}{d\xi} z(\xi) = 0, \quad (4.43)$$

that is, when

$$[r(\xi) - r_P] \frac{d}{d\xi} r(\xi) + [z(\xi) - z_P] \frac{d}{d\xi} z(\xi) = 0, \quad (4.44)$$

we can solve (4.44) for ξ using the secant method. The backward normal displacement δ_b is then found by computing d in (4.42), noting that it is a signed value since the bubble can be either expanding or contracting. The scalar product

$$n \cdot a = n_r a_r + n_z a_z = -\frac{d}{d\xi} z(\xi)[r(\xi) - r_P] + \frac{d}{d\xi} r(\xi)[z(\xi) - z_P] \quad (4.45)$$

is then used in determining its sign, so that if $n \cdot a < 0$, then $\delta_b = -d$ and we have an expanding bubble, while if $n \cdot a > 0$, $\delta_b = d$ and the bubble is contracting.
Forward normal displacement

We again consider two consecutive bubble surfaces, this time designating the former surface \(i \), occurring at time \(t \) and the latter \(i + 1 \) surface as occurring at time \(t + \delta t \). It is required that the forward normal displacement \(\delta f \) of the node \(P \) on the surface \(i \) along the direction of the normal \(n \) from the surface \(i \) be determined.

A vector \(a \) from a sliding point \(Q (r(\xi), z(\xi)) \) on the surface \(i + 1 \) to the node \(P \) is defined in (4.41), and with the tangential unit vector \(t \) at \(P \) whose components are given in (4.37) is shown in Figure 4.14.

![Figure 4.14: Notation for forward normal displacements](image)

Once again the scalar product is used, this time in locating the point \(Q \) such that when

\[
t \cdot a = 0,
\]

that is, when

\[
t_r a_r + t_z a_z = r_B [r(\xi) - r_P] + z_B [z(\xi) - z_P] = 0
\]

is solved for \(\xi \) using the secant method, the vectors are orthogonal and \(Q \) is located.
The distance d is then computed using (4.42), with (4.45) used to determine its sign. If $\mathbf{n} \cdot \mathbf{a} > 0$, then $\delta_j = -d$ and we have an expanding bubble, while if $\mathbf{n} \cdot \mathbf{a} < 0$, then $\delta_j = d$ and the bubble is contracting.

4.3.3 Finding ϕ by the boundary integral method

The boundary integral method which is incorporated into the present work (Best, 1991b) uses the nodal normal surface velocities $(\partial \phi / \partial n)$ calculated using the techniques in Section 4.3.2 and shape S of the bubble surface as described by the coordinate files to numerically solve (3.5). This becomes a Fredholm integral equation of the second kind and its solution yields the nodal velocity potentials ϕ.

Consider the linearised bubble surface at time t as depicted in Figure 4.7, where the nodal coordinates are given by (4.20) and (4.21). Initially the distance between each node s_j is given by (4.17) but is subsequently improved upon by use of Kucera's (1993) iterative improvement technique.

Linear interpolation over the bubble surface is now used to represent the normal velocity function $\psi(\xi)$ and velocity potential function $\phi(\xi)$ so that

$$\psi(\xi) = \psi_j + (\psi_{j+1} - \psi_j) \frac{(\xi - t_j)}{s_{j+1}}, \quad t_j \leq \xi \leq t_{j+1},$$

and

$$\phi(\xi) = \phi_j + (\phi_{j+1} - \phi_j) \frac{(\xi - t_j)}{s_{j+1}}, \quad t_j \leq \xi \leq t_{j+1},$$

for $j = 0, \ldots, n - 1$. In order to obtain a solution for ϕ_j a collocation technique is used, where (3.5) holds at the nodes which are the collocation points. Upon substitution of (4.20), (4.21), (4.48) and (4.49) into (3.5) we obtain

$$c_j \phi_j = a_j - \sum_{J=1}^{n-1} [b_{jJ} \phi_J + d_{jJ+1} \phi_{J+1}], \quad j = 1, \ldots, n,$$

where

$$a_j = \sum_{J=1}^{n-1} \int_0^{2\pi} \int_{t_j}^{t_{j+1}} \psi(\xi)G_j(\xi, \theta)r(\xi)d\xi d\theta,$$

$$b_{jJ} = \int_0^{2\pi} \int_{t_j}^{t_{j+1}} \left(\frac{t_{j+1} - \xi}{s_{j+1}} \right) \frac{\partial G_j}{\partial n}(\xi, \theta)r(\xi)d\xi d\theta,$$

and

$$d_{jJ+1} = \int_0^{2\pi} \int_{t_j}^{t_{j+1}} \left(\frac{t_{j+1} - \xi}{s_{j+1}} \right) \frac{\partial G_j}{\partial n}(\xi, \theta)r(\xi)d\xi d\theta.$$
The coefficient b_{jk} is defined for $k = 1, \ldots, n - 1$, d_{jk} for $k = 2, \ldots, n$ and we define $b_{jn} = 0$ and $d_{j1} = 0$. In terms of the cylindrical coordinates the surface area element is

$$dS = r(\xi)d\xi d\theta,$$

and the rigid boundary Green's function, from equation (3.8), is

$$G_j(\xi, \theta) = \frac{1}{|p_j - q(\xi, \theta)|} + \frac{1}{|p_j - q'(\xi, \theta)|},$$

where

$$p_j \equiv (r_j, z_j, 0),$$

the azimuthal angle set to zero due to the axisymmetric assumption, and

$$q(\xi, \theta) \equiv (r(\xi), z(\xi), \theta).$$

In order to evaluate a_j, c_j, b_{jk} and d_{jk}, the integration over θ is performed analytically, which yields expressions involving elliptic integrals of the first and second kind. The integration over the arclength ξ is performed using Gauss-Legendre quadrature formulæ. For singular integrands, the logarithmic singularity is subtracted and the integration is completed using an appropriate quadrature scheme (Taib, 1985).

The potential ϕ_j is then found by solving by direct inversion the linear system

$$\sum_{J=1}^{n} p_{jJ} \phi_J = a_j$$

where

$$p_{jJ} = b_{jJ} + d_{jJ} + c_j \delta_{jJ}, \quad j, J = 0, \ldots, n.$$
4.3.4 Technique for computing the nodal pressures

In order to compute the nodal pressures we utilise the Bernoulli equation in the nondimensionalised form

\[
\frac{\partial \phi}{\partial t} + \frac{1}{2} |\nabla \phi|^2 + p_c + \delta^2 z - 1 = 0, \tag{4.61}
\]

applied to each node on the bubble surface and where \(p_c\) is the computed pressure at the node. The buoyancy parameter squared, \(\delta^2\), is assumed experimentally small and is set to zero. Since the partial derivative \(\partial \phi / \partial t\) is difficult to measure experimentally, we substitute

\[
\frac{\partial \phi}{\partial t} = \frac{D \phi}{Dt} - |\nabla \phi|^2 \tag{4.62}
\]

into (4.61) and rearrange yielding

\[
p_c = \frac{1}{2} |\nabla \phi|^2 - \frac{D \phi}{Dt} + 1, \tag{4.63}
\]

where the total derivative \(D \phi / Dt\) can be readily found from the shape history of the bubble using the techniques that are developed in this section. It is essential this derivative be accurately calculated in order to successfully compute the nodal pressures at the surface of the bubble.

The quantity \(|\nabla \phi|\) is simply the magnitude of the velocity vector \(u\) and its square can be expressed as

\[
|\nabla \phi|^2 = \left(\frac{\partial \phi}{\partial n}\right)^2 + \left(\frac{\partial \phi}{\partial \xi}\right)^2, \tag{4.64}
\]

which when substituted into (4.63) yields the nodal pressure equation

\[
p_c = \frac{1}{2} \left[\left(\frac{\partial \phi}{\partial n}\right)^2 + \left(\frac{\partial \phi}{\partial \xi}\right)^2\right] - \frac{D \phi}{Dt} + 1, \tag{4.65}
\]

from which the computed results are derived. The entire nodal displacement method can be summarised in Figure 4.15.
Figure 4.15: Flow chart for nodal displacement method

In order to obtain the pressures in actual physical units the scaled values from (4.65) are multiplied by the parameter Δp.

A preliminary stage in the calculation of $|\nabla \phi|$ is the determination of the tangential surface velocity $\partial \phi / \partial \xi$ at each node. To do this we fit a local quadratic function to the $(j - 1)$th, jth and $(j + 1)$th nodes and parameterise this with respect to the arclength between nodes $\delta \xi_j$. This is then differentiated to obtain

$$\left(\frac{\partial \phi}{\partial \xi} \right)_j = \frac{\delta \xi_j^2 \phi_{j+1} - (\delta \xi_j^2_2 - \delta \xi_{j+1}^2)\phi_j - \delta \xi_{j+1}^2 \phi_{j-1}}{\delta \xi_j \delta \xi_{j+1}(\delta \xi_j + \delta \xi_{j+1})}, \quad (4.66)$$

for $j = 1, \ldots, n - 1$. Due to the axisymmetric assumption,

$$\left(\frac{\partial \phi}{\partial \xi} \right)_0 = 0, \quad (4.67)$$

and

$$\left(\frac{\partial \phi}{\partial \xi} \right)_n = 0. \quad (4.68)$$
We choose to represent $\partial \phi / \partial \xi$ between the nodes by the linear function

$$\frac{\partial \phi}{\partial \xi} (\xi) = \frac{\partial \phi}{\partial \xi} (t_j) + \left[\left(\frac{\partial \phi}{\partial \xi} (t_{j+1}) - \frac{\partial \phi}{\partial \xi} (t_j) \right) \frac{\xi - t_j}{s_{j+1}} \right], \quad t_j \leq \xi \leq t_{j+1}, \quad (4.69)$$

for $j = 0, \ldots, n - 1$, where ξ is the linear arclength parameter.

Consider now the bubble surfaces and trajectories depicted in Figure 4.16.

![Figure 4.16: Trajectory calculation](image)

We compute the total derivative $D \phi / Dt$ of the node P using the central difference formula

$$\frac{D \phi}{Dt} = \frac{\phi_f - \phi_b}{2\delta t}, \quad (4.70)$$

where ϕ_f is its potential looking forward to time $t + \delta t$ and ϕ_b is its potential looking backward to time $t - \delta t$, following the trajectory described by the velocity vector

$$u = \nabla \phi = \frac{\partial \phi}{\partial n} n + \frac{\partial \phi}{\partial \xi} t. \quad (4.71)$$

In the case of purely spherical motion, $\partial \phi / \partial \xi = 0$ since the trajectory is in the radial direction. Therefore for each node j in this simplified case we would have

$$\phi_f = \phi_{t+\delta t}, \quad (4.72)$$
and
\[\phi_b = \phi_{t-\delta t}, \tag{4.73} \]

the trajectory intersections coinciding exactly with the node points at these times. However in reality there is always a small tangential velocity component \(\partial \phi / \partial \xi \) and so (4.72) and (4.73) are only approximations. In this section we describe vector techniques used to find \(\phi_f \) and \(\phi_b \) for each node on the bubble surface by first computing their probable trajectories. This enables (4.70) to be used to calculate nodal \(D\phi/Dt \).

Forward trajectory

Consider two consecutive bubble surfaces, \(i \) occurring at time \(t \) and \(i+1 \) occurring at time \(t+\delta t \). Note that in the case of a contracting bubble, the \((i+1)\)th surface will lie within the \(i\)th surface.

We propose that the node \(P \) on the \(i\)th surface will follow a trajectory **forward** in time as defined by the velocity vector \(u \) in (4.71), to arrive at point \(W \) at time \(t+\delta t \). Figure 4.17 shows this arrangement.

![Figure 4.17: Forward trajectory of the node \(P \)](image)

A vector \(a \) from a sliding point \(Q (r(\xi), z(\xi)) \) to the node \(P \) is defined
in (4.41). The velocity vector \mathbf{u} at the node P can be expanded into its cylindrical components by substituting (4.36) and (4.37) into (4.71) thus

$$
\mathbf{u} = \frac{\partial \phi}{\partial n} \mathbf{n} + \frac{\partial \phi}{\partial \xi} \mathbf{t}
$$

(4.74)

$$
= \frac{\partial \phi}{\partial n}(n_r, n_z) + \frac{\partial \phi}{\partial \xi}(t_r, t_z)
$$

(4.75)

$$
= \left(\left[\frac{\partial \phi}{\partial n} n_r + \frac{\partial \phi}{\partial \xi} t_r \right], \left[\frac{\partial \phi}{\partial n} n_z + \frac{\partial \phi}{\partial \xi} t_z \right] \right)
$$

(4.76)

$$
= \left(\left[\frac{\partial \phi}{\partial n} \left(-\frac{dz}{\partial \xi} \right) + \frac{\partial \phi}{\partial \xi} \frac{dr}{\partial \xi} \right], \left[\frac{\partial \phi}{\partial n} \frac{dz}{\partial \xi} + \frac{\partial \phi}{\partial \xi} \frac{dr}{\partial \xi} \right] \right).
$$

(4.77)

The normal \mathbf{u}^* to \mathbf{u} is then simply

$$
\mathbf{u}^* = -\frac{1}{\mathbf{u}}
$$

(4.78)

$$
= \left(-\left[\frac{\partial \phi}{\partial n} \frac{dr}{\partial \xi} + \frac{\partial \phi}{\partial \xi} \frac{dz}{\partial \xi} \right], \left[\frac{\partial \phi}{\partial n} \frac{dz}{\partial \xi} - \frac{\partial \phi}{\partial \xi} \frac{dr}{\partial \xi} \right] \right).
$$

(4.79)

The scalar product between \mathbf{u}^* and \mathbf{a} is

$$
\mathbf{u}^* \cdot \mathbf{a} = -\left[\frac{\partial \phi}{\partial n} \frac{dr}{\partial \xi} + \frac{\partial \phi}{\partial \xi} \frac{dz}{\partial \xi} \right] [r(\xi) - r_p] + \left[\frac{\partial \phi}{\partial n} \frac{dz}{\partial \xi} - \frac{\partial \phi}{\partial \xi} \frac{dr}{\partial \xi} \right] [z(\xi) - z_p],
$$

(4.80)

and this is used to locate the trajectory intersection point W by sliding Q along the surface until

$$
\mathbf{u}^* \cdot \mathbf{a} = 0.
$$

(4.81)

This is accomplished by solving (4.81) for ξ using the secant method. The potential ϕ_W at W is then calculated from the linear function for ϕ in (4.23) and this yields

$$
\phi_W = \phi_W.
$$

(4.82)

Backward trajectory

Once again we consider two consecutive bubble surfaces, i occurring at time t and $i - 1$ occurring at time $t - \delta t$. Clearly in the case of a contracting bubble, the ith surface will lie within the $(i - 1)$th surface.

On the $(i-1)$th surface we represent the normal surface velocity $\partial \phi / \partial n$ by the linear function in (4.22) and the tangential velocity $\partial \phi / \partial \xi$ by the linear
function given in (4.69). We assume that the node at \(P \) on the \(i \)th surface will have followed the trajectory defined by \(\mathbf{u} \) in (4.69) from its position \(Q (r(\xi), z(\xi)) \) at time \(t - \delta t \) to \(W \) at time \(t \), as depicted in Figure 4.18 below.

![Figure 4.18: Backward trajectory of the node \(P \)](image)

We retain the definition of the vector \(\mathbf{a} \) given in (4.41) but redefine the velocity vector \(\mathbf{u} \) to apply at any point on the \((i - 1)\)th surface thus

\[
\mathbf{u} = \frac{\partial\phi}{\partial n}(\xi) \mathbf{n} + \frac{\partial\phi}{\partial \xi}(\xi) \mathbf{t}
\]

\[
= \frac{\partial\phi}{\partial n}(\xi)[n_r(\xi), n_z(\xi)] + \frac{\partial\phi}{\partial \xi}(\xi)[t_r(\xi), t_z(\xi)]
\]

\[
= \left(\left[\frac{\partial\phi}{\partial n}(\xi) n_r(\xi) + \frac{\partial\phi}{\partial \xi}(\xi) t_r(\xi) \right], \left[\frac{\partial\phi}{\partial n}(\xi) n_z(\xi) + \frac{\partial\phi}{\partial \xi}(\xi) t_z(\xi) \right] \right)
\]

\[
= \left(\left[\frac{\partial\phi}{\partial n}(\xi) \left(-\frac{dz}{d\xi}(\xi) \right) + \frac{\partial\phi}{\partial \xi}(\xi) \frac{dr}{d\xi}(\xi) \right], \left[\frac{\partial\phi}{\partial n}(\xi) \frac{dr}{d\xi}(\xi) + \frac{\partial\phi}{\partial \xi}(\xi) \frac{dz}{d\xi}(\xi) \right] \right)
\]

and hence the normal \(\mathbf{u}^* \) to \(\mathbf{u} \) becomes

\[
\mathbf{u}^* = -\frac{1}{\mathbf{u}}
\]
The scalar product between u^* and a

$$u^* \cdot a = \left[\frac{\partial \phi}{\partial n}(\xi) \frac{dr}{d\xi}(\xi) + \frac{\partial \phi}{\partial \xi}(\xi) \frac{dz}{d\xi}(\xi) \right] \left[\frac{\partial \phi}{\partial n}(\xi) \frac{dr}{d\xi}(\xi) - \frac{\partial \phi}{\partial \xi}(\xi) \frac{dz}{d\xi}(\xi) \right].$$

(4.88)

is used to locate the trajectory intersection point W by sliding Q along the $(i - 1)$th surface until W is coincident with P, i.e.,

$$u^* \cdot a = 0. \quad (4.90)$$

This is done by solving (4.90) for ξ using the bisection method, which defines the point Q. The potential ϕ_Q is then calculated from the linear function for ϕ in (4.23) yielding

$$\phi_b = \phi_Q. \quad (4.91)$$

4.3.5 Computing the volume and kinetic energy

When the processed bubble surface is represented by either a cubic spline or a set of linear elements, the volume of the whole bubble at any time in its evolution may be readily calculated.

Consider an infinitesimal slice of thickness dz and radius r which has a constant azimuthal angle θ due to the axisymmetric assumption. We can write the volume dV of the slice as

$$dV = \pi r^2 dz, \quad (4.92)$$

noting that

$$dz = \left(\frac{dz}{d\xi} \right) d\xi. \quad (4.93)$$

By combining (4.92) and (4.93) and integrating nodewise over the bubble surface S we obtain the total volume V of the bubble,

$$V = \int_S dV = \int_{\xi_0}^{\xi_n} \pi r^2 \left(\frac{dz}{d\xi} \right) d\xi. \quad (4.94)$$
The conversion of this scaled value to physical units is accomplished by multiplying by the factor R_m^3. Any expansion or contraction of a bubble is associated with a change in kinetic energy. At a given point in time this kinetic energy E_k can be written as

$$E_k = \frac{1}{2} \rho \int_V |\nabla \phi|^2 dV$$

$$= \frac{1}{2} \rho \int_S \phi \frac{\partial \phi}{\partial n} dS,$$ \hspace{1cm} (4.96)

and since

$$dS = 2\pi r d\xi,$$ \hspace{1cm} (4.97)

the energy equation (4.96) becomes

$$E_k = \pi \rho \int_S \phi \frac{\partial \phi}{\partial n} r d\xi.$$ \hspace{1cm} (4.98)

In order to obtain the kinetic energy in physical units, the scaled values calculated from (4.98) must be multiplied by the factor $\frac{1}{2} R_m^3 \Delta p$.

This completes the description of the techniques used to compute the pressure of a vapour bubble from its shape history. Appendix C contains a listing of the FORTRAN code that applies these techniques.
Chapter 5

VALIDATION

Before any computational technique can be utilised, it must first undergo some form of validation comparing its results with known results. This is true for both the spherical bubble and nodal displacement methods of computing the pressure on the bubble surface.

For this work, the known results are generated from bubble dynamics simulation code based on the mathematical model described in Chapter 3. The model (Best 1991a) employs an elementary description of the bubble contents, assuming them to be a combination of liquid vapour and non-condensible products which are ideal and undergo adiabatic expansions and contractions whilst exerting a uniform pressure over the surface of the bubble. The time varying theoretical pressure p_{th} within the bubble can be expressed as a function of its volume V at a given time t by

$$p_{th} = p_v + p_0 \left[\frac{V_0}{V} \right]^k,$$

where p_v is the vapour pressure of the fluid which is constant throughout the evolution. The subscript 0 denotes the initial quantities while k is the ratio of specific heats.

To generate test data we assume that the non-condensible bubble contents consist of an ideal diatomic gas only with 5 degrees of freedom (air). The effects of buoyancy are neglected, as is heat exchange with the surrounding fluid. Furthermore, the presence of liquid vapour is neglected, resulting in the polytropic process described by

$$p_{th} = p_0 \left[\frac{V_0}{V} \right]^k,$$
where for air $k = 1.4$. By stepping the boundary integral code based on this model through time the complete evolution of a bubble can be generated, both in an infinite fluid or near a rigid boundary.

Note that test coordinate data is generated using variable timesteps but extracted at regular time intervals to yield the desired number of coordinate files. Each has the same format as the preprocessed experimental files and contains the cylindrical coordinates of evenly spaced nodes $(0, \ldots, n)$ on the half-surface of a theoretical bubble, as in Figure 4.4. The number of nodes, which equals $n + 1$, may be set arbitrarily, where n is the index of the final node. Figure 5.1 depicts the pulsation of such a generated evolution in the vicinity of a rigid boundary seen at the bottom of the figure. It was produced using the graphic display program in Appendix D.

![Illustration](image)

Figure 5.1: Theoretical evolution of a vapour bubble

The validation data also contains the theoretical nodal $\partial \phi / \partial n$, nodal ϕ and bubble pressures in the nondimensional form described in Section 4.1. This enables comparisons to be made with values computed from the validation coordinate data using the two computational techniques described in this work. Data thus produced will be free from any experimental noise. Therefore any errors detected in the validation process can be attributed
Chapter 5. Validation

solely to the numerical processes involved.

Selection of a suitable theoretical timestep δt and number of nodes is important because the evolution should closely resemble an experimental one in nondimensional duration, number of coordinate files and number of nodes. By selecting $\delta t = 0.025$ and $n = 18$ approximately 84 files are generated for the first pulsation, which is equivalent to a typical experiment where 70 files of 19 nodes are produced. Initial conditions for the theoretical model are pressure $p_0 = 100.0$, inception coordinate $h_r = -2.0$ and the initial bubble radius $R_0 = 0.1651$. The cubic spline surface representation is used for the computed results. If more accuracy is required for the validation process, the timestep may be reduced and/or the number of nodes increased.

5.1 Spherical bubble method

Validation of this method involves comparing the theoretical and computed pressures which are derived from the same set of generated coordinate data. The theoretical pressures p_{th} are generated by (5.2) while the computed pressures p_b are calculated from (4.13). A comparison using generated data with $\delta t = 0.025$ and $n = 18$ is given in Figure 5.2.

