New insight into magneto-structural phase transitions in layered TbMn$_2$Ge$_2$-based compounds

Chunsheng Fang
University of Wollongong, cf904@uowmail.edu.au

Guoxing Li
University of Wollongong, Jilin University

Jian Li Wang
University of Wollongong, jianli@uow.edu.au

Wayne D. Hutchison
University of New South Wales

Qing Yon Ren
University of New South Wales

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation

Fang, Chunsheng; Li, Guoxing; Wang, Jian Li; Hutchison, Wayne D.; Ren, Qing Yon; Deng, Zhenyan; Ma, Guohong; Dou, Shi Xue; Campbell, Stewart J.; and Cheng, Zhenxiang, "New insight into magneto-structural phase transitions in layered TbMn$_2$Ge$_2$-based compounds" (2017). *Australian Institute for Innovative Materials - Papers*. 2476.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
New insight into magneto-structural phase transitions in layered TbMn2 Ge2-based compounds

Abstract
The Tb1−xYxMn2Ge2 series (x = 0, 0.1, 0.2) compounds are found to exhibit two magnetic phase transitions with decreasing temperature: from the paramagnetic state to the antiferromagnetic interlayer state at TNinter and from an antiferromagnetic interlayer structure to a collinear ferrimagnetic interlayer structure at TCinter. Compared with the slight change of TNinter (409 K, 410 K and 417 K for x = 0, 0.1 and 0.2 respectively), the replacement of Y for Tb leads to a significant decrease in TCinter from 97.5 K for x = 0 to 74.6 K for x = 0.2. The variation in TCinter can be ascribed to the combination of two effects: (1) chemical pressure and (2) magnetic dilution effect by Y substitution for Tb. Besides, a strong anisotropic magnet-volume effect has been detected around TCinter in all compounds with Δa/a = 0.125%, 0.124% and 0.130% for x = 0, 0.1 and 0.2, respectively while no obvious effect is detected along the c-axis. The maximum magnetic entropy change were found to be −ΔSmax = 9.1 J kg−1 K−1, 11.9 J kg−1 K−1 and 6.3 J kg−1 K−1 with a field change from 0 T to 5 T for x = 0, 0.1, 0.2 respectively.

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Chunsheng Fang, Guoxing Li, Jian Li Wang, Wayne D. Hutchison, Qing Yon Ren, Zhenyan Deng, Guohong Ma, Shi Xue Dou, Stewart J. Campbell, and Zhenxiang Cheng

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/2476
New insight into magnetostructural phase transitions in layered TbMn$_2$Ge$_2$-based compounds

Chunsheng Fang1, Guoxing Li1,2, Jianli Wang1,3, W. D. Hutchison4, Q. Y. Ren4, Zhenyan Deng5, Guohong Ma6, Shixue Dou1, S. J. Campbell4 & Zhenxiang Cheng1

The Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ series (x = 0, 0.1, 0.2) compounds are found to exhibit two magnetic phase transitions with decreasing temperature: from the paramagnetic state to the antiferromagnetic interlayer state at T_{N} and from an antiferromagnetic interlayer structure to a collinear ferrimagnetic interlayer structure at T_{C}. Compared with the slight change of T_{N} (409 K, 410 K and 417 K for x = 0, 0.1 and 0.2 respectively), the replacement of Y for Tb leads to a significant decrease in T_{C} from 97.5 K for x = 0 to 74.6 K for x = 0.2. The variation in T_{C} can be ascribed to the combination of two effects: (1) chemical pressure and (2) magnetic dilution effect by Y substitution for Tb. Besides, a strong anisotropic magnet-volume effect has been detected around T_{C} in all compounds with $\Delta a/a = 0.125\%$, 0.124% and 0.130% for x = 0, 0.1 and 0.2, respectively while no obvious effect is detected along the c-axis.

The maximum magnetic entropy change were found to be $-\Delta S_{\text{max}} = 9.1$ J kg$^{-1}$ K$^{-1}$, 11.9 J kg$^{-1}$ K$^{-1}$ and 6.3 J kg$^{-1}$ K$^{-1}$ with a field change from 0 T to 5 T for x = 0, 0.1, 0.2 respectively.

