Novel implications of Lingo-1 signaling in the prefrontal cortex and hippocampus of perinatal phencyclidine treated rats in a neurodevelopmental model of schizophrenia

Jessica L. Andrews
University of Wollongong, ja393@uowmail.edu.au

Kelly Newell
University of Wollongong, knewell@uow.edu.au

Xu-Feng Huang
University of Wollongong, xhuang@uow.edu.au

Francesca Fernandez-Enright
University of Wollongong, fernande@uow.edu.au

Publication Details

Novel implications of Lingo-1 signaling in the prefrontal cortex and hippocampus of perinatal phencyclidine treated rats in a neurodevelopmental model of schizophrenia

Abstract
Abstract of a poster presentation.

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/smhpapers/2458
Novel Implications of Lingo-1 Signaling in the Prefrontal Cortex and Hippocampus of Perinatal Phencyclidine Treated Rats in a Neurodevelopmental Model of Schizophrenia

Jessica L. Andrews1,2, Kelly A. Newell1,2, Xu-Feng Huang1,2, Francesca Fernandez-Enright1,2

1. Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
2. Centre for Translational Neuroscience, Schizophrenia Research Institute, Sydney, NSW, Australia

Background: Leucine-rich repeat and immunoglobulin domain-containing protein Lingo-1, is a potent negative regulator of axonal myelination and neurite extension. Nogo receptor (NgR)/TNF receptor orphan Y (TROY) and/or With No Lysine (K) (WNK1) and Myelin transcription factor-1 (Myt1), have been reported as co-receptors/co-factors of Lingo-1 signaling in the brain. We investigated the developmental profile of Lingo-1 signaling proteins in a phencyclidine (PCP) neurodevelopmental rat model of schizophrenia.

Methods: Male Sprague Dawley rats received subcutaneous injections of PCP (10mg/kg) or saline at postnatal days (PN)7, 9 and 11. Rats (n=6) were sacrificed at three time points, PN12, 5 weeks or 14 weeks. Protein expression levels of Lingo-1, NgR, p75, TROY, WNK1 and Myt1 were examined within the prefrontal cortex (PFC) and hippocampus (HPC) of the treated rats.

Results: Myt1 was decreased in PCP treated rats at PN12 in both PFC and HPC (10-18%; p≤0.044). p75 was also decreased in HPC of PCP treated rats at PN12 (16%; p=0.011). There were no significant changes in the expression of any of the tested proteins in either brain region at PN 5 weeks (0.129≤p≤0.909). At PN 14 weeks, Lingo-1, NgR, TROY and WNK1 were increased in the PFC (7%-18.5%; 0.002≤p≤0.036) and p75, TROY, and Myt1 were increased in HPC (14.5%-22%; 0.0149≤p≤0.022) of PCP treated rats.

Conclusions: This is the first study to have shown an alteration of Lingo-1 signaling pathways in a neurodevelopmental schizophrenia animal model. This will allow us to gain a better understanding of the mechanisms implicated in schizophrenia.