Note the close correlation between the results. Clearly for the smooth generated coordinate data depicted in Figure 5.1 the spherical bubble method behaves well in computing the bubble pressure.

However, toward the end of the evolution at approximately time $t = 1.75$ there is a notable divergence between the two sets of results. This is due to the nonspherical geometry the bubble surface begins to acquire at this time and highlights the limitations of the method, which assumes constant radial velocity \dot{R}.

In order to gauge the difference between the two sets of values the relative error in the computed pressure E_{rel} is used, where

$$E_{rel} = \frac{|p_{th} - p_b|}{p_{th}}.$$ \hspace{1cm} (5.3)

This error is depicted graphically in Figure 5.3.
Figure 5.2: Theor. p_{th} and comp. p_b pressures ($\delta t = 0.025$, 19 nodes)

Figure 5.3: Rel. error in computed pressure p_b ($\delta t = 0.025$, 19 nodes)
Chapter 5. Validation

The start of the first collapse of the bubble occurs near \(t = 1.0 \), where we note that the spherical bubble method appears to be least accurate. This is misleading however since as the denominator of (5.3) becomes smaller, as is the case near \(t = 1.0 \), the relative error \(E_{rel} \) increases and is unrepresentative of the true error there.

Perhaps a better indication of the accuracy of the spherical bubble method lies in the use of the absolute error \(E_{abs} \) which is given by

\[
E_{abs} = p_{th} - p_b,
\]

and can be seen in Figure 5.4.

![Figure 5.4: Abs. error in computed pressure \(p_b \) (\(\delta t = 0.025, 19 \) nodes)](image)

The divergence after time \(t = 1.75 \) seen in Figure 5.2 is clearly visible from the large absolute error there. It is evident, however, that the method is indeed well behaved during the majority of the evolution, particularly around the start of collapse at time \(t = 1.0 \).

Let us now examine the effect of increasing the number of nodes to 37, that is, \(n = 36 \). Retaining the timestep as \(\delta t = 0.025 \), the pressures are compared in Figure 5.5. Whilst the theoretical and computed curves coincide for the majority of the evolution, there is still a divergence after time \(t = 1.75 \). However it is much less than for Figure 5.2 where only 19 nodes are used.
In fact the computed pressure p_b is lower than the theoretical pressure p_{th} in this region. A better idea of this difference can be gauged from the absolute error plot given in Figure 5.6.

![Figure 5.5: Theor. p_{th} and comp. p_b pressures ($\delta t = 0.025$, 37 nodes)](image)

![Figure 5.6: Abs. error in computed pressure p_b ($\delta t = 0.025$, 37 nodes)](image)
Clearly the increase in the number of nodes has improved the absolute error, which is about half of that shown in Figure 5.4 with 19 nodes. If the timestep is now reduced by one-half to $\delta t = 0.0125$ there appears to be very little gain in accuracy, as indicated by Figure 5.7.

![Graph showing absolute error in computed pressure p_b ($\delta t = 0.0125$, 37 nodes)](image)

Figure 5.7: Abs. error in computed pressure p_b ($\delta t = 0.0125$, 37 nodes)

A comparison between this graph and Figure 5.4 reveals that in fact the accuracy has been degraded to resemble the case with $\delta t = 0.025$ and 19 nodes, particularly at the final stages of the evolution. Perhaps the only real improvement is seen near time $t = 0$ where the error approaches zero. This is significant because this initial period of time contains important data regarding the bubble inception process.

In summary, the technique appears sound for generated data of a spherically evolving bubble but loses accuracy as the bubble shape diverges from spherical geometry. Provided that the experimental data depicts a spherical evolution the method will produce reasonable pressure results. Whilst increasing the number of nodes on the bubble surface produces a marked improvement in the accuracy, reduction of the timestep appears not to influence it significantly.

An advantage of using the spherical bubble method is that due to its use of the bubble volume V to compute the mean radius R, any minor fluctuations
on the bubble surface will be averaged out in the process. A corollary of this is that only the gross bubble characteristics such as \dot{R}, \ddot{R} and P_b can be found. In order to determine nodewise quantities use of the nodal displacement method is required.

5.2 Nodal displacement method

Progressing from the simple spherical bubble method to the more complex nodal displacement method involves a number of verification stages. The first of these would logically be the comparison between the theoretical nodal normal surface velocities $(\partial \phi/\partial n)_{th}$ which are generated using the mathematical model given in Chapter 3, and the computed $(\partial \phi/\partial n)_c$ extracted from the same coordinate test data using (4.40).

The effect of reducing the timestep from the experimentally equivalent $\delta t = 0.025$ to $\delta t = 0.0125$ is considered in this comparison, as is the effect of increasing the number of nodes from 19 to 37. Figures 5.8 and 5.9 display the nodewise and timewise developments in the value of $\partial \phi/\partial n$ for the theoretical and computed cases, each having a timestep value of $\delta t = 0.025$ and $n = 18$.

We define the relative error in computed $\partial \phi/\partial n$ in the familiar form

$$ E_{rel} = \frac{|(\partial \phi/\partial n)_{th} - (\partial \phi/\partial n)_c|}{(\partial \phi/\partial n)_{th}}, \quad (5.5) $$

and use this as a comparative tool in Figure 5.10. Once again we find that the relative error E_{rel} is not a good indicator of the accuracy of the method and the absolute error, which is given by

$$ E_{abs} = \left(\frac{\partial \phi}{\partial n}\right)_{th} - \left(\frac{\partial \phi}{\partial n}\right)_c. \quad (5.6) $$

is utilised. Figure 5.11 shows this error curve.
Chapter 5. Validation

Figure 5.8: Theoretical $\partial \phi / \partial n$ ($\delta t = 0.025$, 19 nodes)

Figure 5.9: Computed $\partial \phi / \partial n$ ($\delta t = 0.025$, 19 nodes)
Figure 5.10: Relative error in computed $\partial \phi / \partial n$ ($\delta t = 0.025$, 19 nodes)

Figure 5.11: Absolute error in computed $\partial \phi / \partial n$ ($\delta t = 0.025$, 19 nodes)
Near $t = 1.0$ the relative error E_{rel} apparently becomes excessive although this is not indicative of poor computation, merely a small denominator value for $(\partial\phi/\partial n)_{th}$ in (5.5).

A better indicator of the accuracy of the method is found in the plot of E_{abs} in Figure 5.11. Note the reasonably flat surface over the majority of the evolution, verifying that the method is indeed able to accurately compute the normal surface velocities. The largest error is found toward the end of the evolution, where the bubble is collapsing rapidly.

The effect of increasing the number of nodes from 19 to 37 is seen in the absolute error surface given in Figure 5.12.

![Figure 5.12: Absolute error in computed $\partial\phi/\partial n$ ($\delta t = 0.025$, 37 nodes)](image)

Here we see that the magnitude of the error at the end of the evolution has been substantially reduced, showing that accuracy can be improved by increasing the number of nodes. However at the start of the evolution there is still a noticeable error present. Surface velocities are high in this region and so we would therefore expect that a decrease in timestep δt would reduce the magnitude of the error. Figure 5.12 shows the effect of reducing the timestep by one-half to $\delta t = 0.0125$ while keeping $n = 36$.
Figure 5.13: Absolute error in computed $\partial \phi / \partial n$ ($\delta t = 0.0125$, 37 nodes)

From Figure 5.13 the method appears to be relatively free from error in the early stages of bubble evolution, indicating that reducing the timestep does achieve greater accuracy. A small area of error is evident around time $t = 1.0$ and this can be attributed to the computational technique failing to determine the nodal normals there. This is because the distance between consecutive bubble surfaces is now one-half smaller than for $\delta t = 0.025$, and as the surface velocity approaches zero there exists some uncertainty as to the position of the consecutive bubble surfaces.

An interesting observation in reducing the timestep is that towards the end of the first collapse E_{abs} becomes excessive, in fact over ten times greater than for $\delta t = 0.025$ with the same number of nodes. This is an unexpected result and can only be attributed to computational error caused by the reduction in timestep.

It becomes clear that a balance must be found between the reduction in timestep and increase in the number of nodes in order to reduce $\partial \phi / \partial n$ errors. Unfortunately in an experimental sense we are restricted to one combination only of δt and n, but it is still a valuable exercise to vary these parameters for verification purposes as was done here.

Because $\partial \phi / \partial n$ and ϕ are inherently linked via the boundary integral method (3.5), the errors in $\partial \phi / \partial n$, and the effects of reduction in timestep
and increase in the number of nodes on these errors will be reflected in the errors in the velocity potential ϕ.

The set of theoretical values ϕ_{th} generated by the verification program can be seen in Figure 5.14, while the computed values ϕ_c are given in Figure 5.15. Note the close correlation between the two surfaces. The comparison between these surfaces again utilises the relative error E_{rel}, shown in Figure 5.16, where

$$E_{rel} = \frac{\left| \phi_{th} - \phi_c \right|}{\phi_{th}}.$$ \hfill (5.7)

We note from Figure 5.16 that the relative error E_{rel} is largest where the value of the denominator term in (5.7) is small, that is, near $t = 1.0$. However the surface is otherwise flat with a relative error close to zero, clearly displaying the accuracy of the nodal displacement method using the experimentally equivalent values of $\delta t = 0.025$ and $n = 18$.

A better indication of the accuracy can be found in the absolute error E_{abs},

$$E_{abs} = \phi_{th} - \phi_c,$$ \hfill (5.8)

which appears to be constant in the nodewise direction in Figure 5.17 but varying with time. The largest errors can be found toward the end of the first collapse of the theoretical bubble, after time $t = 1.75$. The method appears to be most accurate near time $t = 1.0$ where E_{abs} approaches zero. This is significant because it is at this point in time when the greatest uncertainty in the position of the bubble surfaces exists.
Figure 5.14: Theoretical ϕ ($\delta t = 0.025$, 19 nodes)

Figure 5.15: Computed ϕ ($\delta t = 0.025$, 19 nodes)
Figure 5.16: Relative error in computed \(\phi \) (\(\Delta t = 0.025 \), 19 nodes)

Figure 5.17: Absolute error in computed \(\phi \) (\(\Delta t = 0.025 \), 19 nodes)
Consider now the effect that increasing the number of nodes to 37 and subsequently reducing the timestep to $\delta t = 0.0125$ has on the relative error. Figures 5.18 and 5.19 show the result of these changes.

Figure 5.18: Absolute error in computed ϕ ($\delta t = 0.025$, 37 nodes)

Figure 5.19: Absolute error in computed ϕ ($\delta t = 0.0125$, 37 nodes)
The trends in the absolute error in $\partial \phi / \partial n$ are reflected in that of ϕ whereby an increase in the number of nodes is accompanied by an increase in accuracy, whilst a subsequent decrease in timestep clearly increases the errors in the final stages of the first collapse. Once again it can be said that a trade-off is necessary between timestep and number of nodes to yield the best possible results.

Upon application of the modified Bernoulli equation (4.65) to the potential ϕ and its derivatives, the computed pressure is found on a nodewise basis. The governing equation (5.2) for the theoretical model predicts that the pressure p_{th} on the surface of the bubble should be equal at each node. Figure 5.20 shows this trend over time. However we find that for the same combination of timestep/number of nodes the values for the computed pressure p_c in Figure 5.21 are produced.

The main area of discrepancy between the theoretical and computed pressures is around the point of minimum surface velocity at $t = 1.0$. Here it is clear that the nodal displacement method computes a defined pressure peak for each node, whereas theoretically this should not exist. We can surmise that the error in ϕ is the dominant reason for this discrepancy, since the error in computed $\partial \phi / \partial n$ is much less pronounced here.

More significantly, the theoretical normal surface velocity $(\partial \phi / \partial n)_{th}$ is decreasing nodewise at the end of the first collapse (Figure 5.8) and so we would expect to see a corresponding increase in nodewise pressure at this time. The nodal displacement method results show this increase while the theoretical results do not, revealing one weakness of assuming a theoretically constant nodewise pressure distribution throughout the complete bubble evolution.

This weakness is best illustrated by examining the absolute error E_{abs} in computed pressure using

$$E_{abs} = p_{th} - p_c,$$

which is depicted graphically in Figure 5.22.
Figure 5.20: Theoretical pressure p_{th} ($\delta t = 0.025$, 19 nodes)

Figure 5.21: Computed pressure p_c ($\delta t = 0.025$, 19 nodes)
Consider also the relative error E_{rel} in the computed pressure which is given by

$$E_{rel} = \frac{|p_{th} - p_c|}{p_{th}},$$

and is shown in Figure 5.23. Here it can be seen that the main difference between the theoretical and computed pressures occurs around time $t = 1.0$. Due to the relative smallness of the denominator term in (5.10) this difference is exaggerated, yielding a result which is unrepresentative of the true error there.

If the number of nodes is now increased to 37, we see that the absolute error is reduced overall, particularly toward the end of the first collapse. Figure 5.24 shows this improvement in accuracy.
Figure 5.23: Rel. error in computed pressure p_c ($\delta t = 0.025$, 19 nodes)

Figure 5.24: Abs. error in computed pressure p_c ($\delta t = 0.025$, 37 nodes)
Chapter 5. Validation

Upon reduction of the timestep from $\delta t = 0.025$ to $\delta t = 0.0125$, shown in Figure 5.25, it becomes obvious that the absolute error has increased again.

![Figure 5.25: Abs. error in computed pressure p_c ($\delta t = 0.0125$, 37 nodes)](image)

As with the other computed quantities used to derive the computed pressures, reduction in the size of the timestep could be viewed as having a detrimental effect on the accuracy of the method.

One indication confirming the this is the large error peak occurring near the 37th node at about time $t = 1.0$. Since this peak appears unrepresentative, in comparison with the errors shown in Figure 5.24, it could be argued that reducing the timestep does reduce the method's accuracy. However, due to the uniform nodewise pressure distribution assumed in the theoretical data, it is unclear if this is in fact the case.

It would be appropriate at this point to summarise the accuracy of the nodal displacement method by means of a comparative graph. Figure 5.26 shows the effects of varying both the timestep and number of nodes on the maximum nodal absolute error in computed pressure.
The most accurate combination appears to be with \(\delta t = 0.025 \) and 37 nodes, where the absolute error is the lowest of the three combinations when averaged over time. Fortunately \(\delta t = 0.025 \) is equivalent to the experimental timestep used, so with an increase in the number of experimental nodes from the current 19 to 37, better accuracy can be expected.

![Figure 5.26: Max. nodal abs. errors in computed pressure \(p_c \)](image)

In summary, then, the validation of the pressure computing techniques has been carried out using generated data with varying timesteps and numbers of nodes. Both are susceptible to errors and their accuracies are strongly influenced by data quality.

It was found that the nodal displacement method was better suited to data with a minimum of experimental noise in the coordinate sets. This is because at the end of the first expansion the normal surface velocity approaches zero, and its sign fluctuates depending on the nodal positions in space. This produces some errors in \(\partial \phi/\partial n \) and these are more prevalent with unsmooth or noisy data.

A reduction in the size of the timestep does not necessarily increase accuracy since the consecutive bubble surfaces will be closer together, again making determination of \(\partial \phi/\partial n \) less accurate. Conversely, an increase in the number of nodes was seen to yield a noticeable improvement in accuracy.
One advantage of this method is its ability to analyse data from a distorted bubble such as one in the final stages of collapse (Figure 5.1). Clearly this is a more realistic situation than one that assumes purely spherical motion.

The spherical bubble method, on the other hand, is not as susceptible to minor surface pertubations as the nodal displacement method since it examines only the quantities of gross bubble motion. Increasing the number of nodes was seen to be accompanied by an increase in its accuracy, whilst reducing the timestep tended to have an adverse effect toward the end of the first collapse. Although the accuracy of the method decreases rapidly in the final stages of collapse when the bubble diverges from a spherical geometry, it is still a useful method and is well suited for use in experimental analysis.
Chapter 6

RESULTS AND DISCUSSION

Having validated the computational techniques used in this work, we will now proceed to apply them to real experimental data. In this chapter the shape histories of a spark-induced vapour bubble in the vicinity of a rigid boundary from three separate experiments are analysed and the results presented in graphical format.

The first experimental photographic record, film RB3, was an early work and the original film contains a large amount of optical noise. In addition, the image analysis procedure introduced further noise to the raw coordinate files resulting in poor data for use in the computational techniques. Nevertheless some interesting results are obtained.

The absence of any appreciable experimental noise in the newer second RBS30 and third RBS31 films shows clearly the recent improvements made in both the experimental procedures and the digital image analysis, while utilising the same apparatus and framing rate as the earlier film RB3.

Comparisons between the three experiments, based on these results, is made, as well as comparisons with the theoretical and experimental work of others. It will be seen that the spherical bubble and nodal displacement methods are well suited to experimental analysis, both enabling important quantities to be unobtrusively extracted from the original photographic data.
6.1 Film RB3

Using the apparatus and parameters described in Section 2.2, the film RB3 was made. A summary of the experimental parameters and errors is given in Table 6.1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>film title</td>
<td></td>
<td>RB3</td>
</tr>
<tr>
<td>date of filming</td>
<td></td>
<td>June 1991</td>
</tr>
<tr>
<td>framing rate</td>
<td></td>
<td>6000 /sec</td>
</tr>
<tr>
<td>time between frames</td>
<td></td>
<td>166.5μs</td>
</tr>
<tr>
<td>analysed timestep</td>
<td>δt</td>
<td>333μs</td>
</tr>
<tr>
<td>discharge voltage</td>
<td>V_d</td>
<td>10000 V</td>
</tr>
<tr>
<td>discharge capacitance</td>
<td>C_d</td>
<td>1 μF</td>
</tr>
<tr>
<td>ambient free surface pressure</td>
<td>p_a</td>
<td>5000 Pa</td>
</tr>
<tr>
<td>error in ambient free surface pressure</td>
<td></td>
<td>250 Pa</td>
</tr>
<tr>
<td>depth of inception</td>
<td>H</td>
<td>200.0 mm</td>
</tr>
<tr>
<td>error in depth of inception</td>
<td></td>
<td>1.0 mm</td>
</tr>
<tr>
<td>hydrostatic pressure at inception point</td>
<td>p_∞</td>
<td>6962.0 Pa</td>
</tr>
<tr>
<td>error in pressure at inception point</td>
<td></td>
<td>250 Pa</td>
</tr>
<tr>
<td>vapour pressure</td>
<td>p_v</td>
<td>1704.0 Pa</td>
</tr>
<tr>
<td>error in vapour pressure</td>
<td></td>
<td>55.8 Pa</td>
</tr>
<tr>
<td>distance from rigid boundary</td>
<td>h_r</td>
<td>50.0 mm</td>
</tr>
<tr>
<td>error in distance from rigid boundary</td>
<td></td>
<td>0.5 mm</td>
</tr>
<tr>
<td>bubble orientation</td>
<td></td>
<td>above boundary</td>
</tr>
<tr>
<td>water temperature</td>
<td>T_w</td>
<td>15.0°C</td>
</tr>
<tr>
<td>error in water temperature</td>
<td></td>
<td>0.5°C</td>
</tr>
<tr>
<td>maximum radius</td>
<td>R_m</td>
<td>24.5 mm</td>
</tr>
<tr>
<td>error in maximum radius</td>
<td></td>
<td>0.8 mm</td>
</tr>
<tr>
<td>standoff parameter</td>
<td>γ</td>
<td>2.041</td>
</tr>
<tr>
<td>buoyancy parameter</td>
<td>δ</td>
<td>0.270</td>
</tr>
<tr>
<td>frames/first pulsation</td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>period of first pulsation</td>
<td></td>
<td>0.0228 sec</td>
</tr>
<tr>
<td>scale</td>
<td></td>
<td>0.19157 mm/pixel</td>
</tr>
<tr>
<td>error in radius measurement</td>
<td></td>
<td>3 pixels</td>
</tr>
</tbody>
</table>

Table 6.1: Experimental parameters and errors for film RB3
Chapter 6. Results and discussion

An example sequence of raw images taken from this film is shown in Figure 6.1.

![Figure 6.1: Sequence of raw images from film RB3](image)

Digital image analysis of this film and conversion into the form shown in Figure 4.2 was undertaken by Mr Darren Weise at the Defence Science Technology Organisation using the technique described in Appendix A. Every alternate film frame was analysed, resulting in 165 Cartesian coordinate files recording the complete evolution of the bubble, each frame being 333μs apart in time. Using the graphic display program in Appendix D, this evolution was plotted in Figure 6.2. For clarity, only every fifth recorded file is plotted. The rigid boundary, represented by a straight line, is located at the bottom of the figure.

A preliminary observation is that there is a small horizontal displacement of the bubble centroid toward the left in the final stages of the evolution. This has been neglected by assuming that all dominant forces are acting in the vertical direction, thus allowing the data preprocessing program in Appendix B to yield the axisymmetric data in the cylindrical coordinate form of Figure 4.4.
Figure 6.2: Shape history, complete evolution, film RB3

The occurrence of the numerous pulsations of the bubble during its evolution is also evident from the plot of volume against time in Figure 6.3. The bubble volume is computed using (4.94).

Figure 6.3: Volume V vs time, complete evolution, film RB3
Chapter 6. Results and discussion

In Figure 6.3 we see that the first pulsation of the evolution is marked by a much larger maximum bubble volume (0.0000643 m3) than in subsequent cycles. Since volume varies as R^3, where R is the mean bubble radius at a given time, a small reduction in R would correspond to a much larger reduction in volume. This can be seen in the plot of R vs time given in Figure 6.4. The mean radius R is calculated from the bubble volume V using (4.14). The presence of the numerous pulsations of the bubble are also evident from this graph.

![Figure 6.4: Radius R vs time, complete evolution, film RB3](image)

The maximum radius $R_m = 24.5$ mm of this experiment compares favourably with that obtained by Gibson (1968) using the same apparatus, where R_m was measured as 15.9 mm. The smaller maximum radius can be attributed to the smaller quantity of electric spark energy (8 J) used in his experiment (Gibson, 1972). The available spark energy E_{spark} for the present film RB3 can be calculated from Gibson’s (1972) formula

$$E_{\text{spark}} = \frac{1}{2} C_d V_d^2,$$

(6.1)

where from Table 6.1 C_d, the discharge capacitance, is 1μF and V_d, the
discharge voltage, is 10000 V. This results in $E_{\text{spark}} = 50$ J, a much higher figure.

The fact that bubbles of this size can be generated reveals one advantage of spark-discharge methods over laser methods. For example, a maximum bubble radius of only 4.5 mm was produced by Vogel et. al. (1989) using a Q-switched ruby laser, which could only avail 400 mJ of energy for the bubble formation process.

A detailed plot of the more relevant first pulsation is given in Figure 6.5. Here, every recorded raw coordinate file is plotted.

![Growth and Collapse](image)

Figure 6.5: Shape history, first pulsation, film RB3

Note the distinct contrast between the above figure and the much smoother surface of the theoretical bubble evolution shown in Figure 5.1. The deviation from a spherical shape indicates that there is an appreciable amount of experimental and image analysis noise present in the raw Cartesian coordinate files.