Since the discovery in 1997 of a giant magnetocaloric effect (GMCE) originating from a discontinuous first order magnetic transition in Gd$_3$Si$_2$Ge$_2$, room-temperature magnetic refrigeration based on the magnetocaloric effect (MCE) has attracted significant attention due to its energy efficiency and environment friendly in comparison with conventional gas compression-expansion refrigeration. A number of materials which exhibit giant magnetic entropy changes at magnetic transitions have been investigated, including MnFeP$_{0.45}$As$_{0.55}$, Gd$_3$Si$_2$Ge$_2$, Ni$_3$Mn$_2$Ge$_2$, Ni$_3$Mn$_2$Ge$_2$ and La(Fe,Si)$_{13}$. The key features of these systems are the temperature- and magnetic field-induced first-order magneto-structural or magneto-elastic phase transitions. Given these promising developments, magnetic materials which exhibit a large magnetocaloric effect have been studied extensively, both experimentally and theoretically, over the past two decades with the overall aim of increasing the efficiency of magnetic refrigeration techniques. While a key focus is exploration of materials that exhibit a pronounced magnetocaloric effect at room temperature, materials that operate in the low temperature region are also useful in meeting the cooling requirements for fields such as gas liquefaction or attaining millikelvin for experimental research facilities. However, so far only a few materials such as GdLiF$_4$, GdF$_3$ and Gd$_3$Ga$_5$O$_{12}$ are used commercially.

Some RT$_x$X$_3$ compounds (R = rare earth, T = transition metal, and X = Si or Ge) have been found to exhibit large MCE values with small hysteresis losses near their low magnetic transition temperatures. For example, the magnetic entropy values of RNi$_2$S$_2$ (R = Dy, Ho, Er) compounds are 21.3 J kg$^{-1}$ K$^{-1}$, 21.7 J kg$^{-1}$ K$^{-1}$ and 22.9 J kg$^{-1}$ K$^{-1}$ around 6.5 K, 4.5 K and 3.5 K respectively during a change of magnetic induction intensity from 0 T to 5 T for x = 0, 0.1, 0.2 respectively.

1Institute for Superconducting and Electronic Materials, Innovation Campus, University of Wollongong, NSW 2500, Australia. 2State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China. 3College of Physics, Jilin University, Changchun 130012, People’s Republic of China. 4School of Physical, Environmental and Mathematical Sciences, UNSW Canberra at the Australian Defence Force Academy, ACT 2600, Australia. 5Department of Physics, Shanghai University, 99 Shangda Road, Shanghai, 200444, China. Correspondence and requests for materials should be addressed to J.W. (email: jianli@uow.edu.au) or Z.C. (email: cheng@uow.edu.au)
0–5 T16, while the magnetic entropy of ErCr\textsubscript{5}Si\textsubscript{1} attained 29.7 J kg-1 K-1 near the magnetic ordering temperature 4.5 K17. The crystal structure of the RT\textsubscript{2}X\textsubscript{2} series is body centred tetragonal ThCr\textsubscript{5}Si\textsubscript{2}-type (with space group I4/mmm)15,18,19 with the sequence -R-X-T-X-R- atomic layers stacked along the c-axis. The rare earth elements typically exhibit large magnetic moment (for example \(\mu_{\text{R}} = 8.8\) \(\mu\text{B}\) in TbMn\textsubscript{2}Si\textsubscript{2} at 5 K20 and correspondingly make a large contribution to the magnetocaloric effect14,15,17. Given the sensitivity of the magnetic state in RMn\textsubscript{2}X\textsubscript{2} through external factors such as pressure28, temperature and magnetic field29 meaning that such compounds have the potential for competitive performance15,19,24. The notations used in this paper to describe the magnetic structure type and critical transition temperatures are defined by Venturini et al.22 Using standard magnetic methods19,30, TbMn\textsubscript{2}Ge\textsubscript{2} was reported to be antiferromagnetic below Néel temperature \(T_{N} = 410\) K with the AFil antiferromagnetic interlayer structure (i.e. a collinear antiferromagnetic structure between adjacent Mn planes in a \(+ - + - \) sequence along the c-axis22). Below \(T_{N} = 100\) K, TbMn\textsubscript{2}Ge\textsubscript{2} exhibits a collinear ferromagnetic structure in which the Tb moments order ferromagnetically and couple antiferromagnetically with the Mn moment23. Furthermore, in a later study for the Tb\textsubscript{1−x}Y\textsubscript{x}Mn\textsubscript{2}Ge\textsubscript{2} series (\(x = 0–0.4\)), it was reported that the replacement of Y for Tb leads to significant modifications of both the Curie temperature (from 76 K for TbMn\textsubscript{2}Ge\textsubscript{2} to almost 0 K for Tb\textsubscript{0.2}Y\textsubscript{0.8}Mn\textsubscript{2}Ge\textsubscript{2}) and magnetovolume effect (the volume effect is \(\Delta V/V = 3.2 \times 10^{-3}\) and \(2.7 \times 10^{-4}\) for \(x = 0\) and 0.1 respectively)30. The magnetic phase transitions around \(T_{C}\) in the Tb-rich Tb\textsubscript{1−x}Y\textsubscript{x}Mn\textsubscript{2}Ge\textsubscript{2} compounds were shown to be first order31, offering scope for large magnetocaloric effects around the region of their Curie temperatures.