An interesting observation is the apparent absence of centroidal movement toward the rigid boundary in the first pulsation. A good indication of this may be in the value of the product $\gamma \delta = 0.551 > 0.442$ which would suggest a movement away from the boundary if at all. This correlates well with the above figure.
The files were converted to cylindrical coordinates using the data preprocessing program (Appendix B) and subsequently analysed using the pressure extraction program (Appendix C). The nondimensional scaling factors used in this process, as described in Chapter 4, are given in Table 6.2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. raw data nodes</td>
<td>npts</td>
<td>36</td>
</tr>
<tr>
<td>no. processed nodes-1</td>
<td>n</td>
<td>18</td>
</tr>
<tr>
<td>length scale</td>
<td>R_m</td>
<td>0.0263</td>
</tr>
<tr>
<td>time scale</td>
<td>$R_m(\rho/\Delta p)^{\frac{1}{2}}$</td>
<td>0.01174</td>
</tr>
<tr>
<td>velocity scale</td>
<td>$(\Delta p/\rho)^{\frac{1}{2}}$</td>
<td>2.236</td>
</tr>
<tr>
<td>pressure scale</td>
<td>Δp</td>
<td>5257.0</td>
</tr>
<tr>
<td>volume scale</td>
<td>R_m^3</td>
<td>0.000018</td>
</tr>
<tr>
<td>energy scale</td>
<td>$\frac{1}{2} R_m^3 \Delta p$</td>
<td>0.0452</td>
</tr>
</tbody>
</table>

Table 6.2: Nondimensional scaling factors for film RB3

The kinetic energy of the evolving bubble can be determined by using (4.98). Figure 6.6 displays the variation of this quantity over time.

![Figure 6.6: Kinetic energy E_k vs time, complete evolution, film RB3](image)
From this plot, it is clear that energy is lost to the surrounding fluid during the course of the evolution. This can be seen in the reduction in the energy peaks at the end of each collapse. The presence of experimental noise is evident from the spurious nature of the curve in between the energy peaks.

Gibson (1972) states that only a maximum of 10 percent of the electrical energy is dissipated in the spark, and for the present work this equates to 5 J. From Figure 6.6 we see that the initial kinetic energy of the bubble is 0.242 J. If we assume that 5 J is liberated by the spark, then the balance of the energy is most likely lost in the form of the latent heat of formation of the water vapour, and other heat losses.

We now examine the behaviour of the quantities used by the spherical bubble method in (4.13) over the first pulsation to compute the bubble pressure p_b, namely the mean radius R, average surface radial velocity \dot{R}, and mean surface radial acceleration \ddot{R}. These quantities are computed by the pressure extraction program from the preprocessed data. The quantities R and \dot{R} are smoothed timewise to reduce the effects of noise, the smoothing scheme being based on the three-point algorithms

$$ R_{t,\text{smoothed}} \simeq \frac{1}{4}(R_{t-\delta t} + 2R_t + R_{t+\delta t}), \quad (6.2) $$

and

$$ \dot{R}_{t,\text{smoothed}} \simeq \frac{1}{4}(\dot{R}_{t-\delta t} + 2\dot{R}_t + \dot{R}_{t+\delta t}), \quad (6.3) $$

where the subscript t denotes the time and δt is the timestep. Figure 6.7 depicts the behaviour of R for the first pulsation, and Figure 6.8 \dot{R} for the same time span.

Even after smoothing, the presence of experimental noise can be seen in the somewhat jagged appearance of the curves, although the \dot{R} curve does possess a defined linear region. As expected, the maximum surface velocity, at 6.863 m/sec, occurs at the start of the first expansion phase.
Figure 6.7: Radius R vs time, first pulsation, film RB3

Figure 6.8: Radial velocity \dot{R} vs time, first pulsation, film RB3
At maximum volume, at time \(t = 0.0104 \) sec, the surface velocity changes sign and becomes negative, indicating the start of the first collapse. At the end of this collapse the linear trend in velocity disappears as the bubble accelerates toward the point of minimum volume.

The loss in kinetic energy is evident from the smaller magnitude of the surface velocity, which at the final time \(t = 0.0221 \) sec is 5.335 m/sec. This value compares favourably with the results of Vogel et. al. (1989) who quoted velocities in the order of 7 m/sec in their examination of much smaller laser-produced cavitation bubbles. Considering the physical differences between the size and generation techniques of these two types of bubbles, this is an interesting result.

The mean surface radial acceleration \(\ddot{R} \) is shown for the first pulsation in Figure 6.9.

![Figure 6.9: Radial acceleration \(\ddot{R} \) vs time, first pulsation, film RB3](image)

Clearly the effects of experimental noise still persist. By virtue of the method used in its determination, namely finite difference, any fluctuation in the smoothness of \(\ddot{R} \) will be magnified in \(\dddot{R} \).
Chapter 6. Results and discussion

This magnification of instabilities is unfortunate since they are further reflected in the behaviour of the bubble pressure \(p_b \) calculated using (4.13), which is repeated here.

\[
p_b = R\ddot{R} + \frac{3}{2}\dot{R}^2 + \mu R[\ddot{R} + 2\dot{R}^2] + 1.
\]

(6.4)

The resulting values of \(p_b \) are smoothed using the same algorithm as is used for \(R \) and \(\ddot{R} \) in (6.2) and (6.3). These are plotted in Figure 6.10 along with the theoretical pressure \(p_{th} \) generated using (5.2). Note the dominance of \(\ddot{R} \).

![Graph showing \(p_{th} \) and \(p_b \) pressures, first pulsation, film RB3](image)

Figure 6.10: Theor. \(p_{th} \) and comp. \(p_b \) pressures, first pulsation, film RB3

Some comments can be made on the comparison between the theoretical and computed pressures depicted in Figure 6.10. Firstly, both curves follow a similar trend, i.e., fairly constant pressure throughout the evolution apart from the initial and final stages where the pressures are higher. Where the computed pressure \(p_b \) is fairly constant, its mean value is approximately 5495 Pa, close to value of the ambient free surface pressure \(p_a \). At no point does the computed pressure fall below the vapour pressure \(p_v \).
Chapter 6. Results and discussion

Note that the low values of \(p_{th} \) may be due to too low a value for \(p_0 \) being used in (5.2). Unfortunately this variable is difficult to quantify, being at the very early stages of inception.

The maximum value of \(p_b \) in Figure 6.10 is 42890 Pa and this occurs towards the end of the first pulsation at time \(t = 0.0225 \) sec. The ratio of this maximum pressure to the pressure at the inception point \(p_\infty \) is 6.16. In their numerical model of the collapse of a vapour/gas bubble attached to a solid wall, Shima and Nakajima (1977) computed \(p_b/p_\infty \) to be a maximum of 7 for a bubble similar to the one investigated here. There appears to be good correlation between these two results.

Due to the finite difference methods used in calculating the radial derivatives, some of the initial and final radial data is unavailable for use in computing \(p_b \). Hence it is suspected that the maximum pressure may be even higher than that shown in the figure.

Secondly, we recall that the theoretical pressure was generated by assuming the bubble evolution process to be adiabatic, with the polytropic index \(n = k = 1.4 \), the ratio of specific heats. Assuming the actual process also to be polytropic, but with \(n \) unknown, we write

\[p_b = p_0 [V_0/V]^n, \]

where \(V \) is volume, with the subscript 0 denoting initial quantities. By plotting \(\log(p_b/p_0) \) vs \(\log(V_0/V) \) for the first pulsation using the computed data the actual value of \(n \) for the process can be found. We can confidently assume that the process is not adiabatic due to the energy losses from heating discussed earlier in this chapter. In order to examine the possibility that the growth and collapse phases of this pulsation use different thermodynamic processes, it is useful to separate the data for these phases and to find \(n \) for each case. Figures 6.11 and 6.12 depict these plots.

The values of \(n \) are given by the slope of the linear curve fits, which attempt to find a mean path between the data points. Thus we have \(n = 0.402 \) for the growth phase and \(n = 0.457 \) for the collapse. This indicates that both phases are the result of a process falling somewhere between isobaric (\(n = 0 \)) and isothermal (\(n = 1 \)). Since the contents of the bubble are unknown it is
not possible to speculate on whether the processes are isentropic \((n = k)\).

Figure 6.11: 1st growth phase as a polytropic process, film RB3

Figure 6.12: 1st collapse phase as a polytropic process, film RB3
Let us now consider the results obtained on a nodewise and timewise basis using the nodal displacement method. A cubic spline representation of the bubble surface was used in preference to linear elements due to difficulties experienced in determining the nodal normal surface velocities $\partial \phi / \partial n$. It seems that the abrupt change in the orientation $\theta_{j-\frac{1}{2}}$ of certain elements at their nodes, combined with the surface geometry, frequently resulted in no solution for the root solving equations (4.44) and (4.47). Hence $\partial \phi / \partial n$ and therefore the pressure p_c was indeterminate there.

Recalling the nodal nomenclature of Figure 4.4, where for the film RB3 the number of processed nodes is 19, the plot of $\partial \phi / \partial n$ for the complete recorded shape history is shown in Figure 6.13. Experimental noise is evident both nodewise and timewise but nevertheless the plot reflects the nodal motion evident in Figure 6.2.

Figure 6.13: $\partial \phi / \partial n$ vs time, complete evolution, film RB3

Since only the first pulsation is of relevance to this work, it is pertinent to display this region enlarged in Figure 6.14.
Comparing Figure 6.14 with the plot of R in Figure 6.8 it can be seen that both curves follow a similar trend over time. For the duration of the pulsation, the sign of R is the opposite of $\partial\phi/\partial n$ at a given time. This can be explained by recalling that $\partial\phi/\partial n$ is measured relative to an interior normal whereas R is relative to increasing R.

The magnitude of the surface velocities are very similar, both having a maximum value of approximately 7 m/sec. This is significant because it suggests that the tangential surface velocity $\partial\phi/\partial \xi$ is of a small magnitude throughout the first pulsation. That is, because

$$|\hat{R}| \sim |\frac{\partial\phi}{\partial n}|,$$

the motion is nearly spherical and therefore $\partial\phi/\partial \xi$ is small.

The nodal fluctuations in normal surface velocity, while significant, do not obscure its nodewise and timewise progression and merely reflect the noise in the images seen in Figure 6.5. The technique for computing the normal surface velocity appears to be able to cope well with the noisy experimental data, and there are no major unexpected deviations from the trend in
increasing $\partial \phi / \partial n$ over time.

The nodewise behaviour of the surface velocity potential ϕ over time is dependent on $\partial \phi / \partial n$ and this dependency can be seen in the nonlinear fluctuations in Figure 6.15.

The linear trend exhibited by the test data is also seen here, ϕ changing sign about halfway through the first pulsation. Nodewise, there appears to be some improvement in the smoothness of the curve, although spurious peaks are still evident.

Recall that the pressure p_c values are computed using (4.65) which is repeated here

$$p_c = \frac{1}{2} \left[\left(\frac{\partial \phi}{\partial n} \right)^2 + \left(\frac{\partial \phi}{\partial \xi} \right)^2 \right] - \frac{D\phi}{Dt} + 1,$$

(6.7)

where $D\phi/Dt$ is determined by the trajectory methods discussed in Section 4.3.4. The nodewise and timewise variation in $D\phi/Dt$ and p_c for the first pulsation are depicted in Figures 6.16 and 6.17 respectively.
Chapter 6. Results and discussion

Figure 6.16: \(D\phi/Dt \) vs time, 1st pulsation, film RB3

Figure 6.17: Computed pressure \(p_c \), 1st pulsation, film RB3
Chapter 6. Results and discussion

Noise present in $\partial \phi / \partial n$, ϕ and $D\phi /Dt$ is clearly reflected in the behaviour of p_c in Figure 6.17. Some spurious values are evident in nodes 15 to 18. Although the overall trend in the pressure is difficult to establish, there is a definite ridge visible at the end of the first collapse, around time $t = 0.022$ sec. This is expected because at this point the bubble's volume is a minimum. The value of p_c here averages 80000 Pa, yielding a value of 11.5 for the ratio p_c / p_∞, which is significantly higher than the value of 7 from Shima and Nakajima (1977).

An important observation of theirs, however, is that the surface pressure p_c theoretically varies with nodal position, a result confirmed by the present work. Chahine and Bovis (1983) also found pressure to vary with position on the bubble surface and using the method of matched asymptotic expansions determined that p_c / p_∞ could be as high as 60.

It appears that the average nodal surface pressure may indeed follow a similar trend to the pressure p_b derived using the spherical bubble method in Figure 6.10. Although the early stage of expansion does not reflect this, it is possible that it would if results using the nodal displacement method were available here.

Consider now the appearance of the theoretical pressure p_{th} curve for the first pulsation in Figure 6.18, which was generated using the adiabatic model in (5.2) with the polytropic index $n = k = 1.4$. This model assumes the bubble contents consist of air which exerts a uniform pressure over the surface of the bubble. This nodewise uniformity is clearly visible in the figure.

Some comments regarding the comparison between the experimental and theoretical pressures depicted in Figures 6.17 and 6.18 would be fitting here. Firstly, like the experimental curve, the theoretical curve displays a ridge in pressure at the end of the first collapse. Its magnitude is approximately one-half of the experimental, at 35000 kPa, and is constant over the surface of the bubble.

Secondly, the nodewise variation in experimental pressure shown in Figure 6.17 is not present in the theoretical curve, showing the possible improvement in accuracy gained by not assuming that the pressure is uniform over the whole of the bubble surface.
Chapter 6. Results and discussion

5.0x10^4

Figure 6.18: Theoretical pressure p_{th}, 1st pulsation, film RB3

Lastly, comparison with the theoretical curve highlights the presence of experimental noise in the raw data. Although there are some defined troughs and ridges in Figure 6.17, it is difficult to attribute these to any part of the bubble evolution process.

Unfortunately due to the degrading influence of the experimental noise, no detailed information can be gained from the pressure results. This by no means depreciates the usefulness of the nodal displacement technique, but does mean that smoother raw data must be used. Films RBS30 and RBS31 will now be examined in this light.

6.2 Film RBS30

The second film that was analysed was RBS30. Whilst the available coordinate data only recorded the first pulsation, this is the most relevant part of the bubble’s evolution to this work. More accuracy was afforded in the image analysis process which resulted in an increase in the total number of raw surface nodes npts to 72. A summary of the experimental parameters and errors is given in Table 6.3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>film title</td>
<td></td>
<td>RBS30</td>
</tr>
<tr>
<td>date of filming</td>
<td></td>
<td>May 1993</td>
</tr>
<tr>
<td>framing rate</td>
<td></td>
<td>5962 /sec</td>
</tr>
<tr>
<td>time between frames</td>
<td></td>
<td>167.7μs</td>
</tr>
<tr>
<td>analysed timestep</td>
<td>δt</td>
<td>335μs</td>
</tr>
<tr>
<td>discharge voltage</td>
<td>V_d</td>
<td>10000 V</td>
</tr>
<tr>
<td>discharge capacitance</td>
<td>C_i</td>
<td>1 μF</td>
</tr>
<tr>
<td>ambient free surface pressure</td>
<td>p_i</td>
<td>5000 Pa</td>
</tr>
<tr>
<td>error in ambient free surface pressure</td>
<td></td>
<td>250 Pa</td>
</tr>
<tr>
<td>depth of inception</td>
<td>H</td>
<td>197.5 mm</td>
</tr>
<tr>
<td>error in depth of inception</td>
<td></td>
<td>1.0 mm</td>
</tr>
<tr>
<td>hydrostatic pressure at inception point</td>
<td>p_oo</td>
<td>6938.0 Pa</td>
</tr>
<tr>
<td>error in pressure at inception point</td>
<td></td>
<td>250 Pa</td>
</tr>
<tr>
<td>vapour pressure</td>
<td>p_v</td>
<td>1704.0 Pa</td>
</tr>
<tr>
<td>error in vapour pressure</td>
<td></td>
<td>55.8 Pa</td>
</tr>
<tr>
<td>distance from rigid boundary</td>
<td>h_r</td>
<td>42.5 mm</td>
</tr>
<tr>
<td>error in distance from rigid boundary</td>
<td></td>
<td>0.5 mm</td>
</tr>
<tr>
<td>bubble orientation</td>
<td></td>
<td>above boundary</td>
</tr>
<tr>
<td>water temperature</td>
<td>T_w</td>
<td>15°C</td>
</tr>
<tr>
<td>error in water temperature</td>
<td></td>
<td>0.5°C</td>
</tr>
<tr>
<td>maximum radius</td>
<td>R_m</td>
<td>25.9 mm</td>
</tr>
<tr>
<td>error in maximum radius</td>
<td></td>
<td>0.8 mm</td>
</tr>
<tr>
<td>standoff parameter</td>
<td>γ</td>
<td>1.638</td>
</tr>
<tr>
<td>buoyancy parameter</td>
<td>δ</td>
<td>0.221</td>
</tr>
<tr>
<td>frames/first pulsation</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>period of first pulsation</td>
<td></td>
<td>0.0222 sec</td>
</tr>
<tr>
<td>scale</td>
<td></td>
<td>0.16120 mm/pixel</td>
</tr>
<tr>
<td>error in radius measurement</td>
<td></td>
<td>3 pixels</td>
</tr>
</tbody>
</table>

Table 6.3: Experimental parameters and errors for film RBS30
Chapter 6. Results and discussion

Once again, every second film image was analysed resulting in 60 Cartesian coordinate files recording the first pulsation of the bubble. A plot of the recorded evolution is shown in Figure 6.19 using the graphic display program in Appendix D. Although it appears that the evolution finishes prematurely, this only because the final film frames in the first pulsation were not digitally analysed. The rigid boundary is represented by the solid line at the bottom of the figure.

\[\gamma \delta = 0.362 < 0.442 \] so we would expect this translation.

Inception of the bubble takes place closer to the rigid boundary than for film RB3, and this can be seen to have some effect on its evolution. The Bjerknes force clearly dominates, with the bubble centroid moving toward the rigid boundary in the final stages of collapse. Note that the product \(\gamma \delta = 0.362 < 0.442 \) so we would expect this translation.

Although some experimental and image analysis noise exists, the bubble adheres to a nearly spherical shape until midway through the first collapse. Thus we would anticipate that the spherical bubble method in particular will yield meaningful results.

The behaviour of the bubble volume \(V \) during the first pulsation is shown in Figure 6.20, and this is characterised by a smooth transition over time. The maximum volume, at 0.0000734 m\(^3\), compares favourably with 0.0000643 m\(^3\) for film RB3, and this occurs at time \(t = 0.0102 \) sec.
Figure 6.20: Volume V vs time, first pulsation, film RBS30

Figure 6.21 depicts the variation in the kinetic energy E_k of the bubble, computed using (4.98), over time.

Figure 6.21: Kinetic energy E_k vs time, first pulsation, film RBS30
The initial peak in E_k has a value of 0.324 J, higher than that of film RB3 indicating a more energetic bubble motion. As expected, there is a reduction in kinetic energy over the first pulsation, indicating a perturbation of this motion.

Nondimensional scaling factors generated by the pressure extraction program after the preprocessing of the raw coordinate data are given in Table 6.4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. raw data nodes-1</td>
<td>$npts$</td>
<td>72</td>
</tr>
<tr>
<td>no. processed nodes</td>
<td>n</td>
<td>36</td>
</tr>
<tr>
<td>length scale</td>
<td>R_m</td>
<td>0.0264</td>
</tr>
<tr>
<td>time scale</td>
<td>$R_m(p/\Delta p)^{1/2}$</td>
<td>0.01156</td>
</tr>
<tr>
<td>velocity scale</td>
<td>$(\Delta p/\rho)^{1/2}$</td>
<td>2.288</td>
</tr>
<tr>
<td>pressure scale</td>
<td>Δp</td>
<td>5233.0</td>
</tr>
<tr>
<td>volume scale</td>
<td>R_m^3</td>
<td>0.000019</td>
</tr>
<tr>
<td>energy scale</td>
<td>$\frac{1}{2}R_m^3\Delta p$</td>
<td>0.0483</td>
</tr>
</tbody>
</table>

Table 6.4: Nondimensional scaling factors for film RBS30

Directly derived from the bubble's volume is the mean radius R and its behaviour is depicted in Figure 6.22 using the smoothing algorithm (6.2). Note the absence of any appreciable noise in the curve. The premature end in the recorded data is evident.

Figure 6.23 shows the mean surface radial velocity \dot{R} curve, which is very similar to that of film RB3, having the same characteristic sign change and linear region. The maximum value of \dot{R} is found to be 5.959 m/sec and this occurs at the beginning of the first pulsation. The small fluctuations in R over time are revealed in the \dot{R} plot, although it does possess greater smoothness than that of RB3.

The derivative of \dot{R}, the mean surface radial acceleration \ddot{R}, is depicted in Figure 6.24 after smoothing. In this figure the amplifying effect on the fluctuations of \dot{R} can be seen, which are mimicked to some degree in the behaviour of the bubble pressure p_b in Figure 6.25. The theoretical pressure p_{th} is overlaid on this plot, being generated by the adiabatic model of (5.2).
Figure 6.22: Radius R vs time, first pulsation, film RBS30

Figure 6.23: Radial velocity \dot{R} vs time, first pulsation, film RBS30
Chapter 6. Results and discussion

Figure 6.24: Radial acceleration \ddot{R} vs time, first pulsation, film RBS30

Figure 6.25: Theor. p_{th} and comp. p_b pressures, first pulsation, film RBS30
We see from Figures 6.10 and 6.25 that the pressure history for both films is indeed similar. Once again, the computed bubble pressure p_b for film RBS30 fails to fall below the vapour pressure and has a mean value of approximately 3814 Pa. Due to the premature end to the computed values mentioned earlier we can only speculate as to what the maximum pressure p_b may be. However it is likely to be higher than that shown a short time after inception, at 42200 Pa, which is similar to RB3 for the same time. Like RB3, the generated theoretical pressures p_{th} are much lower than the computed ones, possibly due to a low value of p_0 being used. Due to the lack of data the increase in p_b at the end of the collapse is not shown. The maximum value of the ratio p_b/p_{oo} is 6.082, which is similar to Shima and Nakajima's (1977) result.

Let us now examine the bubble evolution thermodynamically. Once again we assume that it is a polytropic process with an unknown index n. By plotting $\log(p_b/p_0)$ against $\log(V_0/V)$ for both the growth and collapse phases we are able to estimate the value of n. Figures 6.26 and 6.27 show these respective plots with their line of best fit. From the figures we have $n = 0.822$ for the growth phase and $n = 0.843$ for the collapse.

Like RB3 this indicates a process somewhere between isobaric and isothermal, but closer to isothermal in this case. Also worthy of note is the excellent correlation for the growth phase, the correlation coefficient being 0.902, which is a good fit indeed. This is a significant result and may well be able to give insight into the thermodynamics of pulsating vapour bubbles.