Here we present a systematic study of the magnetic transition from antiferromagnetism to ferromagnetism in a series of Tb\textsubscript{1−x}Y\textsubscript{x}Mn\textsubscript{2}Ge\textsubscript{2} samples with \(x = 0, 0.1, 0.2\) using a combination of methods including variable temperature x-ray diffraction (XRD), specific heat, differential scanning calorimetry (DSC) and magnetization measurements. The overall aim is to understand fully the influence of Y substitution for Tb on magnetocaloric effects and search for novel magnetocaloric materials that may be suitable for operation over the hydrogen and natural gas liquefaction temperature ranges.

Method

The polycrystalline Tb\textsubscript{1−x}Y\textsubscript{x}Mn\textsubscript{2}Ge\textsubscript{2} samples with \(x = 0, 0.1, 0.2\) were prepared by arc melting constituent elements of 99.9% purity under argon atmosphere. For improved crystallization and chemical homogeneity, the samples were annealed in vacuum-sealed quartz tube at 850 \(^\circ\)C for 7 days after arc melting. The dc magnetic measurements were performed using a Quantum Design 9 T physical properties measurement system (PPMS). The magnetic behaviour was investigated over the range from 5 K to 340 K in a magnetic field 0.01 T. Differential scanning calorimetry measurements were performed on differential scanning calorimetry equipment (DSC 204 F1 Phoenix®) from 340 K to 500 K. Magnetization-field loops were obtained at temperatures close to the Curie temperature of samples with magnetic fields over the range 0–5 T. The heat capacity measurements were performed on a Quantum Design 14 T physical properties measurement system scanning from 2 K to 250 K. The samples were characterized and the structures determined by variable temperatures XRD measurements over the temperature range (12–300 K) using a PANalytical diffractometer with Cu-K\(\alpha\) radiation.

Results and Discussion

Structural behaviour.

The room temperature x-ray diffraction study shows that all samples are single phase and that patterns can be indexed with a space group of I4/mmm as expected. The Rietveld refinements have been performed on a combination of methods including variable temperature x-ray diffraction (XRD), specific heat, differential scanning calorimetry and magnetization measurements. The overall aim is to determine the influence of Y substitution for Tb on magnetocaloric effects and search for novel magnetocaloric materials that may be suitable for operation over the hydrogen and natural gas liquefaction temperature ranges.
where k_B is the Boltzmann constant and N is the number of the atoms. The thermal expansion for the hypothetical paramagnetic state is derived on integrating Eq. (2) with respect to temperature. The parameter $\gamma k_B/V$ was adjusted to obtain the best least-squares fitting to the successive data points of the observed thermal expansion curve well above the magnetic ordering temperature (based on the fact that the magnetic contribution in the antiferromagnetic region to total thermal expansion can be ignored for these types of compounds)32.

The temperature dependence of the unit cell volumes based on Debye theory for the TbMn$_2$Ge$_2$, Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ samples are shown by the dashed lines in Fig. 1(a,b and c) with pronounced magneto-volume effects evident below their magnetic transition temperatures $T_C = 94\, \text{K}$, $T_C = 83\, \text{K}$ and $T_C = 70\, \text{K}$ respectively. The discontinuous nature of the changes in a lattice parameter and unit cell volume V at the Curie

Figure 1. Temperature dependence of the lattice constants a, c and unit cell volume: (a) TbMn$_2$Ge$_2$, (b) Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and (c) Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$. The dashed lines show the phonon contribution to the lattice expansion as evaluated from the Gruneisen relation.
Magnetic phase transition. The magnetisation of the three samples has been carried out in a field of $B = 0.01 \text{T}$ over the temperature range 5–340 K. As in Fig. 2(a,b and c) the TbMn$_2$Ge$_2$, Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ systems, we assume that the values of B_0 and $\Delta a/a$ were modified as a result of chemical pressure due to differences in the atomic radii of the Tb(1.80 Å) and Y(1.78 Å) ions and resultant changes in lattice parameters. In order to separate these two contributions - dilution effect and pressure effect - and their influence on the variation in magnetic transition temperature, the decrease of T_C is evident from the magnetization versus temperature curves of Fig. 2(a,b and c), there is an abrupt change in magnetisation at the Curie temperature $T_{C\text{inter}}$ that marks the magnetic phase transition from a collinear antiferromagnetism (AFI) at higher temperature to a collinear ferrimagnetic structure along the c axis at lower temperature according to the neutron diffraction study on TbMn$_2$Ge$_2$. Of the three samples, TbMn$_2$Ge$_2$ has the highest $T_{C\text{inter}}$ (warm) = 97.5 K and $T_{C\text{inter}}$ (cool) = 93.0 K transitions respectively as determined from the FC heating and cooling M-T curves, while the values for Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ are derived to be $T_{C\text{inter}}$ (warm) = 87.5 K and $T_{C\text{inter}}$ (cool) = 81.8 K with the values for Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ being $T_{C\text{inter}}$ (warm) = 74.6 K and $T_{C\text{inter}}$ (cool) = 66.0 K (normally the transition temperature during the FC process is chosen as the Curie temperature T_C). As expected, the higher the level of doping of non-magnetic Y atoms in Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$, the lower the magnetic phase transition temperature.