Progressing to the nodewise and timewise analysis of the data we now examine the results from the nodal displacement method for the film RBS30. Noting that the number of processed nodes has now increased to 37, based on the validation results we would expect more accurate results here than for the previous film. Once again the cubic spline representation of the bubble surface was chosen due to the difficulties experienced with the linear method. Figures 6.28 and 6.29 respectively depict the timewise and nodewise behaviour of the normal surface velocity $\partial \phi / \partial n$ and surface velocity potential ϕ.
Figure 6.26: 1st growth phase as a polytropic process, film RBS30

Figure 6.27: 1st collapse phase as a polytropic process, film RBS30
Figure 6.28: $\frac{\partial \phi}{\partial n}$ vs time, 1st pulsation, film RBS30

Figure 6.29: Potential ϕ vs time, 1st pulsation, film RBS30
A comparison between Figures 6.14 and 6.28 reveals that the smoother shape history of film RBS30 is reflected in the plot for $\partial \phi / \partial n$. The higher resolution afforded by the increase in the number of nodes allows us to examine the behaviour of this bubble more closely. While there is a nodal variation in $\partial \phi / \partial n$, it is nowhere near as pronounced as that of RB3.

The magnitude of the maximum normal surface velocity is very close to the maximum value of \dot{R} in Figure 6.23, as would be expected. At the end of the first collapse there is a noticeable absence of the nonlinear behaviour depicted in RB3 for the same point in its evolution. This is due to the premature end of the available data discussed earlier.

The velocity potential ϕ in Figure 6.29 exhibits some fluctuation in value, but this is predominantly timewise. Nodewise, ϕ remains fairly constant, the lack of spurious values indicating the ability of the nodal displacement method to cope well with the smoother data.

Unfortunately this smoothness in ϕ is not reflected in the behaviour of $D\phi/Dt$ seen in Figure 6.30. Here the presence of noise is very pronounced, particularly in the early stages of the evolution. As expected, this directly influences the plot of the computed pressure p_c over time in Figure 6.31, tending to degrade the values so badly that they are practically meaningless.

The lack of coherence in the computed $D\phi/Dt$ and p_c values is very uncharacteristic considering the well behaved values of $\partial \phi / \partial n$ and ϕ both nodewise and timewise. One can only surmise that it is caused by a computational error not evident in the validation process.
Figure 6.30: \(D\phi/Dt \) vs time, 1st pulsation, film RBS30

Figure 6.31: Computed pressure \(p_c \), 1st pulsation, film RBS30
6.3 Film RBS31

We now consider the analysis of the third film RBS31. Once again, only the first pulsation was digitised, but unlike RBS30 the collapse was recorded more completely. Table 6.5 summarises the experimental parameters and errors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>film title</td>
<td>RBS31</td>
<td></td>
</tr>
<tr>
<td>date of filming</td>
<td></td>
<td>May 1993</td>
</tr>
<tr>
<td>framing rate</td>
<td></td>
<td>5959 /sec</td>
</tr>
<tr>
<td>time between frames</td>
<td></td>
<td>167.8μs</td>
</tr>
<tr>
<td>analysed timestep</td>
<td>δt</td>
<td>336μs</td>
</tr>
<tr>
<td>discharge voltage</td>
<td>Vd</td>
<td>10000 V</td>
</tr>
<tr>
<td>discharge capacitance</td>
<td>Cd</td>
<td>1 μF</td>
</tr>
<tr>
<td>ambient free surface pressure</td>
<td>pa</td>
<td>5000 Pa</td>
</tr>
<tr>
<td>error in ambient free surface pressure</td>
<td></td>
<td>250 Pa</td>
</tr>
<tr>
<td>depth of inception</td>
<td>H</td>
<td>204.5 mm</td>
</tr>
<tr>
<td>error in depth of inception</td>
<td></td>
<td>1.0 mm</td>
</tr>
<tr>
<td>hydrostatic pressure at inception point</td>
<td>p∞</td>
<td>7006.2 Pa</td>
</tr>
<tr>
<td>error in pressure at inception point</td>
<td></td>
<td>250 Pa</td>
</tr>
<tr>
<td>vapour pressure</td>
<td>pv</td>
<td>1704.0 Pa</td>
</tr>
<tr>
<td>error in vapour pressure</td>
<td></td>
<td>55.8 Pa</td>
</tr>
<tr>
<td>distance from rigid boundary</td>
<td>hr</td>
<td>35.5 mm</td>
</tr>
<tr>
<td>error in distance from rigid boundary</td>
<td></td>
<td>0.5 mm</td>
</tr>
<tr>
<td>bubble orientation</td>
<td></td>
<td>above boundary</td>
</tr>
<tr>
<td>water temperature</td>
<td>Tw</td>
<td>15.0°C</td>
</tr>
<tr>
<td>error in water temperature</td>
<td></td>
<td>0.5°C</td>
</tr>
<tr>
<td>maximum radius</td>
<td>Rm</td>
<td>25.7 mm</td>
</tr>
<tr>
<td>error in maximum radius</td>
<td></td>
<td>0.8 mm</td>
</tr>
<tr>
<td>standoff parameter</td>
<td>γ</td>
<td>1.382</td>
</tr>
<tr>
<td>buoyancy parameter</td>
<td>δ</td>
<td>0.218</td>
</tr>
<tr>
<td>frames/first pulsation</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>period of first pulsation</td>
<td></td>
<td>0.0214 sec</td>
</tr>
<tr>
<td>scale</td>
<td></td>
<td>0.16050 mm/pixel</td>
</tr>
<tr>
<td>error in radius measurement</td>
<td></td>
<td>3 pixels</td>
</tr>
</tbody>
</table>

Table 6.5: Experimental parameters and errors for film RBS31
Image analysis of the first pulsation of the bubble yielded 60 Cartesian coordinate files which are plotted in Figure 6.32. The rigid boundary is seen at the bottom of the figure.

![Figure 6.32: Shape history, first pulsation, film RBS31](image)

The strong influence of the rigid boundary is very evident from the shape history of the bubble. Inception takes place closer to the boundary than with the previous two films and so we would expect the Bjerknes force to dominate the bubble motion. This is confirmed by the product $\gamma \delta = 0.301 < 0.442$, a condition which predicts the downward centroidal motion seen in the bubble’s shape history.

Note the absence of any significant experimental and image analysis noise in Figure 6.32. We would therefore expect the behaviour of both pressure extraction techniques to be satisfactory in the analysis of this dataset. The spherical bubble method in particular lends itself to the analysis of the first growth phase, where the bubble surface exhibits close adherence to a spherical form. The obvious variation in nodal normal surface velocities during the collapse phase should be easily detected and recorded by the nodal displacement method, and, as will be seen, this is in fact the case.

Over the duration of the first pulsation the volume V displays similar behaviour to that of the previous two films. As can be seen in its plot against time in Figure 6.33 there is however a slight instability near the point of maximum volume, where $V = 0.0000713$ m3. This is due to the closeness of the consecutive bubble surfaces in the shape history where the
volumes around this stage of the evolution are very similar.

The change in kinetic energy E_k of the bubble is depicted in Figure 6.34.

Figure 6.33: Volume V vs time, first pulsation, film RBS31

Figure 6.34: Kinetic energy E_k vs time, first pulsation, film RBS31
Following a similar trend to that of the previous two films, E_k peaks just after inception, where it has a maximum magnitude of 0.303 J, and at the end of the first collapse. Once again we see the familiar loss in kinetic energy indicating the perturbation of the bubble motion. Although some noise is present in the results, the improvement in the quality of the raw data can be gauged by comparing the E_k plots of RB3 and RBS31.

We now tabulate the nondimensional scaling factors used in the pressure extraction process in Table 6.6.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. raw data nodes</td>
<td>$npts$</td>
<td>72</td>
</tr>
<tr>
<td>no. processed nodes-1</td>
<td>n</td>
<td>36</td>
</tr>
<tr>
<td>length scale</td>
<td>R_m</td>
<td>0.0261</td>
</tr>
<tr>
<td>time scale</td>
<td>$R_m(\rho/\Delta p)^{\frac{1}{2}}$</td>
<td>0.01134</td>
</tr>
<tr>
<td>velocity scale</td>
<td>$(\Delta p/\rho)^{\frac{1}{2}}$</td>
<td>2.303</td>
</tr>
<tr>
<td>pressure scale</td>
<td>Δp</td>
<td>5302.0</td>
</tr>
<tr>
<td>volume scale</td>
<td>R_m^3</td>
<td>0.000018</td>
</tr>
<tr>
<td>energy scale</td>
<td>$\frac{1}{2}R_m^3 \Delta p$</td>
<td>0.0472</td>
</tr>
</tbody>
</table>

Table 6.6: Nondimensional scaling factors for film RBS31

The behaviour over time of the average bubble radius R is shown in Figure 6.35. Note that unlike RBS30, the complete evolution of the first pulsation is displayed, the curve being very smooth. This is due in part to the application of the smoothing algorithm (6.2).

After differentiating R with respect to time, the average surface radial velocity \dot{R} can be obtained, and its behaviour is shown in Figure 6.36. It has a maximum value of 5.991 m/sec just after inception, very close to that of RB3 and RBS30. Any fluctuations in \dot{R} are amplified in the behaviour of the average surface radial acceleration \ddot{R}, depicted in Figure 6.37. Whilst the trend in \ddot{R} is similar to that in RBS30, there appears to be an increase in the deviations from the mean values, even though smoothing (6.3) has been applied.

Once again we see that \ddot{R} is the dominating term in the pressure equation (4.13) and its effect on the smoothness of p_b can be seen in Figure 6.38, onto which p_{th}, generated by (5.2), has been overlaid.
Chapter 6. Results and discussion

Figure 6.35: Radius R vs time, first pulsation, film RBS31

Figure 6.36: Radial velocity \dot{R} vs time, first pulsation, film RBS31
Chapter 6. Results and discussion

Figure 6.37: Radial acceleration \ddot{R} vs time, first pulsation, film RBS31

Figure 6.38: Theor. p_{th} and comp. p_b pressures, first pulsation, film RBS31
Similarities between the trends in theoretical p_{th} and computed p_b pressures are evident from Figure 6.38, both having peaks at the beginning and end of the evolution. The mean computed pressure is 4179 Pa and p_b has a maximum of 35025 Pa, lower than for the previous two films. The ratio of the maximum computed pressure to the pressure at the inception point p_∞ is 4.99, significantly lower than Shima and Nakajima's (1977) result.

Promising results are obtained when the evolution is analysed as a thermodynamic process. As with the previous films, the polytropic index n for the growth and collapse phases is found by linearly fitting the plots of $\log(p_b/p_0)$ versus $\log(V_0/V)$. These plots are shown in Figures 6.39 and 6.40 respectively. Note the excellent linear correlation as indicated by the coefficients.

From the figures, for the growth phase $n = 0.809$ while for the collapse $n = 0.848$, suggesting a process somewhere between isobaric and isothermal, but tending to be more isothermal. These results are similar to those of film RBS30, however more confidence is placed in the present results due to the higher value of the correlation coefficient and better quality of the raw data.

Results from the nodal displacement method are now examined, the cubic spline surface representation being retained for reasons discussed earlier. We see from Figure 6.41 that the normal surface velocity $\partial \phi / \partial n$ varies significantly nodewise during the latter stages of the first collapse. This nodewise variation is suggested by the changes in the shape history in Figure 6.32, where the higher value nodes at the top of the bubble undergo larger displacements over time and hence have higher normal surface velocities.

The overall appearance of the $\partial \phi / \partial n$ plot is reasonably smooth and greater accuracy has been obtained by the higher number of surface nodes compared to RB3. Figure 6.42 depicts the timewise and nodewise variation in the surface velocity potential ϕ over the first pulsation, as derived from $\partial \phi / \partial n$. Whilst there are some fluctuations in its smoothness, the overall trend is similar to the previous two films.

Unfortunately this smoothness is not reflected in the plots of $D\phi/Dt$ and pressure p_c in Figures 6.43 and 6.44 respectively, where the uncharacteristic spurosity first seen in RBS30 is again found. This has tended to nullify these pressure results, from which meaningful data is again unable to be extracted.
Chapter 6. Results and discussion

Figure 6.39: 1st growth phase as a polytropic process, film RBS31

Figure 6.40: 1st collapse phase as a polytropic process, film RBS31
Figure 6.41: $\partial \phi / \partial n$ vs time, 1st pulsation, film RBS31

Figure 6.42: Potential ϕ vs time, 1st pulsation, film RBS31
Figure 6.43: $D\phi/Dt$ vs time, 1st pulsation, film RBS31

Figure 6.44: Computed pressure p_c, 1st pulsation, film RBS31
Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

The unobtrusive measurement of flow quantities associated with a pulsating vapour bubble has been achieved in this work. The techniques that have been used are unique in the sense that they combine both theoretical and experimental ideas into a single practical engineering tool.

By segmenting the bubble surface, this work has shown that quantities such as normal surface velocity, surface velocity potential and pressure vary along the surface and are not constant as popular theory would suggest. They are dynamic quantities both nodewise and timewise, with greater accuracy in their measurement occurring when the size of these intervals is reduced.

Although not able to yield any meaningful pressure results, the nodal displacement method has nevertheless been shown to be a stable experimental technique for the measurement of normal surface velocity and surface velocity potential. Other gross bubble quantities such as volume and kinetic energy have also been successfully computed. In particular, study of the kinetic energy results has cast some light on the energy losses experienced by a pulsating vapour bubble.

An interesting outcome of this work is that the best results were derived not from the detailed analysis afforded by the nodal displacement method, but rather from the more simpler spherical bubble method, which in fact assumes a uniform pressure inside the bubble. All three films yielded tangible results when analysed in this way, and it would be pertinent to summarise them here.

Firstly, despite a noticeable amount of experimental and image analysis
noise, the smoothing effect of using the average bubble radius as derived from its volume was seen to facilitate the extraction of well behaved radial derivatives. When applied in the pressure equation, these derivatives produced a reasonably stable pressure curve.

Secondly, although the usefulness of this method is restricted to some degree by the ability to record the bubble motion immediately after inception, some idea of the magnitude of the initial bubble pressure can be gained by extrapolating the curve backwards in time. Clearly this would result in extremely high inception pressures, not an unexpected result.

Lastly, and most importantly, by considering the evolution of the bubble as a thermodynamic process, some insight can be gained into just what its characteristic behaviour displays. In most cases it was shown that the bubble expansion and collapse phases bore close resemblance to a process somewhere between isobaric and isothermal, but closer to isothermal. Just what this means with respect to the analysis of bubble dynamics is unclear, and would form the basis of a study in itself.

Some comments regarding the possible directions of any future work will now be given.

Having demonstrated the ability of combined computational/theoretical techniques to extract tangible results from raw experimental data, it would be well worth persevering in this direction in order to obtain even better results. It is recommended that analysis of other shape histories be made and further conclusions be drawn regarding the behaviour of the many measured quantities.

The spherical bubble method, with its inherent data smoothing capabilities, possesses the greatest potential in achieving this end, notwithstanding the requirement that the influence of the rigid boundary be minimal. In this sense this technique is well suited to the analysis of a pulsating vapour bubble in an infinite fluid.

A worthwhile exercise would be to increase the framing rate of the high-speed camera in order to obtain more accurate shape histories. Indeed efforts to accomplish this are currently underway whereby a doubling of the present framing rate is now feasible. Ideally this would allow more meaningful results to be obtained via the nodal displacement method in particular, although the
validation exercise in Chapter 5 failed to show the benefit of such an increase.

Since the digital image analysis of the ciné film is a semi-automatic process, it would not be difficult to increase the number of surface nodes on the bubble. This would be a simple way to improve the accuracy of both methods, as shown in Chapter 5. Of course computing time would increase proportionally although this would be a minor consideration.

The two quantities that appear to dominate the respective pressure results from both methods are \dot{R} and $D\phi/Dt$. Any improvement in the behaviour of these by means of timewise smoothing would be beneficial. A study of the performance and application of the many known smoothing algorithms with respect to these quantities would therefore be a very worthwhile exercise.

In this work the utility of high-speed photography and digital image analysis has been shown, and exploited fully, without the need for complex physical measurements to be taken.

It is believed that this is a foretaste of things to come in engineering. More and more will image analysis, aided by powerful computing resources, be used as a quantitative engineering tool.
REFERENCES

BEST J. P. 1991b A FORTRAN subroutine for solving a Fredholm integral equation of the second kind that arises in axisymmetric free surface flow problems, unpublished, Materials Research Laboratory, Melbourne, Australia.

RAYLEIGH, LORD 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. *Phil. Mag.* **34**: 94–98

Appendix A

IMAGE ANALYSIS OF CINÉ FILM RECORDS

(by Mr D. Weise and Dr J. P. Best, DSTO)

Image analysis is carried out on the developed ciné film negative that records the transient bubble motion event. The aim of image analysis is to determine the bubble shape profiles throughout the first expansion and collapse. From this data the bubble volume and hence maximum equivalent bubble radius is determined. The process consists of an interactive extraction of the image of the bubble from the background followed by an automatic determination of a polar coordinate record of the bubble shape from this image.

The film is viewed via a video camera and the analog image input to the Kontron IBAS Version 2.0 image analysis system. This system is an integrated package of hardware and software that provides a wide variety of image analysis functions. Each frame is dealt with in succession. The frame grabber converts the analog image into a digital image which is registered in memory and used as input to the various image analysis routines available in the IBAS system. In the first instance, the grey scale is normalised and a median filter applied to smooth the image. Prior to extracting images of the bubble shape, the scaling relationship is determined. On a frame prior to initiation of the event, the distance between the two points where the electrodes emerge from the perspex supporting arms is measured in pixels using a function from the IBAS system. The measured distance between these two points is then used to define the scale with which measurements in pixels may be converted to measurements in physical units. This scale need
only be defined once for each bubble collapse record.

The film is then advanced to that frame at which initiation of the bubble by spark discharge is evident. This occurrence is characterised by the film (negative) being blacked out due to the high intensity light emitted by the spark discharge. Since initiation of the bubble may have occurred anywhere within the time interval between frames, the zero of time for the event is taken to be halfway between this frame and the preceding one, with an absolute error of $\pm 6\delta t/2$, with δt the interval between frames. The high intensity light from the spark discharge persists over the first few frames, so that the first frame analysed is usually the third or later in the sequence that records the bubble motion. On each frame the reference marker must be defined. This is so that images from successive frames may be recorded with respect to a common spatial reference. The reference point chosen is the point where the tungsten electrode emerges from its perspex supporting arm. It is estimated that this point is chosen with an accuracy of ± 1 pixel.

The image of the bubble is then separated from the background by a process known as segmentation. A greylevel threshold is set, such that removal of those parts of the image with lower greylevels leaves the bubble shape unaltered, as determined by visual inspection. This same greylevel threshold is generally used for subsequent frames from the same event, but may be altered if required. Segmentation leaves a black and white binary image of essentially the bubble, however, in many cases partial images of the electrodes remain, as do images of any small and spurious secondary cavitation bubbles that are formed around the edges of the main bubble. These parts of the remaining image are manually removed by defining a clipping region around the bubble. At this stage, only the image of the bubble remains, and any holes in the image are filled. The holes that are filled arise during segmentation and are due to the varying levels of illumination that are experienced over the bubble as the background illumination is refracted by the bubble itself. IBAS functions allow automatic determination of the centre of mass, area and equivalent radius of the binary image. These data are written to file, as is the binary image of the bubble at this time. This process is repeated for the desired frames of the film so that a record of binary bubble shapes is compiled.
Appendix A. Image analysis of ciné film records

The manual aspect of the image analysis program is completed with a determination of the exact framing rate. When the film is recorded focussed light from a LED registers a mark on the edge of the film with a frequency of 1000 Hz. The distance between these timing marks is determined and converted to units of frames. Multiplication by the timing frequency yields the framing rate. Since the camera controller was set to trigger the event once it reached a framing rate of approximately 6000 Hz, there are close to six frames between timing marks. The number of frames recording the first oscillation was usually between 40 and 70. In view of this, the framing rate was determined as an average over 36 frames. This completes the manual phase of the image analysis program.