Differential scanning calorimetry measurements have been carried out on the Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ samples over the temperature range 300–500 K (Fig. 2(d)) in order to investigate the paramagnetic to antiferromagnetic transition at $T_{C\text{inter}}$ and $T_{N\text{inter}}$. As revealed by the DSC results in Fig. 2(d), the $T_{N\text{inter}}$ values is due to enhancement of the Mn-Mn exchange interaction as a result of the slight reduction of Mn-Mn distance. This behaviour is similar to the PrMn$_2$Ge$_2$-Si$_x$ system in which the paramagnetic to antiferromagnetic transition temperatures are found to increase slightly while the antiferromagnetic to ferromagnetic transition temperatures decrease on replacing Ge with Si.

The temperature dependences of magnetization for TbMn$_2$Ge$_2$, Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ under various external magnetic fields are presented in Fig 3(a,b and c) respectively. As expected the ferromagnetic transition temperatures decrease on replacing Ge with Si.

Y doping in Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ - Chemical pressure effect. As noted above, the effect of replacing the magnetic rare earth Tb with the nonmagnetic ion Y in Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ is to weaken the exchange interaction between magnetic ions due to the dilution effect. The magnetic behaviour of Y-doped Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ will also be modified as a result of chemical pressure due to differences in the atomic radii of the Tb(1.80 Å) and Y(1.78 Å) ions and resultant changes in lattice parameters. In order to separate these two contributions - dilution effect and pressure effect - and their influence on the variation in magnetic transition temperature, the decrease of T_C by chemical pressure was calculated as (supplementary material). The chemical pressure $\Delta p = -2.9 \text{ kcal/mol} = 29.0 \text{ kbar}$ of the Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ samples over a pressure range of 0.01 T (FC cooling and FC heating). As is

\[
\Delta p(V) = \frac{B_0}{B'_0} \left(\frac{V_0}{V} \right)^{B'_0} - 1 \tag{3}
\]

where V_0, B_0, and B'_0 are the volume, the bulk modulus and its first derivative of TbMn$_2$Ge$_2$ and V is the volume of the unit cell at room temperature of the Y doped samples. Here, due to the similarity of crystal structure for the RMM$_2$Ge$_2$ system, we assume that the values of B_0 and B'_0 for PrMn$_2$Ge$_2$ ($B_0 = 38.0 \text{ Gpa}$, $B'_0 = 19.5$) as derived from our synchrotron data under external pressure can be applied to TbMn$_2$Ge$_2$ at room temperature. Given that the doped materials Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ ($x = 0.1, 0.2$) retain the TbCrSi$_2$-type tetragonal structure, the chemical pressure Δp caused by doping can be assumed to have the same effect as mechanical pressure. Previous findings that describe the pressure effect on the magnetic properties of TbMn$_2$Ge$_2$ (dT/dp = -2.9 K/kbar) can be used to determine the chemical pressure $\Delta T_C^{\text{chemical}} = \text{dT/dp} \times \Delta p$ (4)
Figure 2. Temperature dependence of magnetization on ZFC heating, FC cooling and FC heating processes under a field of B = 0.01 T: (a) TbMn$_2$Ge$_2$, (b) Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and (c) Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$. (d) the differential scanning calorimetry curves for the three samples over the range ~300–500 K.
Figure 3. The magnetisation versus temperature curves during cooling under various magnetic field (B = 1–5 T). (a) TbMn$_2$Ge$_2$, (b) Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$, (c) Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$. (d) The variation of ferromagnetic transition temperature T_c with magnetic field for the three samples. The dashed lines represent linear fits to the T_c-B curves leading to dT_c/dB values for each sample.
Table 1. Experimental data for the three Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ samples (x = 0, 0.1 and 0.2). Y composition x, chemical pressure Δp, unit cell volume at 300 K, the change in unit cell volume ΔV_{m} and the change in moment $\Delta \mu$ on magnetic field 1 T during the structural transition, value of T_c during the FC process, the value of $dT_c/\partial B$, the total difference value of Curie temperature ΔT_{total} between Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ (x = 0.1 and 0.2) and TbMn$_2$Ge$_2$, the derived values of $\Delta T_{\text{chemical}}$ (caused by chemical pressure) and $dT_c/\partial p$ of Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ (x = 0, 0.1 and 0.2). The errors are shown for the TbMn$_2$Ge$_2$ data as an example.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp (Gpa)</td>
<td>0</td>
<td>0.012</td>
<td>0.053</td>
</tr>
<tr>
<td>ΔV_{m}(300 K)</td>
<td>173.66(5)</td>
<td>173.63</td>
<td>173.53</td>
</tr>
<tr>
<td>ΔV_{m}(300 K)</td>
<td>0.40</td>
<td>0.52</td>
<td>0.54</td>
</tr>
<tr>
<td>$\Delta T_{\text{chemical}}$(K)</td>
<td>0</td>
<td>1.94</td>
<td>8.70</td>
</tr>
<tr>
<td>ΔT_{total}(K)</td>
<td>0</td>
<td>11.2</td>
<td>27.0</td>
</tr>
<tr>
<td>$\Delta T_{\text{chemical}}/\Delta T_{\text{total}}$</td>
<td>0</td>
<td>17.3%</td>
<td>32.2%</td>
</tr>
<tr>
<td>$dT_c/\partial B$ (cooling) (K/T) (FC)</td>
<td>1.06 \pm 0.04</td>
<td>1.54 \pm 0.05</td>
<td>1.29 \pm 0.09</td>
</tr>
<tr>
<td>$dT_c/\partial p$ (K/kbar) (FC)</td>
<td>-3.03</td>
<td>-2.84</td>
<td>-3.07</td>
</tr>
</tbody>
</table>

The values of the change in the unit cell volume ΔV_{m} be change in moment $\Delta \mu$ during magnetic phase transition around T_c and $dT_c/\partial B$ for each sample were taken from the present experimental results listed in Table 1. The derived results are $dT_c/\partial p = -3.03$ K/kbar, -2.84 K/kbar and -3.07 K/kbar for TbMn$_2$Ge$_2$, Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ respectively. These calculated values are in general accord with the value of $dT_c/\partial p = -2.9$ K/kbar for TbMn$_2$Ge$_2^{38}$, deviating by ~4.5%, ~2.1% and ~5.9% for the x = 0, 0.1, 0.2 samples respectively.

Magnetocaloric effect. Graphs of the magnetization as a function of applied field are shown for TbMn$_2$Ge$_2$, Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ at temperatures around T_c in Fig. 4(a,b and c) respectively. It can be seen that with increasing temperature beyond T_c^{inter}, a field-induced metamagnetic phase transition from the antiferromagnetic to the ferromagnetic state at certain temperatures has been detected. The region of the antiferromagnetic phase transition for TbMn$_2$Ge$_2$ is indicated by arrows in Fig. 4(a) as a typical example. This behaviour indicates that the region of ferromagnetic ordering in Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ can be shifted to higher temperatures by a stronger applied magnetic field.

The nature of the magnetic transitions (first order or second order) was analysed using Arrott plots with the magnetisation expressed in the usual way as graphs of M^2 versus B/M (Fig. 5). As can be seen in Fig. 5(a,b and c), negative slopes are detected in the M^2 versus B/M graphs for the TbMn$_2$Ge$_2$ and Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ samples thus indicating that the antiferromagnetic to ferromagnetic processes are first order39. However, some papers40,41 reported that for compounds near the critical point (from first order to second order magnetic phase transition) such as DyCo$_2$, this criterion of Arrott plots do not always work properly. It is also noted that the negative slopes for Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ around the antiferromagnetic to ferromagnetic transition was reduced compared with those for the TbMn$_2$Ge$_2$ and Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ samples. However, the first order transition characters of all the three samples can be confirmed from our variable temperatures crystal structure analyses above, where strong magneto-elastic coupling around $T_{c\text{inter}}$ has been detected (Fig. 1).

The magnetic entropy changes ΔS_m for all samples have been determined from the isothermal magnetization curves of Fig. 4(a,b and c), by using the standard Maxwell relationship:

$$\Delta S_m(T, B) = \int_{B_{\text{inter}}}^{B_{\text{max}}} \left(\frac{\partial M(B, T)}{\partial T} \right)_B \, dB.$$