The determination of the bubble shape coordinates is performed automatically using a program written in the IBAS command language. The binary image is sampled at angular intervals, to give a polar coordinate representation of the bubble surface. The origin for this polar representation is the centre of mass of the bubble image, as previously determined. Along each radial line, a bisection method is utilised to find the point at which the transition from white to black occurs. This corresponds to the edge of the bubble. The coordinates of the boundary points in pixels are converted to physical measurements using the scaling determined previously. In this way the complete history of the bubble shapes during the growth and collapse is recorded. In order to obtain an estimate of the error involved in such a determination of the bubble shape coordinates, a greyvalue profile was recorded at the edge of the bubble when it was near maximum shape. This process involves defining a narrow rectangular strip that crosses the bubble boundary. The IBAS system allows determination of the greyvalue in this rectangular strip and plots a histogram of this value at intervals of one pixel. The boundary of the bubble is characterised by a transition from light (bubble) to dark (background) and the greylevel threshold set during segmentation falls within the range of greyvalues recorded in this transition region. The width of this transition region gives an indication of the error involved in such a determination. Typically, the width of the transition region was 6 pixels, so the absolute error assumed in radius measurements was taken as ±3 pixels. This was converted to a physical measurement using the scale value.
Appendix B

DATA PREPROCESSING PROGRAM

* Program PREPRO *

* This program pre-processes a set of raw coordinate files *
* into BUBB11-ready input data. *
* Coordinates are smoothed and transformed from the *
* cartesian to the cylindrical coordinate system, and *
* are scaled to the max. radius. *

c Variable list

c area() = area array in pixels
c crdfli() = input coordinate filename array
c crdflo() = output coordinate filename array
c densy = fluid density
c dr(0:,) = radial difference from r array
c dx = horizontal component of dr
c dy = vertical component of dr
c gamma = ratio of specific heats
c maxfil = maximum no. of files allowed
c maxnod = maximum no. of nodes allowed - 1
c narea = area value dummy variable
c n = dummy variable
c nbott = node number or original bottom node
c ndatyp = data type, 1-exp., 2-validation
c nfltyp = output file type, 0-long, 1-induv.
c ndum = dummy variable
c nleft = node number of original left node
c nnodes = total no. of processed nodes - 1
c npts = no. of physical nodes
c nright = node number of original right node
c ntime = node number of original right node
c ntop = node number or original top node
c numfIs = no. of coordinate files to be read in
c nxi = horiz. coord. dummy variable
c nybolt = ref. vertical coord. dummy variable
c nyi = vertical coord. dummy variable
c phiacc = test condition for spurious errors
c pi = trigonometric pi
c pincep = hydrostatic fluid pressure at inception
c pixel = length conversion factor
c pvap = vapour pressure
c r(0:,) = radius from centroid array
c rav = average radius
c rmaxi = maximum bubble radius
c ro(0:,) = output radial coordinate array
c smooth = smoothing factor (larger-more spherical)
c time() = time array
c tinit = time of first photographic frame
c tmstep = timestep between subsequent coord files
c xi(0:) = input horizontal coordinate array
c xicent = horizontal centroidal coord.
Appendix B. Data preprocessing program

program prepro

c Dimension variables

 implicit double precision (a-h, o-z)

parameter(maxnod = 38, maxfil = 200)

character*11 crdfli(maxfil), crdflo(maxfil), ybdata

dimension xi(0 : maxnod),
& yi(0 : maxnod),
& ro(0 : maxnod, maxfil),
& zo(0 : maxnod, maxfil),
& ybolt(maxfil),
& r(0 : maxnod, maxfil),
& dr(0 : maxnod, maxfil),
& area(maxfil), time(maxfil)

c Set constants

c ---------------

rmaxi = 0.0d0
pi = 3.1415926535897932d0
pixel = 0.191571d-3
c Read in the input filenames

open(1 , file = 'crdfls.inp')

read(1 , *) npts
read(1 , *) numfls
read(1 , *) tmstep
read(1 , *) pincep
read(1 , *) nfltyp
read(1 , *) phiacc
read(1 , *) tinit
read(1 , *) pvap
read(1 , *) densy
read(1 , *) ndatyp
read(1 , *) ybdata
read(1 , *) smooth
read(1 , *) gamma

do 10 i = 1 , numfls , 1

 read(1 , 500) crdfli(i)

10 continue

close(1)

ntop = (npts + 1) / 4
nbott = (npts + 1) * 3 / 4
nleft = (npts + 1) * 2 / 4
nright = 0

c Read in the values of ybolt for each coordinate file

open(1 , file = ybdata)
write(* , *) 'reading: ' , ybdata
read(1 , 510)
do 30 i = 1, numfls, 1
 read(1, 540) ntime, narea, nybolt
 time(i) = dble(ntime)
 ybolt(i) = dble(nybolt)
 area(i) = dble(narea)
30 continue

close(1)

c Read in the input coordinates and transform and smooth them

do 40 i = 1, numfls, 1

 open(1, file = crdfli(i))
 open(2, file = 'rawcrd.dat')
 write(* , *) 'Input coordinate file: ', crdfli(i)
 read(1, 510)

 do 50 j = 0, npts, 1

 read(1, 520) n, nxi, nyi
 xi(j) = dble(nxi)
 yi(j) = dble(nyi)
 write(2, 550) time(i), time(i), 1.0d0 , &
 xi(j), yi(j)
50 continue

 xicent = xi(ntop)
 yicent = ybolt(i)

c Map the rigid boundary at yb onto the x-y plane and flip the
c images vertically to reflect the actual orientation. Set the
c new origin to (xicent , ybolt) i.e.,
c ---
do 60 j = 0, npts, 1
 xi(j) = xi(j) - xicent
 yi(j) = yicent - yi(j)
60 continue

do 70 j = nright, ntop - 1, 1
 xi(j) = (abs(xi(j)) + abs(xi(nleft - j))) / 2.0d0
70 continue

do 80 j = nbott + 1, npts, 1
 xi(j) = (abs(xi(j)) + abs(xi(2 * nbott - j))) / 2.0d0
80 continue
Consider now only the RHS of the bubble and renumber the nodes from nright (bottom) to nleft (top) and change to cylindrical coords, i.e.,

\[
\begin{align*}
\text{* nbott} & \quad \text{* nleft} \\
\text{* npts} & \quad \text{* nright(0)} \\
\text{* nleft} & \quad \text{* ntop} \\
\text{* nttop} & \quad \text{* nright(0)} \\
\end{align*}
\]

Bottom Right

\[
\begin{align*}
do 100 j = \text{nright, ntop, 1} \\
\text{ro}(j, i) &= \text{xi}(\text{ntop} - j) \\
\text{zo}(j, i) &= \text{yi}(\text{ntop} - j) \\
\end{align*}
\]

100 continue

Top Right

\[
\begin{align*}
\text{ndum} &= 5 \ast \text{ntop} \\
do 110 j = \text{ntop} + 1, \text{nleft, 1} \\
\text{ro}(j, i) &= \text{xi}(\text{ndum} - j) \\
\text{zo}(j, i) &= \text{yi}(\text{ndum} - j) \\
\end{align*}
\]

110 continue

\[
\begin{align*}
close(1) \\
40 \quad \text{continue} \\
close(2)
\end{align*}
\]
Appendix B. Data preprocessing program

Compute the average radius and smooth the coordinates to this reference if smooth .ne. 0

if (smooth .ne. 0.0d0) then

write(* , *) 'Additional radial smoothing applied'
write(* , *) 'smooth % = ', smooth * 100.0d0

do 130 i = 1 , numfls , 1

rav = (area(i) / pi) ** 0.5

dr(j , i) = r(j , i) - rav

do 130 j = nright , nleft , 1

r(j , i) = (ro(j , i) ** 2 + 2 * ro(j , i) -
zo(ntop , i)) ** 0.5

r(j , i) = ro(j , i) * smooth * dx
zo(j , i) = zo(j , i) + smooth * dy

130 continue

endif

nnodes = nleft

Compute the output coordinate filenames

open (1 , file = 'crdfs.dt')
write(1 , *) nnodes
write(1 , *) numfls
write(1 , *) tmstep
write(1 , *) pincep
write(1 , *) nfltyp
write(1,*) phiacc
write(1,*) tinit
write(1,*) pvap
write(1,*) densty
write(1,*) ndatyp
write(1,*) gamma

do 160 i = 1, numfls, 1

 write(fmt = 2000, unit = crdflo(i)) i
 write(1,500) crdflo(i)

160 continue
close(1)

c Write the output coordinates to files

do 170 i = 1, numfls, 1

 open(2, file = crdflo(i))
 write(*,*) 'Output coordinate file:', crdflo(i)

 do 170 j = nright, nleft, 1

 write(2,530) ro(j,i)*pixel, zo(j,i)*pixel

170 continue
close(2)

c Housekeeping

500 format(a11)
510 format(/)
520 format(i4,t10,i4,t18,i4)
530 format(1x,2f14.7)
540 format(t17,i5,t31,i5,t98,i4)
550 format(5f14.7)
2000 format(i8)

stop
end
Appendix C

PRESSURE EXTRACTION PROGRAM

**
* Program BUBB11
**
* This program computes the surface pressure of a series of *
* underwater vapour cavity images captured using high-speed *
* cinematography.
*
* The boundary integral method (bim) is utilised in an *
* inverse way whereby the velocity potentials are computed *
* using only bubble geometry and surface propagation data. *
*
* Subroutines supplied by J Best (MRL) and A Kucera (ADFA) *
* are linked at compile time.
**
Variable list

crdf1() = coordinate filename array character

densty = fluid density dbl prec

distpf(0,:) = norm. dist. from (i+1)th to ith bub. dbl prec

distpb(0,:) = norm. dist. from (i-1)th to ith bub. dbl prec

dn = used in subroutine PHI dbl prec

dincep = distance from centroid to rigid b'dry dbl prec

displ = distance between node and n.i.p. dbl prec

dpnth(0,:) = theoretical normal velocity array dbl prec

dphidn(0,:) = normal surface velocity array dbl prec

dphidt(0,:) = time rate of change of vel. pot. dbl prec

dphidz(0,:) = tangential surface velocity dbl prec

dscale = density scale dbl prec
dtscal = time rate of change of vel. pot. scale dbl prec
dummydO = dummy array dbl prec
dxscal = tangential velocity scale dbl prec

ergsk() = kinetic energy of the bubble dbl prec
errdpa = max. abs. error in computed dphi/dn dbl prec
errdpr = max. rel. error in computed dphi/dn dbl prec
errpha = max. abs. error in computed phi dbl prec
errphr = max. rel. error in computed phi dbl prec
errpra = max. abs. error in computed pressure dbl prec
errprrr = max. rel. error in computed pressure dbl prec
escale = energy scale dbl prec
n = solution function value dbl prec
gamma = ratio of specific heats dbl prec

i = file loop counter integer

j = node loop counter integer

js = solution node dummy integer

jn = solution node dummy integer

jsolb(0,:) = node ahead of i.p. - bwd integer

jsolf(0,:) = node ahead of i.p. - fwd integer

maxfil = no. coord. files dimensioning variable integer

maxnod = no. nodes dimensioning variable integer

nbr = if root not found=1, bwd displ. integer

nberr = no. bwd traj. errors integer

ndatyp = data type, 1-exp., 0-validification integer

nderr = no. spurious dphi/dn errors integer

ndphdt = no. spurious Dphi/Dt errors integer

nferr = no. fwd traj. errors integer

nfr = if root not found=1, fwd trajectory integer

ni = segment length parameter integer
Appendix C. Pressure extraction program

nj = arclength integration parameter integer
nnodes = total no. of surface nodes - 1 integer
nperr = no. of spurious vel. pot. values integer
npf = if root not found=1, fwd displ. integer
npferr = no. project-fwd displ. errors integer
npres = no. spurious pressure errors integer
nsurf = 1-linear, 2-quadratic, 3-cubic elements integer
numfIs = no. of coord. files to be read in integer
pa(0:) = cubic spline parameter array dbl prec
pav() = mean nodal pressure array dbl prec
pb(0:) = cubic spline parameter array dbl prec
pc(0:) = cubic spline parameter array dbl prec
pd(0:) = cubic spline parameter array dbl prec
phicacc = test condition for spurious errors dbl prec
phic(0:,) = velocity potential array dbl prec
phitb(0:,) = actual velocity pot. at new pos.- bwd dbl prec
phitf(0:,) = actual velocity pot. at new pos.- fwd dbl prec
phith(0:,) = theoretical velocity potential array dbl prec
phix = velocity potential dummy dbl prec
pi = trigonometric pi dbl prec
pincep = hydrostatic fluid pressure at inception dbl prec
press(0:,) = nodal pressure array dbl prec
presth() = theoretical pressure array dbl prec
pscale = pressure scale dbl prec
psph() = spherical bubble pressure array dbl prec
pvap = vapour pressure dbl prec
pwe() = pressure array using work method dbl prec
ra(0:) = cubic spline parameter array dbl prec
rad(0:,) = nodal radius array dbl prec
rav() = mean radius array dbl prec
rb(0:,) = cubic spline parameter array dbl prec
rc(0:) = cubic spline parameter array dbl prec
rd(0:,) = cubic spline parameter array dbl prec
rddot() = mean surface radial acceleration array dbl prec
rdot() = mean surface radial velocity array dbl prec
rdscal = mean surface radial acceleration scale dbl prec
rf = node of interest radial coord. dbl prec
ri(0:,) = radial coordinate array dbl prec
rinit = initial bubble radius dbl prec
rip1 = (i+1)th node radial coord. dbl prec
rmaxi = maximum bubble radius dbl prec
rn = normal intersection point dummy dbl prec
rnipb(0:,) = normal intersection point - bwd dbl prec
rnipf(0:,) = normal intersection point - fwd dbl prec
Appendix C. Pressure extraction program

130

```
c s(0:,) = segment arclength array         dbl prec

c sgn = direction indicator - +ve if expanding       dbl prec

c sn = solution segment arclength dummy        dbl prec

c sold = fwd traj. arclength solution dummy    dbl prec

c ssold(0:,) = bwd i.p. arclength soln. array    dbl prec

c ssolf(0:,) = fwd i.p. arclength soln. array    dbl prec

c sum = average pressure dummy variable        dbl prec

c t(0:,) = arclength parameter array          dbl prec

c tangr = radial vector                       dbl prec

c tangz = vertical vector                      dbl prec

c theta(0:,) = linear nodal direction array    dbl prec

c time() = time array                         dbl prec

c tmstep = timestep between subsequent coord. files   dbl prec

c tr = tangential component                   dbl prec

c tscale = time scale                          dbl prec

c tsold(0:,) = bwd i.p. arclength solution array  dbl prec

c tsolf(0:,) = fwd i.p. arclength solution array  dbl prec

c tz = tangential component                    dbl prec

c v0 = initial volume ( theoretical )          dbl prec

c vnscal = normal velocity scale               dbl prec

c vol = dummy volume variable                 dbl prec

c volume() = computed volume array             dbl prec

c vpscal = velocity potential scale           dbl prec

c vscale = volume scale                        dbl prec

c xnr = normal component                      dbl prec

c xnz = normal component                      dbl prec

c xscale = length scale                       dbl prec

c za(0:,) = cubic spline parameter array       dbl prec

c zb(0:,) = cubic spline parameter array       dbl prec

c zc(0:,) = cubic spline parameter array       dbl prec

c zd(0:,) = cubic spline parameter array       dbl prec

c zf = node of interest vertical coordinate    dbl prec

c zi(0:,) = vertical coordinate array          dbl prec

c zip1 = (i+1)th node vertical coord.          dbl prec

c zn = normal intersection point dummy        dbl prec

c znipb(0:,) = normal intersection point - bwd    dbl prec

c znipf(0:,) = normal intersection point - fwd    dbl prec

```

c last update 26/10/93 sbh
Appendix C. Pressure extraction program

program bubb11

! Dimension variables
!

implicit double precision (a - h , o - z)
parameter(maxnod = 38 , maxfil = 200)

character*11 crdfl(maxfil)

dimension ri(0 : maxnod , maxfil),
& zi(0 : maxnod , maxfil),
& dphidn(0 : maxnod , maxfil),
& s(0 : maxnod , maxfil),
& t(0 : maxnod , maxfil),
& phic(0 : maxnod , maxfil),
& ra(0 : maxnod , maxfil),
& rb(0 : maxnod , maxfil),
& rc(0 : maxnod , maxfil),
& rd(0 : maxnod , maxfil),
& za(0 : maxnod , maxfil),
& zb(0 : maxnod , maxfil),
& zc(0 : maxnod , maxfil),
& zd(0 : maxnod , maxfil),
& pa(0 : maxnod , maxfil),
& pb(0 : maxnod , maxfil),
& pc(0 : maxnod , maxfil),
& pd(0 : maxnod , maxfil)

dimension volume(maxfil),
& dphidt(0 : maxnod , maxfil),
& press(0 : maxnod , maxfil),
& distpf(0 : maxnod , maxfil),
& distpb(0 : maxnod , maxfil),
& dphidz(0 : maxnod , maxfil),
& ssolf(0 : maxnod , maxfil),
& ssolb(0 : maxnod , maxfil),
& rnipf(0 : maxnod , maxfil),
& znipf(0 : maxnod , maxfil),
& rnipb(0 : maxnod , maxfil),
& znipb(0 : maxnod , maxfil),
& phitf(0 : maxnod , maxfil),
& phitb(0 : maxnod , maxfil),
Appendix C. Pressure extraction program

& jsolf(0 : maxnod , maxfil),
& jsolb(0 : maxnod , maxfil),
& energk(maxfil),
& tsolf(0 : maxnod , maxfil),
& tsolb(0 : maxnod , maxfil),
& dummyd(maxfil),
& presth(maxfil),
& dpdnth(0 : maxnod , maxfil),
& phith(0 : maxnod , maxfil),
& theta(0 : maxnod , maxfil),
& rav(maxfil),
& rad(0 : maxnod , maxfil),
& pav(maxfil),
& pwe(maxfil),
& rdot(maxfil),
& rddot(maxfil),
& psph(maxfil),
& time(maxfil)

c Display title screen

c ---------------

write(* , *) 'VAPOUR CAVITY PRESSURE'
write(* , *)
write(* , *) ' COMPUTATION'
write(* , *)
write(* , *) by S. B. Harvey'
write(* , *)
write(* , *)
write(* , *) v1.03 26 October 1993'
write(* , *)
write(* , *)
write(* , *) 'Please enter 1 - linear representation'
write(* , *)' 2 - quadratic representation'
write(* , *)' 3 - cubic representation'
write(* , *)
read(* , *) nsurf
write(* , *)
Appendix C. Pressure extraction program

c Initialise variables

pi = 3.1415926535897932d0
ni = 4
nj = 4
dn = -1.0d0

write(* , *) 'now reading in coordinate files...
write(* , *)

c Read in the coordinate data and scale them

call indata(ri , zi , numfls , crdfl , rad , nsurf ,
& tmstep , nnodes , maxfil , maxnod ,
& pincep , dpnth , phith , phiacc ,
& pvap , rmaxi , densy , pscale , tscale ,
& escale , vscale , vnsca , xscale , dscale ,
& dincep , rinit , v0 ,
& time , ndatyp , vpsca , dxscal , dtscal ,
& rdscal , gamma)

if(nsurf .eq. 1) then

c set up linear elements

write(* , *) 'now setting up linear elements...
write(* , *)

do 10 i = 1 , numfls , 1

t(0 , i) = 0.0d0

do 2 j = 1 , nnodes , 1

s(j , i) = sqrt((ri(j , i) - ri(j - 1 , i))
& ** 2 + (zi(j , i) - zi(j - 1 , i)) ** 2)
&t(j , i) = t(j - 1 , i) + s(j , i)

continue
call linear(ri(0, i), zi(0, i),
& s(0, i), t(0, i),
& maxnod,
& ra(0, i), rb(0, i),
& rc(0, i), rd(0, i),
& nnodes,
& za(0, i), zb(0, i),
& zc(0, i), zd(0, i),
& dn, theta(0, i))
10 continue

compute the volumes of the bubbles using their linear
representation

do 11 i = 1, numfls, 1

call voluml(maxnod, nnodes,
& ra(0, i), za(0, i),
& vol)

volume(i) = vol
presth(i) = (vO / vol) ** gamma
11 continue

elseif(nsurf .eq. 2) then
set up quadratic elements (not yet implemented)
goto 15

elseif(nsurf .eq. 3) then
set up cubic elements
15 write(* , *) 'now setting up cubic elements...'
write(* , *)
do 18 i = 1 , numfls , 1

 call arcl(maxnod , nnodes , nj , ni , dn ,
 & ra(0 , i) , rb(0 , i) , rc(0 , i) ,
 & rd(0 , i) , ri(0 , i) , s(0 , i) ,
 & za(0 , i) , zb(0 , i) , zc(0 , i) ,
 & zd(0 , i) , zi(0 , i) , t(0 , i))

18 continue

compute the volumes of the bubbles using their cubic
representation

C ------------------------
C do 19 i = 1 , numfls , 1

 call volumc(maxnod , nnodes , ra(0 , i) , rb(0 , i)
 & , rc(0 , i) , rd(0 , i) , za(0 , i)
 & , zb(0 , i) , zc(0 , i) , zd(0 , i)
 & , s(0 , i) , vol)

 volume(i) = vol
 presth(i) = (v0 / vol) ** gamma

19 continue

endif

C Compute the mean radius of each bubble shape using its volume
C ------------------------

do 20 i = 1 , numfls , 1

 rav(i) = (3.0d0 * volume(i) / (4.0d0 * pi)) **
 & (1.0d0 / 3.0d0)

20 continue
c Smooth the radii timewise
c ---
 do 21 i = 2 , numfls - 1 , 1
 dummyd(i) = 0.5d0 * (rav(i - 1) + rav(i + 1))
 21 continue
 do 22 i = 2 , numfls - 1 , 1
 rav(i) = dummyd(i)
 22 continue

 c Compute radial derivatives
 c ---
 do 23 i = 2 , numfls - 1 , 1
 rdot(i) = 1.0d0 / (2.0d0 * tmstep) * (rav(i + 1) -
 & rav(i - 1))
 rddot(i) = 1.0d0 / tmstep ** 2 * (rav(i + 1) -
 & 2.0d0 * rav(i) + rav(i - 1))
 23 continue

 c Smooth the rddot values timewise
 c ---
 do 24 i = 2 , numfls - 1 , 1
 dummyd(i) = 0.5d0 * (rddot(i - 1) + rddot(i + 1))
 24 continue
 do 25 i = 2 , numfls - 1 , 1
 rddot(i) = dummyd(i)
 25 continue
Appendix C. Pressure extraction program

Compute the distpf and distpb arrays

First project 'back' from the current bubble surface to the previous one and compute the backward projected normal distance. Note that this is a signed distance. It will be positive if the bubble is contracting.

write(*,*) 'normal velocity calculation - backwards'

do 30 i = 2, numfls, 1

write(*,*) 'i = ', i

distpb(0, i) = -1.0*(zi(0, i) - zi(0, i - 1))
&
distpb(nnodes, i) = zi(nnodes, i) - zi(nnodes, i - 1)

rnipb(0, i) = 0.0d0
znipb(0, i) = zi(0, i - 1)

rnipb(nnodes, i) = zi(nnodes, i - 1)
jsolb(0, i) = 1

jsolb(nnodes, i) = nnodes + 1
tsolb(0, i) = t(0, i - 1)
tsolb(nnodes, i) = t(nnodes, i - 1)

do 30 j = 1, nnodes - 1, 1

rf = ri(j, i)
zf = zi(j, i)

call projbk(ra(0, i - 1), rb(0, i - 1),
&
rc(0, i - 1), rd(0, i - 1),
&
za(0, i - 1), zb(0, i - 1),
&
zc(0, i - 1), zd(0, i - 1),
&
ri(0, i - 1), zi(0, i - 1),
&
s(0, i - 1), rf, zf, maxnod,
&
displ, sn, js, rn, zn, nnodes)

ssolb(j, i) = sn
jsolb(j, i) = js
tsolb(j, i) = t(jsolb(j, i) - 1, i - 1)
&
+ ssolb(j, i)
\begin{align*}
\text{rnipb}(j, i) &= \text{rn} \\
\text{znipb}(j, i) &= \text{zn} \\
\text{distpb}(j, i) &= \text{displ}
\end{align*}

\textbf{30} \text{ continue}

c Secondly project 'forward' from the current bubble surface to the

c next one and compute the forward projected normal distance. Note

c that this distance is normal to the current bubble surface. Again,
c the distance is signed in each case (+ve if contracting).