The calculated temperature dependent magnetic entropy changes for the Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ samples with x = 0, 0.1 and 0.2 for both increasing field and decreasing field processes between field changes of $\Delta B = 0$–1 T and $\Delta B = 0$–5 T are shown in Fig. 6(a,b and c) respectively with the maximum values $\Delta S_{m\text{max}}$ shown as a function of applied field in the insets of Fig. 6. With a field change of $\Delta B = 0$–5 T, the value of $\Delta S_{m\text{max}}$ are 9.1 J/kgK, 11.9 J/kgK and 6.3 J/kgK for TbMn$_2$Ge$_2$, Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ respectively, demonstrating that the entropy change for Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ is the largest of the three samples. As it is clear from Fig. 4, while TbMn$_2$Ge$_2$ has the highest fraction of magnetic rare earth element and largest saturation magnetization (42.5 Am2/kg at 84 K), its large hysteresis loss (7.40 J/kg) leads to reduction in the magnetic entropy change. By comparison, with the lowest concentration of magnetic rare earth Tb, the Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ sample displays the lowest saturation magnetization (only 32.5 Am2/kg even at 55 K) and the smallest hysteresis loss (5.21 J/kg), while as shown in Fig. 4(b), Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ with medium concentration of Tb has a relatively large saturation magnetization of 38.0 Am2/Kg at 84 K and small hysteresis loss (5.36 J/kg). The refrigerant capacity (RCP), defined as the product of $-\Delta S_{m\text{max}}$ and the full width at half maximum of the $-\Delta S_{m\text{max}}$ curve, for the three samples are: 93.3 J/kg, 102.9 J/kg,
62.4 J/kg for TbMn$_2$Ge$_2$, Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$, respectively, with a field change of $\Delta B = 0$–5 T. The MCE value of Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ is comparable to those of other materials for a field change of $\Delta B = 0$–5 T including: GdCoAl, $-\Delta S_{\text{max}}(T) = 10.4$ J/kgK at 100 K34, TbCoAl, $-\Delta S_{\text{max}}(T) = 10.5$ J/kgK at 70 K34 and GdMn$_2$Ge$_2$, $-\Delta S_{\text{max}}(T) = 1.2$ J/kgK at 95 K28, all of which, in common with Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$, importantly exhibit negligible field and thermal hysteresis losses.

Moreover, it is well accepted that first-order phase transitions are accompanied by a latent heat and the barocaloric effect can be expected. In fact giant barocaloric effect has been found in several systems recently including Mn$_3$GaN ($\Delta S_{\text{bar}} = 22.3$ J/K kg)42 and Ni–Mn–In magnetic superelastic alloys ($\Delta S_{\text{bar}} = 27.7$ J/K kg)43. Based on the fact that all these three Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ samples exhibit strong magnetovolume effect around magnetic phase transition, we have calculated the barocaloric effect using the Clausius–Clapeyron relation43. The barocaloric effects entropy change ΔS_{bar}, have been derived to be 9.6 J/kgK, 13.5 J/kgK and 13.2 J/kgK for TbMn$_2$Ge$_2$, Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$, respectively. These barocaloric values indicate that these materials can be considered as a potential candidate for mechanocaloric effects over the hydrogen and natural gas liquefaction temperature ranges.

Heat Capacity. The heat capacity of TbMn$_2$Ge$_2$ over the temperature range 2–250 K is shown in Fig. 7(a). The sharp peak in the heat capacity near the Curie temperature of TbMn$_2$Ge$_2$ on both zero magnetic field and a field of 2 T reflects the first order character of the magnetic phase transition. The peak in specific heat shifts from ~ 98 K to 102.6 K for magnetic fields of 0 T and 2 T respectively; this behaviour corresponds well to the values of the Curie temperature of TbMn$_2$Ge$_2$ - 97.5 K (B = 0 T) to 103 K (B = 2 T) - obtained for the magnetization measurements (Fig. 3(d)).

The heat capacity $C(T)$ of a metallic magnetic material includes contributions from phonons, electrons and magnons and can be described as follows:

$$C(T) = C_{\text{ph}}(T) + C_{\text{el}}(T) + C_{\text{m}}(T).$$

(7)

where C_{ph}, C_{el} and C_{m} are the lattice, electronic, and magnetic contributions respectively44. In the absence of a magnetic phase transition, the heat capacity can be described as:

$$C(T) = \gamma T + \beta T^3.$$

(8)

where γ and β are the electronic and phonon heat capacity coefficients, respectively. For the specific heat of TbMn$_2$Ge$_2$ at low temperatures $T \leq 1$ K, well away from the magnetic transition, as shown in Fig. 7(b), a fit to the graph of C_p/T versus T^2 leads to $\gamma = (65.2 \pm 0.95)\text{mJ/molK}^2$, $\beta = (4.53 \pm 0.156) \times 10^{-4}\text{J/molK}^4$. The electronic density of states $N(E_F)$ at the Fermi surface can be calculated by the formula44
Figure 6. The magnetic entropy changes around the ferromagnetic transition temperatures for applied magnetic fields from 1–5 T. (a) TbMn$_2$Ge$_2$, (b) Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$, and (c) Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ (black full symbols for 1–5 T respectively during increasing field and the red empty symbols correspond to 1–5 T for the decreasing field). The insets show the variation of the maximum values of magnetic entropy changes for the decreasing field values.