d\text{write}(\ast, \ast) \ 'normal \ velocity \ calculation - \ forwards' \n
do 40 \text{i} = 1, \text{numfls} - 1, 1 \n
d\text{write}(\ast, \ast) \ 'i = ', \text{i} \n
distpf(0, i) &= -1.0 \ast (z(i, i + 1) - z(i, i)) \\
distpf(nnodes, i) &= z(nnodes, i + 1) \\
& \quad - z(nnodes, i) \\
\text{rnipf}(0, i) &= 0.0d0 \\
\text{znipf}(0, i) &= z(0, i + 1) \\
\text{rnipf}(nnodes, i) &= 0.0d0 \\
\text{znipf}(nnodes, i) &= z(nnodes, i + 1) \\
\text{jsolf}(0, i) &= 1 \\
\text{jsolf}(nnodes, i) &= nnodes + 1 \\
\text{tsolf}(0, i) &= t(0, i + 1) \\
\text{tsolf}(nnodes, i) &= t(nnodes, i + 1)
\end{align*}

do 40 \text{j} = 1, \text{nnodes} - 1, 1

d\text{rf} = \text{ri}(j, i) \\
d\text{zf} = \text{zi}(j, i) \\
d\text{tr} = \text{rb}(j, i) \\
d\text{tz} = \text{zb}(j, i) \\
d\text{ripl} = \text{ri}(j, i + 1) \\
d\text{zipl} = \text{zi}(j, i + 1)
call projfw(ra(0 , i + 1) , rb(0 , i + 1) ,
& rc(0 , i + 1) , rd(0 , i + 1) ,
& za(0 , i + 1) , zb(0 , i + 1) ,
& zc(0 , i + 1) , zd(0 , i + 1) ,
& s(0 , i + 1) , rf , zf ,
& tr , tz , maxnod , displ , nnodes ,
& sn , js , j , rip1 , zip1 , npf)

npferr = npferr + npf

ssolf(j , i) = sn
jsolf(j , i) = js
tsolf(j , i) = t(jsolf(j , i) - 1 , i + 1) + ssolf(j , i)

distpf(j , i) = displ

if(npf .eq. 1) then
 write(* , *) 'root not found'
endif

40 continue

c Compute dphi/dn values
c -----------------------

do 50 i = 1 , numfls , 1

do 60 j = 0 , nnodes , 1

dphidn(j , i) = -1.0 * ((distpf(j , i) +
& distpf(j , i)) / (2.0 * tmstep))

60 continue

50 continue
Filter out any spurious dphi/dn values and write dphi/dn to file

```
open( 1 , file = 'norm_vel.dat' )
write( 1 , * ) 'time    j     dphidn'
nderr = 0

do 70 i = 2 , numfls - 1 , 1
write( 1 , 1110 ) time( i ) * tscale , 0 ,
&       dphidn( 0 , i ) * vnscal

do 68 j = 1 , nnodes - 1 , 1

if( abs( dphidn( j , i ) ) .gt. 5.0d0 *
  &      abs( dphidn( 0 , i ) ) ) then
  sgn = ( volume( i ) - volume( i + 1 ) ) /
  &      abs( volume( i ) - volume( i + 1 ) )
  dphidn( j , i ) = sgn * dist( ri( j , i - 1 ) ,
  &                                  zi( j , i - 1 ) ,
  &                                  ri( j , i + 1 ) ,
  &                                  zi( j , i + 1 ) ) /
  &                          ( 2.0d0 * tmstep )
  nderr = nderr + 1
endif

if( abs( dphidn( j , i ) ) .eq. 0.0d0 ) then
  sgn = ( volume( i ) - volume( i + 1 ) ) /
  &      abs( volume( i ) - volume( i + 1 ) )
  dphidn( j , i ) = sgn * dist( ri( j , i - 1 ) ,
  &                                  zi( j , i - 1 ) ,
  &                                  ri( j , i + 1 ) ,
  &                                  zi( j , i + 1 ) ) /
  &                          ( 2.0d0 * tmstep )
  nderr = nderr + 1
endif

write( 1 , 1110 ) time( i ) * tscale , j ,
&       dphidn( j , i ) * vnscal
```

continue
Appendix C. Pressure extraction program

write(1 , 1110) time(i) * tscale , nnodes ,
& dphidn(nnodes , i) * vnscl

70 continue

close(1)

write(* , *)
write(* , *) 'no. projfw errors = ' , npferr
write(* , *) 'no. dphi/dn spurious errors = ' , nderr
write(* , *) 'dphi/dn values computed'

c Renumber the nodes 1 to nnodes+1 and call subroutine PHI (see Best,
c --
c 1991b for a complete source listing).
c -------------------------
c Velocity potentials (phic) are returned.
c -------------------------

do 90 i = 1 , numfls , 1

 write(* , *) 'computing phi for: ' , time(i)

 call phi(ri(0 , i), zi(0 , i),
& dphidn(0 , i) , phic(0 , i),
& nnodes + 1 , nnodes)

90 continue

c Write phic to file
c ----------------

open(1 , file = 'phi.dat')
write(1 , *) 'time j phi'

do 91 i = 1 , numfls , 1

 do 91 j = 0 , nnodes , 1

 write(1 , 1110) time(i) * tscale , j ,
& phic(j , i) * vpscl
 Appendix C. Pressure extraction program

continue

close(1)

c Compute the kinetic energy of the bubble using linear elements

c---

write(*, *) 'computing kinetic energy'

do 100 i = 1, numfls, 1

 do 105 j = 1, nnodes - 1, 1

 dummyd(j) = -1.0d0 * dphidn(j, i)
 pa(j, i) = phic(j, i)
 pb(j, i) = (phic(j + 1, i) - phic(j, i)) /
 s(j + 1, i)
 pc(j, i) = 0.0d0
 pd(j, i) = 0.0d0

105 continue

 dummyd(nnodes) = -1.0d0 * dphidn(nnodes, i)

 call energ(ra(0, i), rb(0, i), rc(0, i),
 rd(0, i),
 pa(0, i), pb(0, i),
 pc(0, i), pd(0, i), dummyd,
 energk(i),
 t(0, i), maxnod, nnodes)

100 continue
c Compute the tangential velocity

call dphdz(dphidz , t , phic ,
& numfls , maxfil , nnodes , maxnod)

Check quality of data before computing trajectories

if(nderr .gt. int(numfls / 2)) then

write(* , *)
write(* , *) 'too many dphi/dn errors - estimating dphi/dt'

do 106 i = 3 , numfls - 2 , 1
 do 106 j = 0 , nnodes , 1
 phitf(j , i) = (phic(j , i + 1))
 phitb(j , i) = (phic(j , i - 1))
 106 continue

goto 125
endif

Compute the actual trajectory of a fluid particle travelling

forwards at velocity \(v = (d\phi/dn) n + (d\phi/dxi) t \)

do 112 i = 3 , numfls - 2 , 1

write(* , *) 'forward trajectory: ', time(i)

phitf(0 , i) = phic(0 , i + 1)
phitf(nnodes , i) = phic(nnodes , i + 1)
do 110 j = 1 , nnodes - 1 , 1

rf = ri(j , i)
zf = zi(j , i)
xnr = -1.0d0 * zb(j , i)
xnz = rb(j , i)
tr = rb(j , i)
tz = zb(j , i)

tangr = -1.0d0 * (dphidn(j , i) * xnz +
&
dphidz(j , i) * tz)

tangz = (dphidn(j , i) * xnr +
&
dphidz(j , i) * tr)

call fortrj(ra(0 , i + 1) , rb(0 , i + 1) ,
&
rc(0 , i + 1) , rd(0 , i + 1) ,
&
za(0 , i + 1) , zb(0 , i + 1) ,
&
zc(0 , i + 1) , zd(0 , i + 1) ,
&
s(0 , i + 1) , rf , zf ,
&
phic(0 , i + 1) ,
&
tangr , tangz , maxnod , phix , j ,
&
sn , fn , jn , nfr , nnodes)

phitf(j , i) = phix
nferr = nferr + nfr

c If a satisfactory value for the forward trajectory phi is not found

if (((abs(phitf(j , i) - phic(j , i + 1))
&
/ abs(phic(j , i + 1))) .gt. phiacc) .or.
&
(nfr .eq. 1)) then
write(* , *) 'recalculating fwd trajectory i = ', i
write(* , *) ' j = ' , j
write(* , *)

if dphidz is negative then the t.i.p. must lie
between the n.i.p. and jsol

if (dphidz(j , i) .lt. 0.0d0) then
solf = ssolf(j , i) + dphidz(j , i) * tmstep
else
Appendix C. Pressure extraction program

\[\text{solf} = \text{ssolf}(j,i) - \frac{d\phi}{dz}(j,i) \times \text{tmstep} \]

\[\text{endif} \]

\[\text{phitf}(j,i) = \text{pa}(\text{jsolf}(j,i) - 1,i+1) + \]
\[\text{pb}(\text{jsolf}(j,i) - 1,i+1) \times \]
\[\text{solf} \]

\[\text{endif} \]

110 continue

112 continue

c Compute the actual trajectory of a fluid particle travelling
backward at velocity \(v = \left(\frac{d\phi}{dn} \right) n + \left(\frac{d\phi}{dx} \right) t \)

do 120 i = 3, \text{numfls} - 2, 1

write(*, *) 'backward trajectory: ', time(i)

\(\text{phitb}(0,i) = \text{phic}(0,i-1) \)

\(\text{phitb}(\text{nnodes},i) = \text{phic}(\text{nnodes},i-1) \)

do 115 j = 1, \text{nnodes} - 1, 1

\(\text{rf} = \text{ri}(j,i) \)

\(\text{zf} = \text{zi}(j,i) \)

\[\text{call baktrj}(\text{ra}(0,i-1),\text{rb}(0,i-1),\]
\[\text{rc}(0,i-1),\text{rd}(0,i-1),\]
\[\text{za}(0,i-1),\text{zb}(0,i-1),\]
\[\text{zc}(0,i-1),\text{zd}(0,i-1),\]
\[\text{ri}(0,i-1),\text{zi}(0,i-1),\]
\[\text{dphidn}(0,i),\]
\[\text{phic}(0,i-1),\]
\[\text{dphidz}(0,i),\]
\[\text{s}(0,i-1),\text{rf},\text{zf},\]
\[\text{maxnod},\text{nnodes},\text{phix},\text{nbr}) \]
Appendix C. Pressure extraction program

\[\text{phitb}(j, i) = \text{phix} \]
\[\text{nberr} = \text{nberr} + \text{nbr} \]

115 continue

120 continue

c Compute the time rate of change of the velocity potential \(\frac{\partial \phi}{\partial t} \)

c

125 call dphdt(dphidt, phitf, phitb, tmstep, ndphdt,
& numfls, maxfil, nnodes, maxnod, phiacc)

c Compute the nodal pressures

c

npress = 0

do 126 i = 3, numfls - 2, 1

do 127 j = 0, nnodes, 1

press(j, i) = (1.0d0 + 5.0d-1 * (dphidn(j, i) ** 2.0d0 + dphidz(j, i) ** 2.0d0) - dphidt(j, i))

if(abs(press(j, i)) .gt. 10.0d0 *
& abs(press(0, i))) then

press(j, i) = press(0, i)

npress = npress + 1
endif

127 continue

126 continue
Appendix C. Pressure extraction program

```fortran
do 129 i = 3 , numfls - 2 , 1
    sum = 0.0d0
    do 128 j = 0 , nnodes , 1
        sum = sum + press( j , i )
    128 continue
    pav( i ) = sum / ( nnodes + 1 )
129 continue

if( ndatyp .eq. 0 ) then
    compute the absolute and relative errors in dphidn,
    phi and pressure if validation data is used

    open( 5 , file = 'dpdn_a.dat' )
    open( 6 , file = 'dpdn_r.dat' )
    open( 7 , file = 'phi_a.dat' )
    open( 8 , file = 'phi_r.dat' )
    open( 9 , file = 'press_a.dat' )
    open( 10 , file = 'press_r.dat' )

    write( 5 , * ) 'maximum absolute error in dphidn'
    write( 6 , * ) 'maximum relative error in dphidn'
    write( 7 , * ) 'maximum absolute error in phi'
    write( 8 , * ) 'maximum relative error in phi'
    write( 9 , * ) 'maximum absolute error in pressure'
    write( 10 , * ) 'maximum relative error in pressure'

    do 132 i = 1 , numfls , 1
        errdpa = 0.0d0
        errdpr = 0.0d0
        errpha = 0.0d0
        errphr = 0.0d0
        errpra = 0.0d0
        errprr = 0.0d0
```

do 133 j = 0, nnodes, 1

if(dpdnth(j , i) .ne. 0.0d0) then

errdpa = max(errdpa , abs(dpdnth(j , i) +
&
dphidn(j , i)))
&
errdpr = max(errdpr , abs(dpdnth(j , i) +
&
dphidn(j , i)) / abs(dpdnth(j , i)))
endif

if(phith(j , i) .ne. 0.0d0) then

errpha = max(errpha , abs(phith(j , i) -
&
phic(j , i)))
&
errphr = max(errphr , abs(phith(j , i) -
&
phic(j , i)) / phith(j , i))
endif

if(presth(i) .ne. 0.0d0) then

errpra = max(errpra , abs(presth(i) -
&
pres(j , i)))
&
errprr = max(errprr , abs(presth(i) -
&
pres(j , i)) / presth(i))
endif

133 continue

write(5 , 1020) time(i), errpa
write(6 , 1020) time(i), errdpr
write(7 , 1020) time(i), errpha
write(8 , 1020) time(i), errphr
write(9 , 1020) time(i), errpra
write(10 , 1020) time(i), errprr

132 continue
close(5)
close(6)
close(7)
close(8)
close(9)
close(10)

endif

write(* , *)
write(* , *) 'pressures computed'
write(* , *) 'forward trajectory errors = ', nferr
write(* , *) 'backward trajectory errors = ', nberr
write(* , *) 'dphidt errors = ', ndphdt
write(* , *) 'pressure errors = ', npres

write(* , *) 'writing data to files...

c Use the spherical bubble approximation and work method
c --
c to compute average pressure
c -------------------------------

p1 = pav(3)

do 135 i = 3 , numfls - 2 , 1

 pwe(i + 1) = 2.0d0 * (energk(i + 1) - energk(i)) /
 & (volume(i + 1) - volume(i)) -
 & p1
 p1 = pwe(i + 1)
 psph(i) = (rav(i) * rddot(i) + 1.5d0 *
 & rdot(i) ** 2 + 1.0d0 /
 & (2.0d0 * abs(dincep))
 & * rav(i) * (rav(i)
 & * rddot(i) +
 & 2.0d0 * rdot(i) ** 2) + 1.0d0)

135 continue
Appendix C. Pressure extraction program

Write results to files

if (ndatyp .eq. 0) then
 open(1 , file = 'norm_vel.dat')
 open(3 , file = 'phi.dat')
 write(1 , *) 'time j dphidn dpdnth err_a err_r'
 write(3 , *) 'time j phi phith err_a err_r'
endif

open(2 , file = 'envol9.dat')
open(4 , file = 'pressure.dat')
open(5 , file = 'dphidn9.dat')
open(6 , file = 'rav.dat')
open(7 , file = 'dphidt.dat')
open(9 , file = 'presth.dat')

write(2 , *) 'time vol(m^3) energy(j) ',
write(4 , *) 'time j press pressth err_a err_r'
write(5 , *) 'time dphidn_9 dphids_9 phi_9'
write(6 , *) 'time dphidt_9 rav rdot rddot'
write(7 , *) 'time j phitb phic phitf dphidt'
write(9 , *) 'time pav(pa) pth(pa) pwe(pa) psph(pa) r a '

do 140 i = 1 , numfls , 1

 write(2 , 1030) time(i) * tscale ,
 volume(i) * vscale ,
 energk(i) * escale

 write(5 , 1050) time(i) * tscale ,
 dphidn(9 , i) * vnscal ,
 dphidz(9 , i) * dxscal ,
 phic(9 , i) * vpscal

 write(6 , 1070) time(i) * tscale ,
 dphidt(9 , i) * dtscal ,
 rav(i) * xscale ,
 rdot(i) * vnscal ,
 rddot(i) * rdscal

 if (ndatyp .eq. 1) then

if (ndatyp .eq. 0) then
Appendix C. Pressure extraction program

experimental data used

```c
write( 9, 1130 ) time( i ) * tscale ,
&
pav( i ) * pscale ,
&
presth( i ) * pscale ,
&
pwe( i ) * pscale ,
&
psph( i ) * pscale
```

validation data used

```c
write( 9, 1080 ) time( i ),
&
pav( i ),
&
presth( i ) * pscale ,
&
pwe( i ),
&
psph( i ),
&
( psph( i ) - presth( i ) * pscale ) /
&
( presth( i ) * pscale ),
&
psph( i ) - presth( i ) * pscale
```

```c
endif

do 140 j = 0 , nnodes , 1

if( ndatyp .eq. 0 ) then

```c
write(1, 1100) time(i), j ,
&
dphidn(j , i),
&
-1.0d0 * dpdnth(j , i),
&
abs(dpdnth(j , i) +
&
dphidn(j , i)) ,
&
abs(dpdnth(j , i) +
&
dphidn(j , i)) / dpdnth(j , i)
```

```c
write(3, 1100) time(i), j ,
&
phic(j , i),
&
phith(j , i),
&
abs(phith(j , i) -
&
phic(j , i)) ,
&
abs(phith(j , i) -
&
phic(j , i)) / phith(j , i)
```

endif
```
Appendix C. Pressure extraction program

```fortran
write( 4 , 1100 ) time( i ) , j ,
& press( j , i ) ,
& presth( i ) * pscale ,
& abs( presth( i ) * pscale -
& press( j , i ) ) ,
& abs( presth( i ) * pscale -
& press( j , i ) ) / ( presth( i )*pscale )
endif

if( ndatyp .eq. 1 ) then

write( 4 , 1120 ) time( i ) * tscale , j ,
& press( j , i ) * pscale ,
& presth( i ) * pscale
endif

write( 7 , 1100 ) time( i ) * tscale ,
& j , phitb( j , i ) * vpscal ,
& phic( j , i ) * vpscal ,
& phitf( j , i ) * vpscal ,
& dphidt( j , i ) * dtscal
140 continue

if( ndatyp .eq. 0 ) then
    close( 1 )
    close( 3 )
endif

close( 2 )
close( 4 )
close( 5 )
close( 6 )
close( 7 )
close( 9 )
```
c Housekeeping
c ------------

1020 format(2f14.7)
1030 format(3f14.7)
1040 format(i3 , 5f14.7)
1050 format(4f14.7)
1060 format(i3 , 4f14.7)
1070 format(f10.4 , 4f20.5)
1080 format(7f10.5)
1090 format(f14.7 , i3 , 3f14.7)
1100 format(f14.7 , i3 , 4f14.7)
1110 format(f14.7 , i3 , f14.7)
1120 format(f14.3 , i5 , 2f20.4)
1130 format(f10.5 , 4f14.3)

stop
end
Appendix C. Pressure extraction program

* Subroutine INDATA *

*
* INDATA firstly reads in the list of data filenames and then each individual coordinate file in sequence. The coordinates must be in the format 1x,2f14.7, double precision, 19 nodes with node zero at the bottom. The rigid boundary is at z=0. max no. of files = maxfil.
*
* The coordinates are scaled to maximum radius.
*

Local variable list

dum = dummy variable dbl prec
ddum = dummy variable dbl prec
idum = dummy variable integer
nfltyp = input file type, 0-long, 1-induv. integer
rexp = initial mean radius dbl prec
rsum = sum of radii dbl prec
tinit = time of first photographic frame dbl prec

subroutine indata(ri, zi, numfls, crdfl, rad, nsurf,
 tmstep, nnodes, maxfil, maxnod,
 pincep, dpnth, phith, phiacc,
 pvap, rmaxi, densty, pscale, tscale,
 escale, vscale, vncal, xscale, dscale,
 dincep, rinit, vinit,
 time, ndatyp, vpscal, dxscal, dtscal,
 rdscal, gamma)
Appendix C. Pressure extraction program

c Dimension variables

 implicit double precision (a - h, o - z)

 character*11 crdfl(maxfil)

 dimension ri(0 : maxnod, maxfil),
 & zi(0 : maxnod, maxfil),
 & dpdnth(0 : maxnod, maxfil),
 & phith(0 : maxnod, maxfil),
 & rad(0 : maxnod, maxfil),
 & time(maxfil)

 c Set constants

 dum = 0.0d0
 pi = 3.1415926535897932d0
 rmaxi = 0.0d0

 c Open data files and read in coordinate data

 open(1, file = 'crdfls.dt')
 read(1, *) nnodes
 read(1, *) numfls
 read(1, *) tmstep
 read(1, *) pincep
 read(1, *) nfltyp
 read(1, *) phiacc
 read(1, *) tinit
 read(1, *) pvap
 read(1, *) densty
 read(1, *) ndatyp
 read(1, *) gamma
Appendix C. Pressure extraction program

if (ndatyp .eq. 0) then
 if (nfltyp .ne. 1) then
 if input file is long (nfltyp = 0) then read all (validation)
 data in from the one file
 write(* , *) 'reading in long file...'
 do 10 i = 1 , numfls , 1
 dum = dum + tmstep
 idum = int(10000.0 * dum)
 write(fmt = 2000 , unit = crdfl(i)) idum
 write(* , 500) crdfl(i)
 read(1 , *) ddum
 do 11 j = 0 , nnodes , 1
 read(1 , 510) ri(j , i) ,
 zi(j , i) ,
 dpdnth(j , i) ,
 phith(j , i)
 11 continue
 10 continue
 close(1)
 goto 1000
 else
 else
Appendix C. Pressure extraction program

157

read in the filenames of the input files
--
do 20 i = 1 , numfls , 1

 read(1 , 500) crdfl(i)

20 continue

endif

close(1)

read in coordinates

do 30 i = 1 , numfls , 1

 open(2 , file = crdfl(i))
 write(* , *) 'coordinate file: ' , crdfl(i)

 do 35 j = 0 , nnodes , 1

 read(2 , 510) ri(j , i) ,
 zi(j , i) ,
 dpdnth(j , i) ,
 phith(j , i)

35 continue

close(2)

30 continue

1000 continue

else

data is experimental

do 40 i = 1 , numfls , 1

 read(1 , 500) crdfl(i)

40 continue

close(1)
Appendix C. Pressure extraction program

read in coordinates

do 50 i = 1 , numfls , 1

open(2 , file = crdfl(i)
write(* , *) 'coordinate file: ' , crdfl(i)
do 45 j = 0 , nnodes , 1

read(2 , 520) ri(j , i) , zi(j , i)
45 continue

close(2)
do 50 continue

endif

dincep = zi(nnodes / 2 , 1)