\[
\gamma = \frac{k_B \pi^2}{3} N(E_F)
\]

where \(k_B \) is the Boltzmann constant. For the TbMn$_2$Ge$_2$ compound, the value of \(N(E_F) \) is derived to be \((5.54 \pm 0.08) \) state/eV atom. Likewise, the Debye temperature \(\theta_D \) can also be obtained by:

\[
\beta = \frac{12 \pi^4 R}{5 \theta_D^4} \cong \frac{1944 \pi n}{\theta_D^4}
\]
where R is the universal gas constant and the number of atoms $n = 545$. The Debye temperature for TbMn$_2$Ge$_2$ was determined as $\theta_D = 278 \pm 3$ K.

The magnetic entropy change, $-\Delta S_M(T, B)$ can also be derived from measurements of the in-field heat capacity using the expression thermodynamic relations below:\(^{46}\)

$$\Delta S_M(T, B) = \int_0^T \frac{C(T', B) - C(T', 0)}{T'} dT'$$

(11)

where $C(T, B)$ and $C(T, 0)$ are the values of the heat capacity measured in field B and zero field, respectively. The maximum of magnetic entropy change has been derived to be $-\Delta S_{M_{max}} = 2.6$ J/kgK for TbMn$_2$Ge$_2$ (field change of $\Delta B = 2$ T), which is smaller than the value ($-\Delta S_{M_{max}} = 5.9$ J/kgK) deduced from the isothermal magnetization.

Figure 7. The specific heat capacity relative parameters for TbMn$_2$Ge$_2$. (a) The specific heat capacity C_p of TbMn$_2$Ge$_2$ over the temperature range 2–250 K in zero magnetic field (red solid square) and a field of 2 T (blue solid triangle). (b) A graph of C_p/T versus T^2 for TbMn$_2$Ge$_2$ at temperatures below 10 K. (c) Magnetic entropy change $-\Delta S$ as a function of temperature derived from the specific heat data of Fig. 7(a) for $\Delta B = 0$–2 T. The inset shows the corresponding adiabatic temperature change, ΔT_{ad}.
curves. This behaviour may be due to the fact that a straightforward numerical integration using Maxwell equation based on magnetization curves is not applicable in the phase-separated state as described in ref. 47,48. The corresponding adiabatic temperature change, ΔT_{ad} (shown as inset of Fig. 7(c) can be evaluated from $-\Delta S_M(T, B)$ and the heat capacity data.

The equivalent heat capacity parameters for Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ are shown in Figs 8 and 9, respectively. The Debye temperatures were found to increase from 281 K for TbMn$_2$Ge$_2$ to 344 K for Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and 354 K for Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$; with the increases understood in terms of the differences in their molecular mass. The adiabatic temperature changes near the Curie temperature are found to decrease from $-\Delta T_{\text{ad}} = 2.6$ K for TbMn$_2$Ge$_2$ to $-\Delta T_{\text{ad}} = 2.3$ K for Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and 1.8 K for Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$.

The electron density at the Fermi surface is found to decrease from 5.54 state/eV atom for TbMn$_2$Ge$_2$ to 2.18 state/eV atom and 3.06 state/eV atom for Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ and Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ respectively. All the fitting results including electronic heat capacity coefficient γ, phonon heat capacity coefficient β, electronic density of

Figure 8. The specific heat capacity relative parameters for Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$. (a) The specific heat capacity C_p of Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ over the temperature range 2–250 K in zero magnetic field (red solid square) and a field of 2 T (blue solid triangle). (b) A graph of C_p/T versus T^2 for Tb$_{0.9}$Y$_{0.1}$Mn$_2$Ge$_2$ at temperatures below 10 K. (c) Magnetic entropy change $-\Delta S$ as a function of temperature derived from the specific heat data of Fig. 8a for $\Delta B = 0$–2 T. The inset shows the corresponding adiabatic temperature change, ΔT_{ad}.
states $N(E_F)$ and Debye temperature θ_D are summarized in Table 2. The modification of the electron density at the Fermi surface may be related to the difference of electronic configuration of Y and Tb as well as the unit cell size variation. The latter may lead to the variation in the degree of hybridization of Mn 3d states with p states of Ge with decreasing interatomic distances for Y doped samples. Similar behaviour has been found in the La$_{1-x}$Y$_x$Mn$_2$Si$_2$ system where the electron density is derived to be 2.83 states/eV atom for $x=0$, 2.51 states/eV atom for $x=0.25$, 2.54 states/eV atom for $x=0.3$ and 1.47 states/eV atom for $x=1.0^{29}$. Moreover, it is also noted that the electron density at the Fermi level for TbMn$_2$Si$_2$ was reported to be 2.38 states/eV atom, which is close to the values reported here for Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ samples.