Find the maximum radius

do 55 i = 1 , numfls , 1

do 55 j = 0 , nnodes , 1

rad(j , i) = (ri(j , i) ** 2 + (zi(j , i) - zi(nnodes/2 , i)) ** 2) ** 0.5

if (rad(j , i) .gt. rmaxi) then
 rmaxi = rad(j , i)
endif
55 continue
Appendix C. Pressure extraction program

c Compute the initial mean radius
 c -------------------------------------

 do 60 j = 0 , nnodes , 1
 rsum = rsum + rad(j , 1)
 60 continue

rexp = rsum / (nnodes + 1)

c Compute other scale factors
 c --

 pscale = pincep - pvap
 escale = 0.5d0 * rmaxi ** 3 * pscale
 vnscal = (pscale / densty) ** 0.5
 vscale = rmaxi ** 3
 xscale = rmaxi
 dscale = 1.0d0
 vpscal = vnscal * xscale
 dxscal = vnscal
 dtscal = vnscal ** 2
 rdscal = pscale / (densty * rmaxi)

c Scale the coordinates to the maximum radius
 c --

 do 75 i = 1 , numfls , 1
 do 75 j = 0 , nnodes , 1
 ri(j , i) = ri(j , i) / xscale
 zi(j , i) = zi(j , i) / xscale
 75 continue
Appendix C. Pressure extraction program

c Nondimensionalise some constants

open(2 , file = 'scale.dat')
write(* , *)
write(* , *)

if (ndatyp . eq . 1) then
 write(* , *) 'experimental data'
 write(2 , *) 'experimental data'
 write(* , *)
 tscale = rmaxi * (densty / pscale) ** 0.5
else
 write(* , *) 'verification data'
 write(2 , *) 'verification data'
 write(* , *)
 tscale = 1.0d0
 xscale = 1.0d0
endif

if(nsurf .eq. 1) then
 write(* , *) 'linear representation'
 write(2 , *) 'linear representation'
 write(* , *)
elseif(nsurf .eq. 2) then
 write(* , *) 'quadratic representation'
 write(2 , *) 'quadratic representation'
 write(* , *)
else
 write(* , *) 'cubic representation'
 write(2 , *) 'cubic representation'
 write(* , *)
endif

time(1) = (tinit / tmstep)
densty = densty / dscale
rinit = 0.1651d0

if(ndatyp .eq. 1) then
 rinit = rexp
endif

vinit = (4.0 / 3.0) * pi * rinit ** 3
Appendix C. Pressure extraction program

write(*,*) 'original timestep = ', tmstep, 's'
write(2,*), 'original timestep = ', tmstep, 's'
write(*,*) 'initial time = ', tinit, 's'
write(*,*) 'initial radius = ', rinit, 'm'
write(*,*) 'initial volume = ', vinit, 'm^3'
write(*,*) 'inception pressure = ', pincep, 'Pa'
write(*,*) 'inception z-coord. = ', dincep, 'm'
write(*,*) 'vapour pressure = ', pvap, 'Pa'
write(*,*) 'maximum radius = ', rmaxi, 'm'
write(*,*) 'density = ', densty, 'kg/m^3'
write(*,*) 'gamma (assumed) = ', gamma
write(*,*) 'length scale = ', xscale
write(*,*) 'pressure scale = ', pscale
write(*,*) 'time scale = ', tscale
write(*,*) 'velocity scale = ', vnscal
write(*,*) 'energy scale = ', escale
write(*,*) 'volume scale = ', vscale
write(*,*) 'density scale = ', dscale
write(*,*) 'vel. potential scale = ', vpscal
write(*,*) 'dphi/dx scale = ', dxscal
write(*,*) 'dphi/dt scale = ', dtscal
write(*,*) 'rddot scale = ', rdscal

tmstep = tmstep / tscale

write(*,*) 'scaled timestep = ', tmstep
write(2,*), 'scaled timestep = ', tmstep
write(*,*)
write(2,*), 'initial time = ', tinit, 's'
write(2,*), 'initial radius = ', rinit, 'm'
write(2,*), 'initial volume = ', vinit, 'm^3'
write(2,*), 'inception pressure = ', pincep, 'Pa'
write(2,*), 'inception z-coord. = ', dincep, 'm'
write(2,*), 'vapour pressure = ', pvap, 'Pa'
write(2,*), 'maximum radius = ', rmaxi, 'm'
write(2,*), 'density = ', densty, 'kg/m^3'
write(2,*), 'gamma (assumed) = ', gamma
write(2,*), 'length scale = ', xscale
write(2,*), 'pressure scale = ', pscale
write(2,*), 'time scale = ', tscale
write(2,*), 'velocity scale = ', vnscal
write(2,*), 'energy scale = ', escale
write(2 , *) 'volume scale = ', vscale
write(2 , *) 'density scale = ', dscale
write(2 , *) 'vel. potential scale = ', vpscal
write(2 , *) 'dphi/dxi scale = ', dxscal
write(2 , *) 'dphi/dt scale = ', dtscal
write(2 , *) 'rddot scale = ', rdscal

dincep = dincep / xscale
vinit = vinit / vscale
close(2)

c Set up the time array
c ----------------------

time(1) = time(1) * tmstep

do 80 i = 2 , numfls , 1

 time(i) = time(i - 1) + tmstep

80 continue
c Housekeeping
c ---------

500 format(a11)
510 format(1x , 4f14.7)
520 format(1x , 2f14.7)
2000 format(i8)

return
end
Subroutine PROJFW

PROJFW solves the equation
\[t \cdot a = 0 \]

i.e., \((r(x) - r_f) tr + (z(x) - z_f) tz = 0\)

using the secant method,
\[\frac{dr}{dxi} \quad \frac{dz}{dxi} \]

where \(t = (tr, tz) = (-----, -----) \)

i.e., when the dot product is zero the forward normal displacement is found

It is based on code written by J Best, but modified for use in this work.

Local variable list

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc</td>
<td>test condition for iterative loop</td>
<td>dbl prec</td>
</tr>
<tr>
<td>displ</td>
<td>forward normal displacement</td>
<td>dbl prec</td>
</tr>
<tr>
<td>dot</td>
<td>dot product</td>
<td>dbl prec</td>
</tr>
<tr>
<td>fe</td>
<td>function value at end of interval</td>
<td>dbl prec</td>
</tr>
<tr>
<td>fi</td>
<td>function value at start of interval</td>
<td>dbl prec</td>
</tr>
<tr>
<td>fn</td>
<td>function value at solution point</td>
<td>dbl prec</td>
</tr>
<tr>
<td>jn</td>
<td>solution node</td>
<td>integer</td>
</tr>
<tr>
<td>mp</td>
<td>dimensioning variable for arrays</td>
<td>integer</td>
</tr>
<tr>
<td>nerr</td>
<td>1 if root not found</td>
<td>integer</td>
</tr>
<tr>
<td>nit</td>
<td>iteration limit</td>
<td>integer</td>
</tr>
<tr>
<td>r1</td>
<td>coord. of estimated solution point</td>
<td>dbl prec</td>
</tr>
<tr>
<td>r1a</td>
<td>spline parameter (next)</td>
<td>dbl prec</td>
</tr>
<tr>
<td>rbl</td>
<td>spline parameter (next)</td>
<td>dbl prec</td>
</tr>
<tr>
<td>rc1</td>
<td>spline parameter (next)</td>
<td>dbl prec</td>
</tr>
<tr>
<td>rdl</td>
<td>spline parameter (next)</td>
<td>dbl prec</td>
</tr>
<tr>
<td>re</td>
<td>coord. of end ((j)th) node (next)</td>
<td>dbl prec</td>
</tr>
<tr>
<td>rf</td>
<td>coord. of reference node (present)</td>
<td>dbl prec</td>
</tr>
</tbody>
</table>
Appendix C. Pressure extraction program

ri = coord. of initial ((j-1)th) node (next) dbl prec
rn = coord. of solution point (next) dbl prec
rr = dummy variable dbl prec
se = end of interval dbl prec
sgni = sign of function value at start of int. dbl prec
sgnn = sign of function value at solution point dbl prec
si = start of interval dbl prec
sn = arclength of solution point dbl prec
ss = dummy arclength variable dbl prec
z1 = coord. of estimated solution point dbl prec
za1 = spline parameter (next) dbl prec
zb1 = spline parameter (next) dbl prec
zc1 = spline parameter (next) dbl prec
zd1 = spline parameter (next) dbl prec
ze = coord. of end ((j)th) node (next) dbl prec
zf = coord. of reference node (present) dbl prec
zi = coord. of initial ((j-1)th) node (next) dbl prec
zn = coord. of solution point (next) dbl prec
zz = dummy variable dbl prec

subroutine projfw(ra, rb, rc, rd,
 za, zb, zc, zd,
 s, rf, zf, tr, tz, mp, displ,
 nnodes, sn, j, jn, r1, z1, nerr)

C Dimension variables
C -----------------------
implicit double precision(a - h, o - z)
parameter(acc = 1.0d-12, nit = 25)
dimension ra(0 : mp), za(0 : mp),
& rb(0 : mp), zb(0 : mp),
& rc(0 : mp), zc(0 : mp),
& rd(0 : mp), zd(0 : mp),
& s(0 : mp)
Appendix C. Pressure extraction program

c Set constants

nerr = 0

c Main iteration loop for secant method

do 10 j = 1, nnodes, 1

 jmi = j - 1
 ss = s(j)

 rai = ra(jmi)
 rbi = rb(jmi)
 rci = rc(jmi)
 rdi = rd(jmi)
 zai = za(jmi)
 zbi = zb(jmi)
 zci = zc(jmi)
 zdi = zd(jmi)

 ri = rai
 zi = zai
 fi = (ri - rf) * tr + (zi - zf) * tz

 re = ra(j)
 ze = za(j)
 fe = (re - rf) * tr + (ze - zf) * tz

 if(abs(fi) . lt . acc) then
 sn = 0.0
 rn = ri
 zn = zi
 goto 4
 endif

 if(abs(fe) . lt . acc) then
 sn = ss
 rn = re
 zn = ze
 goto 4
 endif
Appendix C. Pressure extraction program

sgni = fi / abs(fi)
sgne = fe / abs(fe)

if(sgni * sgne . lt . 0.0) then
 There is a stationary point within the interval.
 It is found assuming there is only one such point.
 si = 0.0
 se = ss

 do 5 i = 1 , nit , 1

 sn = (fi * se - fe * si) / (fi - fe)
 rn = ral + sn * (rbl + sn * (rc1 + sn * rd1))
 zn = zal + sn * (zbl + sn * (zc1 + sn * zd1))

 fn = (rn - rf) * tr + (zn - zf) * tz

 if(abs(fn) . lt . acc) goto 4

 sgnn = fn / abs(fn)

 if(sgni * sgnn . gt . 0.0) then
 initial and end points have the same signs
 (root is not in interval)
 si = sn
 fi = fn
 ri = rn
 zi = zn

 else
Appendix C. Pressure extraction program

c initial and end points have opposite signs

c (root is in interval)

 se = sn
 fe = fn
 re = rn
 ze = zn

endif

5 continue

endif

10 continue

Root not found - estimate displ using internodal distance
--

nerr = 1
rn = r1
zn = z1
sn = s(jn)
j = jn

4 rr = rn - rf
 zz = zn - zf

Root found - compute displ and dot product
--

 displ = (rr**2.0 + zz**2.0) ** 0.5
 dot = -rr * tz + zz *tr

if(dot . lt . 0.0) then

bubble is contracting

 displ = displ

else

 bubble is expanding

 displ = -1.0 * displ

endif

Housekeeping

return
end
Function DIST

DIST computes the Euclidean distance between two points.

Local variable list

- r1: radial coordinate of point no. 1 (dbl prec)
- r2: radial coordinate of point no. 2 (dbl prec)
- z1: vertical coordinate of point no. 1 (dbl prec)
- z2: vertical coordinate of point no. 2 (dbl prec)
- dist: Euclidean distance between points 1 & 2 (dbl prec)

Function dist(r1, z1, r2, z2)

Initialise variables

implicit double precision(a - h, o - z)

Start of function

dist = ((r1 - r2) ** 2.0 + (z1 - z2) ** 2.0) ** 0.5

Housekeeping

return
end
Appendix C. Pressure extraction program

Subroutine PROJBK

PROJBK solves the equation

\[\frac{d^2}{dxi^2} = 0 \]

i.e.,

\[\frac{dr(xi)}{dxi} \frac{dz(xi)}{dxi} \left(r(xi) - rf \right) \frac{dz(xi)}{dxi} = 0 \]

using the secant method.

It is based on code written by J Best, but modified for use in this work.

Local variable list

- acc: test condition for iterative loop
- de: distance from final to reference node
- di: distance from initial to reference node
- displ: backward normal displacement
- dmin: distance from node 0 to reference node
- dot: dot product
- dr1: dr1/dxi
- ds: distance to the solution point
- dz1: dz1/dxi
- drdt: used to find normal vector components
- dsdt: used to find normal vector components
- dzdt: used to find normal vector components
- fe: function value at end of interval
- fi: function value at start of interval
Appendix C. Pressure extraction program

fn = function value at solution point
dbl prec
jdum = dummy variable
dbl prec
mki = dummy variable
integer
mp = dimensioning variable for arrays
rc(0,:) = radial coordinate array - (i-1)th surf.
dbl prec
rl = radial coordinate of (j-1)th node (prev)
dbl prec
ra1 = spline parameter (previous)
dbl prec
rb1 = spline parameter (previous)
dbl prec
rc1 = spline parameter (previous)
dbl prec
rd1 = spline parameter (previous)
dbl prec
re = coord. of end ((j)th) node (prev)
dbl prec
rf = coord. of reference node (present)
dbl prec
rf1 = dummy variable
dbl prec
ri = coord. of initial ((j-1)th) node (prev)
dbl prec
rmin = radial coordinate of solution point
dbl prec
rn = radial component of normal vector
dbl prec
rr = dummy variable
dbl prec
rs = radial coordinate of solution point (prev)
dbl prec
se = end of interval
dbl prec
si = start of interval
dbl prec
sn = arclength of solution point
dbl prec
ss = dummy arclength variable
dbl prec
sgne = sign of function value at end of int.
dbl prec
sgni = sign of function value at start of int.
dbl prec
sgnn = sign of function value at solution point
dbl prec
smin = arclength of solution point
dbl prec
ss = arclength at node j
dbl prec
x = dummy variable
dbl prec
z(0,:) = vertical coordinate array - (i-1)th surf.
dbl prec
z1 = vertical coordinate of (j-1)th node (prev)
dbl prec
za1 = spline parameter (previous)
dbl prec
zb1 = spline parameter (previous)
dbl prec
zc1 = spline parameter (previous)
dbl prec
zd1 = spline parameter (previous)
dbl prec
ze = coord. of end ((j)th) node (prev)
dbl prec
zf = coord. of reference node (present)
dbl prec
zf1 = dummy variable
dbl prec
zi = coord. of initial ((j-1)th) node (prev)
dbl prec
zmin = vertical coordinate of solution point
dbl prec
zn = vertical coordinate of normal vector
dbl prec
zs = vert. coordinate of solution point (prev)
dbl prec
zz = dummy variable
dbl prec

last update 13/7/93 sbh
subroutine projbk(ra , rb , rc , rd ,
& za , zb , zc , zd ,
& r , z ,
& s , rf , zf , mp , displ ,
& sn , jdum , rs , zs , nnodes)

c Dimension variables

c --------------------------------
implicit double precision(a - h , o - z)

parameter(acc = 1.0d-12)

dimension r(0 : mp) , z(0 : mp) ,
& ra(0 : mp) , za(0 : mp) ,
& rb(0 : mp) , zb(0 : mp) ,
& rc(0 : mp) , zc(0 : mp) ,
& rd(0 : mp) , zd(0 : mp) ,
& s(0 : mp)

c Set constants

c -----------

rf1 = rf
zf1 = zf
rmin = r(0)
zmin = z(0)
dmin = dist(rmin , zmin , rf , zf)
smin = 0.0
mki = 0

c Main iteration loop for secant method

c ----------------------------

do 2 j = 1 , nnodes , 1

 jm1 = j - 1
 ss = s(j)
Appendix C. Pressure extraction program

\[ri = r(\text{jml}) \]
\[zi = z(\text{jml}) \]
\[re = r(\text{j}) \]
\[ze = z(\text{j}) \]
\[di = \text{dist}(ri, zi, rf, zf) \]
\[de = \text{dist}(re, ze, rf, zf) \]

\[
\text{if(di . lt . dmin) then}
\]
\text{if the distance from initial to ref < dmin}
\[
\text{--------------------------}
\]
\[dmin = di \]
\[rmin = ri \]
\[zmin = zi \]
\[smin = 0.0 \]
\[mki = \text{jml} \]
\text{endif}

\[
\text{if(de . lt . dmin) then}
\]
\text{if the distance from end to ref < dmin}
\[
\text{--------------------------}
\]
\[dmin = de \]
\[rmin = re \]
\[zmin = ze \]
\[smin = ss \]
\[mki = \text{jml} \]
\text{endif}

\[ra1 = ra(\text{jml}) \]
\[rb1 = rb(\text{jml}) \]
\[rc1 = rc(\text{jml}) \]
\[rd1 = rd(\text{jml}) \]

\[za1 = za(\text{jml}) \]
\[zb1 = zb(\text{jml}) \]
\[zc1 = zc(\text{jml}) \]
\[zd1 = zd(\text{jml}) \]
Appendix C. Pressure extraction program

\[x = 0.0 \]
\[r_1 = ra_1 + x \ast (rb_1 + x \ast (rc_1 + x \ast r_1)) \]
\[z_1 = za_1 + x \ast (zb_1 + x \ast (zc_1 + x \ast z_1)) \]
\[dr_1 = rb_1 + x \ast (2.0 \ast r_1 + 3.0 \ast x \ast r_1) \]
\[dz_1 = zb_1 + x \ast (2.0 \ast z_1 + 3.0 \ast x \ast z_1) \]
\[f_i = (r_1 - rf_1) \ast dr_1 + (z_1 - zf_1) \ast dz_1 \]

\[x = ss \]
\[r_1 = ra_1 + x \ast (rb_1 + x \ast (rc_1 + x \ast r_1)) \]
\[z_1 = za_1 + x \ast (zb_1 + x \ast (zc_1 + x \ast z_1)) \]
\[dr_1 = rb_1 + x \ast (2.0 \ast r_1 + 3.0 \ast x \ast r_1) \]
\[dz_1 = zb_1 + x \ast (2.0 \ast z_1 + 3.0 \ast x \ast z_1) \]
\[f_e = (r_1 - rf_1) \ast dr_1 + (z_1 - zf_1) \ast dz_1 \]

if(abs(f_i) \lt . acc) then
 :n = 0.0
 goto 4
endif

if(abs(f_e) \lt . acc) then
 sn = ss
 goto 4
endif

\[s_{gni} = f_i / \text{abs}(f_i) \]
\[s_{gne} = f_e / \text{abs}(f_e) \]

if(s_{gni} * s_{gne} \lt 0.0) then

 There is a stationary point within the interval.

 It is found assuming there is only one such point.

 \[s_i = 0.0 \]
 \[se = ss \]
 \[sn = (f_i * se - f_e * s_i) / (f_i - f_e) \]

 \[x = sn \]
 \[r_1 = ra_1 + x \ast (rb_1 + x \ast (rc_1 + x \ast r_1)) \]
 \[z_1 = za_1 + x \ast (zb_1 + x \ast (zc_1 + x \ast z_1)) \]
 \[dr_1 = rb_1 + x \ast (2.0 \ast r_1 + 3.0 \ast x \ast r_1) \]
 \[dz_1 = zb_1 + x \ast (2.0 \ast z_1 + 3.0 \ast x \ast z_1) \]
 \[f_n = (r_1 - rf_1) \ast dr_1 + (z_1 - zf_1) \ast dz_1 \]
if(abs(fn) . lt . acc) goto 4

c point found

sgnn = fn / abs(fn)

if(sgni * sgnn . gt . 0.0) then
 initial and end points have the same signs
 (root is not in interval)

 si = sn
 fi = fn
else
 initial and end points have opposite signs
 (root is in interval)

 se = sn
 fe = fn
endif

goto 3
endif

goto 2

c Root found

rs = rai + sn * (rb1 + sn * (rci + sn * rd1))
zs = zal + sn * (zb1 + sn * (zci + sn * zd1))
ds = dist(rs , zs , rf , zf)
jdum = j
if(ds . lt . dmin) then
 dmin = ds
 rmin = rs
 zmin = zs
 smin = sn
 mki = jm1
endif

2 continue

c Compute normal vector components
c -------------------------------

dzdt = zb(mki) + smin * (2.0 * zc(mki) +
& 3.0 * smin * zd(mki))
drdt = rb(mki) + smin * (2.0 * rc(mki) +
& 3.0 * smin * rd(mki))

dsdt = (drdt ** 2.0 + dzdt ** 2.0) ** 0.5

rn = - dzdt / dsdt
zn = drdt / dsdt

c Compute displ and dot product
c -------------------------------

 rr = rmin - rf
zz = zmin - zf
 dot = rr * rn + zz * zn

if(dot . lt . 0.0) then
 bubble is expanding

displ = -1.0 * dmin
else
 bubble is contracting

displ = dmin
endif

c Housekeeping

c return
end
Appendix C. Pressure extraction program

Subroutine DPHDT

Subroutine DPHDT computes the time rate of change of the velocity potential.

```fortran
subroutine dphdt( dphidt, phitf, phitb, tmstep, ndphdt,
                 & numfls, maxfil, nnodes, maxnod,      
                 & phiacc )

! Dimension variables
!
implicit double precision (a-h,o-z)
dimension phitf( 0 : maxnod , maxfil ) ,
& dphidt( 0 : maxnod , maxfil ) ,
& phitb( 0 : maxnod , maxfil )

! Use finite difference approximation to find dphidt
!
do 30 j = 0 , nnodes , 1
    do 30 i = 3 , numfls - 2 , 1
        dphidt( j , i ) = ( phitf( j , i ) - phitb( j , i ) ) / ( 2.0d0 * tmstep )
    30 continue

! Housekeeping
!
return
end
```
Subroutine DPHDZ

Local variable list

\[x_{ij} = \text{arclength difference nodes } j \text{ to } j-1 \quad \text{dbl prec} \]
\[x_{ij+1} = \text{arc length difference nodes } j+1 \text{ to } j \quad \text{dbl prec} \]

last update 10/4/93

subroutine dphdz(dphidz , t , phic ,
 & numfls , maxfil , nnodes , maxnod)

dimension phic(0 : maxnod , maxfil),
& dphidz(0 : maxnod , maxfil),
& t(0 : maxnod , maxfil)

Fit a local quadratic function to the phic values and differentiate w.r.t. \(xi \) to find \(dphi/dxi \)

do 20 i = 1 , numfls , 1
 do 30 j = 1 , nnodes - 1, 1
 \[x_{ij} = t(j , i) - t(j - 1 , i) \]
 \[x_{ij+1} = t(j + 1 , i) - t(j , i) \]
Appendix C. Pressure extraction program

\[
dphidz(j, i) = (xij \times 2.0d0 \times
\& \quad \phiic(j + 1, i) - (xij \times 2.0d0 -
\& \quad xijp1 \times 2.0d0) \times \phiic(j, i) -
\& \quad xijp1 \times 2.0d0 \times \phiic(j - 1, i)) \\
\& \quad / (xij \times xijp1 \times (xij + xijp1))
\]

30 continue

\[
dphidz(0, i) = 0.0d0
\]
\[
dphidz(nnodes, i) = 0.0d0
\]

20 continue

c Housekeeping
c ----------------------

return
end
Subroutine FORTRJ

FORTRJ solves the equation

\[u \cdot a = 0 \]

using the secant method,

where \(u \) is the normal to the velocity vector \(u \), in order to compute the forward trajectory of the node \(P \).

It is based on code written by J Best, but modified for use in this work.