Conclusions
In conclusion, we have carried out a detailed investigation around the region of the magnetic transitions of compounds in the Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ series ($x=0, 0.1, 0.2$) by variable temperature x-ray diffraction, heat capacity, and heat capacity relative parameters for Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$. (a) The specific heat capacity C_p of Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ over the temperature range 2–250 K in zero magnetic field (red solid square) and a field of 2 T (blue solid triangle). (b) A graph of C_p/T versus T^2 for Tb$_{0.8}$Y$_{0.2}$Mn$_2$Ge$_2$ at temperatures below 10 K. (c) Magnetic entropy change $-\Delta S$ as a function of temperature derived from the specific heat data of Fig. 9(a) for $\Delta B=0–2$ T. The inset shows the corresponding adiabatic temperature change, ΔT_{ad}.
Table 2. Calculated heat capacity parameters for Tb$_{1-x}$Y$_x$Mn$_2$Ge$_2$ ($x = 0, 0.1, 0.2$). Electronic heat capacity coefficient γ, phonon heat capacity coefficient β, electronic density of states $N(E_F)$ and Debye temperature θ_D.

<table>
<thead>
<tr>
<th>x</th>
<th>γ (mJ/molK2)</th>
<th>β (mJ/molK4)</th>
<th>$N(E_F)$ (state/eV atom)</th>
<th>θ_D(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>65.2 ± 0.9</td>
<td>(4.53 ± 0.16) \times 10$^{-4}$</td>
<td>5.54 ± 0.08</td>
<td>278 ± 3</td>
</tr>
<tr>
<td>0.1</td>
<td>25.6 ± 2.0</td>
<td>(2.39 ± 0.24) \times 10$^{-4}$</td>
<td>2.18 ± 0.17</td>
<td>345 ± 12</td>
</tr>
<tr>
<td>0.2</td>
<td>36.0 ± 1.3</td>
<td>(2.19 ± 0.19) \times 10$^{-4}$</td>
<td>3.06 ± 0.11</td>
<td>355 ± 11</td>
</tr>
</tbody>
</table>

differential scanning calorimetry and magnetic measurements. Two magnetic phase transitions occur at T_N^{inter} and T_C^{inter} for each of the three samples. The antiferromagnetic transition at T_N^{inter} is shown to increase slightly with increase in the Y concentration, while the ferromagnetic transition at T_C^{inter} drops significantly. The mechanism of play of T_C due to the substitution of Y for Tb has been analysed and chemical pressure is found to play a significant role. Moreover, the entropy change of Tb$_{0.9}Y_{0.1}$Mn$_2$Ge$_2$ is found to exhibit very good magnetocaloric performance ($\Delta S = 11.9$ J kg$^{-1}$ K$^{-1}$ and $\Delta C_P = 102.9$ J kg$^{-1}$ K$^{-1}$ for a field change of $\Delta B = 0–5$ T) with a small hysteresis loss of 5.36 J/kg. This behaviour reflects the potential suitability of Tb$_{0.9}Y_{0.1}$Mn$_2$Ge$_2$ for operation as a magnetic refrigerant below the nature gas liquefaction temperature. The Debye temperature and the density of states $N(E_F)$ at the Fermi level have been determined and analyzed from the heat capacity.

References
6. Wang, L. et al. Large entropy change accompanying two successive magnetic phase transitions in Tb$_{0.9}Y_{0.1}$Mn$_2$Ge$_2$ for operation as a magnetic refrigerant below the nature gas liquefaction temperature. The Debye temperature and the density of states $N(E_F)$ at the Fermi level have been determined and analyzed from the heat capacity.

Acknowledgements

Z. X. Cheng thanks the Australia Research Council for Future Fellowship (FT0990391). This work was supported in part by Australia Research Council Discovery Grant No. DP110102386. The authors thank Dr. T. Silver for his contribution to English expression.

Author Contributions

J.L. Wang and Z.X. Cheng designed the project. C.S. Fang, G. X Li, J.L. Wang, W.D. Hutchison, Z.X. Cheng and Q.Y. Ren carried out the experimental work. C.S. Fang, J.L. Wang, Z.X. Cheng and S.J. Campbell wrote the paper. All the authors interpreted and discussed the work.

Additional Information

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Fang, C. et al. New insight into magneto-structural phase transitions in layered TbMn₃Ge₂-based compounds. *Sci. Rep.* **7**, 45814; doi: 10.1038/srep45814 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017