Local variable list

- acc: test condition for iterative loop (dbl prec)
- fe: function value at end of interval (dbl prec)
- fi: function value at start of interval (dbl prec)
- fn: function value at solution point (dbl prec)
- jm1: dummy variable (integer)
- mp: dimensioning variable for arrays (integer)
- nerr: 1 if root not found (integer)
- node: dummy variable (integer)
- phix: velocity potential at solution point (dbl prec)
- ra1: spline parameter (next) (dbl prec)
- rb1: spline parameter (next) (dbl prec)
- rc1: spline parameter (next) (dbl prec)
- rd1: spline parameter (next) (dbl prec)
- re: coord. of end \((j)\)th node (next) (dbl prec)
- rf: coord. of reference node (present) (dbl prec)
- ri: coord. of initial \((j-1)\)th node (next) (dbl prec)
- rn: coord. of solution point (next) (dbl prec)
- se: end of interval (dbl prec)
- sgne: sign of function value at end of interval (dbl prec)
- sgni: sign of function value at start of interval (dbl prec)
- sgnn: sign of function value at solution point (dbl prec)
- si: start of interval (dbl prec)
subroutine fortrj(ra, rb,
 & rc, rd,
 & za, zb,
 & zc, zd,
 & s, rf, zf, phic,
 & tr, tz, mp, phix, node,
 & sn, fn, j, nerr, nnodes)

c Dimension variables

implicit double precision(a - h, o - z)

parameter(acc = 1.0d-12)

dimension ra(0 : mp), za(0 : mp),
 & rb(0 : mp), zb(0 : mp),
 & rc(0 : mp), zc(0 : mp),
 & rd(0 : mp), zd(0 : mp),
 & s(0 : mp), phic(0 : mp)

c Set constants
	nerr = 0
 j = 0
Appendix C. Pressure extraction program

Main iteration loop for secant method

```
2  j = j + 1

jm1 = j - 1
ss = s( j )

ral = ra( jm1 )
rb1 = rb( jm1 )
rc1 = rc( jm1 )
rd1 = rd( jm1 )
za1 = za( jm1 )
zb1 = zb( jm1 )
zc1 = zc( jm1 )
zd1 = zd( jm1 )

ri = ral
zi = za1
fi = ( ri - rf ) * tr + ( zi - zf ) * tz

re = ra( j )
ze = za( j )
fe = ( re - rf ) * tr + ( ze - zf ) * tz

if( abs( fi ) . lt . acc ) then
    sn = 0.0
    rn = ri
    zn = zi
    goto 4
endif

if( abs( fe ) . lt . acc ) then
    sn = ss
    rn = re
    zn = ze
    goto 4
endif

sgni = fi / abs( fi )
sgne = fe / abs( fe )

if( sgni * sgne . lt . 0.0 ) then
```
Appendix C. Pressure extraction program

There is a stationary point within the interval.

It is found assuming there is only one such point.

\[si = 0.0 \]
\[se = ss \]

\[sn = \frac{fi \times se - fe \times si}{fi - fe} \]
\[rn = rai + sn \times (rb1 + sn \times (rc1 + sn \times rd1)) \]
\[zn = zal + sn \times (zb1 + sn \times (zc1 + sn \times zd1)) \]
\[fn = (rn - rf) \times tr + (zn - zf) \times tz \]

if(abs(fn) . lt . acc) goto 4

root found

\[sgn = fn / abs(fn) \]

if(sgni * sgn . gt . 0.0) then

initial and end points have the same signs

(root is not in interval)

\[si = sn \]
\[fi = fn \]
\[ri = rn \]
\[zi = zn \]

else

initial and end points have opposite signs

(root is in interval)

\[se = sn \]
\[fe = fn \]
\[re = rn \]
\[ze = zn \]

endif

goto 3
endif

if(j .eq. nnodes) then

c root not found - use (i+1,j)th nodal value instead

nerr = 1
phix = phic(jm1)
goto 5

c endif

goto 2

c Root found

c --------

4 phix = phic(jm1) + sn * (phic(j) - phic(jm1))
 & / s(j)

5 continue

c Housekeeping

c --------

return
end
Subroutine BAKTRJ

BAKTRJ solves the equation

\[u \cdot a = 0 \]

using the bisection method,

where \(u \) is the normal to the velocity vector \(u \), in order to compute the forward trajectory of the node \(P \).

It is based on code written by J Best, but modified for use in this work.

Local variable list

- **acc**: test condition for iterative loop
- **dpdzn**: \(d\phi/dx \) interpolated value
- **dpn**: \(d\phi/dn \) interpolated value
- **drn**: \(dr/dx \)
- **dzn**: \(dz/dx \)
- **fl**: function value at start of interval
- **fu**: function value at end of interval
- **f**: current function value
- **imi**: dummy variable
- **mp**: dimensioning variable for arrays
- **nerr**: 1 if root not found
- **phix**: velocity potential at solution point
- **r0(:,):** radial coordinate array - (i-1)th surf.
- **ra1**: spline parameter (previous)
- **rb1**: spline parameter (previous)
- **rc1**: spline parameter (previous)
- **rd1**: spline parameter (previous)
- **rn**: radial coordinate of solution point
- **xil**: arclength at start of interval
- **xiu**: arclength at end of interval
- **xin**: arclength of solution point
- **z0(:,):** vertical coordinate array - (i-1)th surf.
Appendix C. Pressure extraction program

C. Pressure extraction program

C.186

c zal = spline parameter (previous) dbl prec
c zbl = spline parameter (previous) dbl prec
c zcl = spline parameter (previous) dbl prec
c zd1 = spline parameter (previous) dbl prec
C zn = vertical coordinate of solution point dbl prec

c last update 13/7/93 sbh

subroutine baktrj(ra , rb , rc , rd , za , zb , zc , zd , r , z ,
& dphidn , phic ,
& dphidz , s , rf , zf ,
& mp , nnodes , phix , nerr)

c Dimension variables

c ---------------

implicit double precision(a - h , o - z)

parameter(acc = 1.0d-12)

dimension ra(0 : mp) , za(0 : mp) ,
& rb(0 : mp) , zb(0 : mp) ,
& rc(0 : mp) , zc(0 : mp) ,
& rd(0 : mp) , zd(0 : mp) ,
& s(0 : mp) , phic(0 : mp) ,
& dphidn(0 : mp) ,
& dphidz(0 : mp) , r(0 : mp) ,
& z(0 : mp)

c Set constants

c ----------

nerr = 0
i = -1
Main iteration loop for bisection method

\[
i = i + 1
\]

\[
f = -1.0d0 \times (d\phi / dn(i) \times rb(i) + d\phi / dz(i) \times zb(i)) \times (r(i) - rf) + (-1.0d0 \times d\phi / dn(i) \times zb(i) + d\phi / dz(i) \times rb(i)) \times (z(i) - zf)
\]

if (abs(f) .lt. acc) then

root found

i = i + 1
xin = 0.0d0
im1 = i - 1
goto 5
endif

if(i .eq. 0) then

fu = f
endif

if(i .ge. 1) then

fl = fu
fu = f
if(fl * fu .lt. 0.0d0) goto 2
endif

if(i .eq. nnodes) then
Appendix C. Pressure extraction program

```c
root not found

---------------
nerr = 1
phix = phic(i - 1)
goto 6

endif

goto 1

goto 1

\[ i1 = i - 1 \]
\[ xil = 0.0 \]
\[ xi = s(i) \]

ra1 = ra(i1)
rb1 = rb(i1)
rc1 = rc(i1)
rd1 = rd(i1)

za1 = za(i1)
zb1 = zb(i1)
zc1 = zc(i1)
zd1 = zd(i1)

\[ xin = 0.5d0 \times (xil + xi) \]
\[ rn = ra1 + xin \times (rb1 + xin \times (rc1 + xin \times rd1)) \]
\[ zn = za1 + xin \times (zb1 + xin \times (zc1 + xin \times zd1)) \]
\[ drn = rb1 + xin \times (2.0d0 \times rc1 + 3.0d0 \times xin \times rd1) \]
\[ dzn = zb1 + xin \times (2.0d0 \times zc1 + 3.0d0 \times xin \times zd1) \]

\[ dpdz = dphidz(i1) + xin \times (dphidz(i1) - dphidz(i)) / s(i) \]
\[ dpn = dphidn(i1) + xin \times (dphidn(i) - dphidn(i1)) / s(i) \]

\[ f = -1.0d0 \times (dpn \times drn + dpdz \times dzn) \times (rn - rf) \]
\[ + (-1.0d0 \times dpn \times dzn + dpdz \times drn) \times (zn - zf) \]

if(abs(f) .lt. acc) goto 5

root found

---------------
```
Appendix C. Pressure extraction program

if(fl * f .le. 0.0d0) then
 initial and end points have opposite signs.
 reset upper limit to xin.
 fu = f
 xiu = xin
else
 initial and end points have the same signs.
 reset lower limit to xin.
 fl = f
 xil = xin
endif

goto 3

Root found - interpolate linearly

phix = phic(im1) + xin * (phic(i) - phic(im1))
& / s(i)
continue

c Housekeeping

c

return
end
Appendix C. Pressure extraction program

Subroutine VOLUM L

VOLUM L computes the volume of a bubble having a linear surface representation.

Local variable list

area = cross sectional area of bubble
mp = dimensioning variable for arrays
np = total no. surface nodes - 1
pi = trigonometric pi
ra() = spline parameter array
vol = bubble volume
za() = spline parameter array

last update 27/10/93 sbh

subroutine voluml(mp , np , ra , za , vol)

dimension ra(0 : mp) , za(0 : mp)

pi = 4.0 * atan(1.0)
area = 0.0d0
vol = 0.0d0
Appendix C. Pressure extraction program

c Compute volume
c ------------------------

 do 1 i = 1 , np, 1

 area = area + abs(za(i) - za(i-1)) * (min(ra(i-1) , ra(i))
 & + 0.5d0 * abs(ra(i) - ra(i-1)))

1 continue

 vol = 2.0d0 * pi * area

c Housekeeping
c ------------------------

 return
 end
Appendix C. Pressure extraction program

Subroutine VOLUM C

* VOLUML computes the volume of a bubble having a cubic
* surface representation.
* It is based on code written by J Best, but modified for
* use in this work.

Local variable list

a() = dummy array dbl prec
b() = dummy array dbl prec
dd = dummy variable dbl prec
ex = dummy real variable dbl prec
help = dummy variable dbl prec
mp = dimensioning variable for arrays integer
np = total no. surface nodes - 1 integer
pi = trigonometric pi dbl prec
ra() = spline parameter array dbl prec
rb() = spline parameter array dbl prec
rc() = spline parameter array dbl prec
rd() = spline parameter array dbl prec
s() = segment arclength array dbl prec
za() = spline parameter array dbl prec
zb() = spline parameter array dbl prec
zc() = spline parameter array dbl prec
zd() = spline parameter array dbl prec
volume = bubble volume dbl prec

last update 27/10/93 sbh

subroutine volumc(mp , np ,
 & ra , rb , rc , rd ,
 & za , zb , zc , zd ,
 & s , volume)
Appendix C. Pressure extraction program

c Dimension variables

implicit double precision(a - h, o - z)

dimension

& ra(0 : mp), za(0 : mp),
& rb(0 : mp), zb(0 : mp),
& rc(0 : mp), zc(0 : mp),
& rd(0 : mp), zd(0 : mp),
& s(0 : mp), a(7), b(9)

c Set constants
c ----------------------

pi = 4.0 * atan(1.0)
volume = 0.0

c Compute volume
c -----------------------

do 1 i = 0, np - 1, 1

 dd = s(i + 1)
 a(1) = ra(i) * ra(i)
 a(2) = 2.0 * ra(i) * rb(i)
 a(3) = 2.0 * ra(i) * rc(i) + rb(i) * rb(i)
 a(4) = 2.0 * ra(i) * rd(i) + 2.0 * rb(i) * rc(i)
 a(5) = 2.0 * rb(i) * rd(i) + rc(i) * rc(i)
 a(6) = 2.0 * rc(i) * rd(i)
 a(7) = rd(i) * rd(i)

do 3 k = 1, 9, 1

 ex = 1.0 * k
 b(k) = dd ** ex / ex

3 continue
do 2 j = 1 , 7 , 1

 help = zb(i) * b(j) + 2.0 * zc(i) * b(j + 1) +
 & 3.0 * zd(i) * b(j + 2)
 volume = volume + a(j) * help

2 continue

1 continue

 volume = pi * volume

c Housekeeping
c ---------------

 return
 end
Appendix C. Pressure extraction program

Subroutine ENERG

Subroutine ENERG computes the kinetic energy of an evolving bubble. It is based on code written by J Best, but modified for use in this work.

Local variable list

Local variable list

energy = kinetic energy of bubble
dbl prec
jg = Max. no. points for Gaussian integration
integer
jm1 = dummy variable
integer
mp = dimensioning variable for arrays
integer
np = total no. surface nodes - 1
integer
p = potential
dbl prec
pi = trigonometric pi
dbl prec
pa() = potential spline parameter array
dbl prec
pb() = potential spline parameter array
dbl prec
pc() = potential spline parameter array
dbl prec
pd() = potential spline parameter array
dbl prec
q() = dphi/dn array
dbl prec
qm1 = dummy variable
dbl prec
qq = dummy variable
dbl prec
r = radial coordinate
dbl prec
ra() = coordinate spline parameter array
dbl prec
rb() = coordinate spline parameter array
dbl prec
rc() = coordinate spline parameter array
dbl prec
rd() = coordinate spline parameter array
dbl prec
t() = arclength parameter array
dbl prec
t0 = arclength at start of interval
dbl prec
t1 = arclength at end of interval
dbl prec
w() = Gaussian weight array
dbl prec
x() = Gaussian integration array
dbl prec
y = dummy variable
dbl prec

Last update 27/10/93 sbh
subroutine energ(ra , rb , rc , rd ,
& pa , pb , pc , pd ,
& q , energy , t , mp , np)

c Dimension variables

implicit double precision (a - h , o - z)

dimension
& ra(0 : mp) , rb(0 : mp) , rc(0 : mp) , rd(0 : mp) ,
& pa(0 : mp) , pb(0 : mp) , pc(0 : mp) , pd(0 : mp) ,
& q(0 : mp) , t(0 : mp)

parameter (jg = 4)

dimension x(jg) , w(jg)

c Set constants

pi = 4.0d0 * atan(1.0d0)
energy = 0.0d0

c Compute kinetic energy

do 2 j = 1 , np , 1

 jm1 = j - 1
 t0 = t(jm1)
 t1 = t(j)

 ral = ra(jm1)
 rb1 = rb(jm1)
 rc1 = rc(jm1)
 rd1 = rd(jm1)
pa1 = pa(jm1)
pb1 = pb(jm1)
pc1 = pc(jm1)
pd1 = pd(jm1)
qm1 = -q(jm1)
q1 = -q(j)
call dgauss(jg, t0, t1, x, w)
do 1 k = 1, jg, 1
 y = x(k) - t0
 r = ra1 + y * (rb1 + y * (rc1 + rd1 * y))
 p = pa1 + y * (pb1 + y * (pc1 + pd1 * y))
 qq = (qm1 * (t1 - x(k)) + q1 * y) / (t1 - t0)
 energy = energy + w(k) * r * p * qq
1 continue
2 continue
energy = pi * energy

c Housekeeping
c

return
end
Appendix C. Pressure extraction program

Subroutine LINEAR

LINEAR computes the directional arrays of the elements of a linearised surface. It is based on an algorithm developed by J Best.

Local variable list

subroutine linear(r , z , s , t , mp , ra , rb , rc , rd , np , za , zb , zc , zd , dn , theta)
Appendix C. Pressure extraction program

c Dimension variables
c ---------------------

implicit double precision (a-h, o-z)

dimension r(0:mp), z(0:mp), s(0:mp),
& t(0:mp), theta(0:mp)

dimension
& ra(0:mp), rb(0:mp), rc(0:mp), rd(0:mp),
& za(0:mp), zb(0:mp), zc(0:mp), zd(0:mp)

c Set constants
c ---------------------

pi = 4.0d0 * atan(1.0d0)

c Set up dummy cubic spline parameters for ease of portability
c ---

do 10 j = 0, np, 1

ra(j) = r(j)
za(j) = z(j)
rc(j) = 0.0d0
zc(j) = 0.0d0
rd(j) = 0.0d0
zd(j) = 0.0d0
10 continue

c Set up orientation array
c ---------------------

do 20 j = 1, np - 1, 1

thjmh = atan((r(j - 1) - r(j)) / (z(j) - z(j - 1)))
&

thjph = atan((r(j) - r(j + 1)) / (z(j + 1) - z(j)))
&
Appendix C. Pressure extraction program

\[\text{theta}(j) = \frac{s(j)}{s(j) + s(j+1)} \times \text{thjph} + \frac{s(j+1)}{s(j) + s(j+1)} \times \text{thjmh} \]

20 continue

\[\text{theta}(0) = -1.0 \times \pi / 2.0 \]
\[\text{theta}(n) = \pi / 2.0 \]

do 30 j = 1, n - 1, 1

\[rb(j) = -1.0 \times \sin(\text{theta}(j)) \]
\[zb(j) = \cos(\text{theta}(j)) \]

30 continue

\[rb(0) = 1.0 \]
\[rb(n) = -1.0 \]
\[zb(0) = 0.0 \]
\[zb(n) = 0.0 \]

c Housekeeping

c ----------------------

return
end
Appendix D

GRAPHIC DISPLAY PROGRAM

!!MP

Program BUBEXS

This program displays each bubble on a Macintosh screen as read in from its image coordinate file. By not performing screen erases between files the entire evolution is captured.

For raw EXPERIMENTAL (x-y) data only.

Compiled using Language Systems FORTRAN 2.1 in MPW 3.2.
Variable list

- c crdf1() = coordinate filename array character
- c done = test condition flag logical
- c dum = dummy variable character
- c dummy = dummy variable real
- c InitGraphWindow = graphics primitive integer
- c maxfil = maximum no. of files allowed integer
- c maxnod = maximum no. of nodes allowed integer
- c Mouse = mouse event flag logical
- c myWindow = graphics primitive integer
- c n = dummy variable integer
- c narea = dummy area variable integer
- c nnodes = total no. of nodes - 1 integer
- c ntime = dummy time variable integer
- c numfIs = no. of coordinate files to be read in integer
- c nxi = horizontal coord. dummy variable integer
- c nybolt = dummy reference point variable integer
- c nyi = vertical coord. dummy variable integer
- c scal = overall screen scaling factor dbl prec
- c time() = time array character
- c title = screen title string
- c tmstep = timestep between subsequent coord files dbl prec
- c xi(0:,) = horizontal coordinate array dbl prec
- c xmax = maximum horizontal coordinate dbl prec
- c xmin = minimum horizontal coordinate dbl prec
- c xscal = horizontal screen scaling factor dbl prec
- c xscrn = horizontal screen coordinate integer
- c ybolt() = reference bolt vertical coord. array dbl prec
- c yi(0:,) = vertical coordinate array dbl prec
- c ymax = maximum vertical coordinate dbl prec
- c ymin = minimum vertical coordinate dbl prec
- c yscal = vertical screen scaling factor dbl prec
Appendix D. Graphic display program

program bubexs

c Dimension variables

c -------------------

parameter(maxnod = 36 , maxfil = 180)
integer*4 InitGraphWindow
integer*4 myWindow
integer*2 xscrn, yscrn
character*11 crdfl(maxfil), ybdata
character*40 time(maxfil), dum
logical*4 done, Mouse

double precision xi(0 : maxnod , maxfil),
& yi(0 : maxnod , maxfil),
& xmin, xmax, ymin, ymax, tmstep,
& xscal, yscal, scal,
& ybolt(maxfil)

string*255 title

c Initialise variables

c -------------------

myWindow = InitGraphWindow(0, 0, 0, 0)
xmin = 0.0d0
xmax = 0.0d0
ymin = 0.0d0
ymax = 0.0d0
done = .false.
title = 'Evolution of one vapour cavity'
Appendix D. Graphic display program

c Open data files and read in coordinate data (0 to 18)
c --

call SetPoint(int2(5), int2(60))
call DrawText('Coordinate files being read in')

open(1, file = 'crdfls.inp')
rewind(1)
read(1, *) nnodes
read(1, *) numfls
read(1, *) dummy
read(1, *) ybdata
read(1, *) dummy
read(1, *) dummy

Read in filenames

do 20 i = 1, numfls, 1

read(1, 500) crdf1(i)

20 continue

close(1)
c Read in the values of ybolt for each coordinate file

```
dum = 'time (us) = ',
open( 1 , file = ybdata )
read( 1 , 510 )

do 30 i = 1 , numfls , 1

    read( 1 , 540 ) ntime , narea , nybolt
    ybolt ( i ) = dble( nybolt )
    write( fmt = 2000 , unit = time( i ) ) ntime
    time( i ) = 'time (us) = ' // time( i )

30    continue

close( 1 )
```

c Read in the input coordinates

```
do 40 i = 1 , numfls , 1

    open( 1 , file = crdfl( i ) )
    read( 1 , 510 )

    do 50 j = 0 , nnodes , 1

        read( 1 , 520 ) n , nxi, nyi
        xi( j , i ) = dble( nxi )
        yi( j , i ) = dble( nyi )

50    continue

    close( 1 )
```

40 continue
Appendix D. Graphic display program

c Compute the maximum and minimum coordinates
c ---

 do 60 i = 1 , numfls , 1
 if (ybolt(i) .gt. ymax) then
 ymax = ybolt(i)
 endif
 do 60 j = 0 , nnodes , 1
 if (xi(j , i) .gt. xmax) then
 xmax = xi(j , i)
 endif
 if (xi(j , i) .lt. xmin) then
 xmin = xi(j , i)
 endif
 if (yi(j , i) .lt. ymin) then
 ymin = yi(j , i)
 endif
 60 continue

 ymax = ymax + 15.0

c Calculate overall screen scaling factor
c --

 xscal = abs(xmax - xmin)
 yscal = abs(ymax - ymin)

 if (xscal .gt. yscal) then
 scal = xscal
 else
 scal = yscal
 end if
c Initialise output window
c ---
call EraseGraphWindow(myWindow)

c Scale node coordinates to fit screen and plot bubble shapes
c ---
do while (.not. done)
do 70 i = 1 , numfls , 1

yscrn = int2(((ybolt(1) - ymin)/scal) * 312.0)
call SetPoint(int2(0) , yscrn)
call Draw(int2(512) , yscrn)

xscrn = int2(((xi(0 , i) - xmin)/scal) * (312.0 + 50.0))
yscrn = int2(((yi(0 , i) - ymin)/scal) * 312.0)
call SetPoint(xscrn , yscrn)
do 80 j = 1 , nnodes , 1

xscrn = int2(((xi(j , i) - xmin)/scal) * (312.0 + 50.0))
yscrn = int2(((yi(j , i) - ymin)/scal) * 312.0)
call Draw(xscrn , yscrn)
80 continue

xscrn = int2(((xi(0 , i) - xmin)/scal) * (312.0 + 50.0))
yscrn = int2(((yi(0 , i) - ymin)/scal) * 312.0)
call Draw(xscrn , yscrn)
70 continue
Appendix D. Graphic display program

```fortran
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

```