A strategic management and innovation approach to onshore gas transmission pipeline construction

Leone Dunn
University of Wollongong, leone@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
A STRATEGIC MANAGEMENT AND INNOVATION APPROACH TO ONSHORE GAS TRANSMISSION PIPELINE CONSTRUCTION

Leone J Dunn

Submitted as Requirements for MEng Research
Department of Mechanical Engineering
Faculty of Engineering
University of Wollongong
2007
ABSTRACT

This research investigates whether a traditional manufacturing planning and control strategy would make Onshore Gas Transmission Pipeline Construction more competitive and if so, design the strategy. An in-depth case study of Gas Transmission Pipeline Construction was carried out, along with an extensive literature review. The current pipeline construction process was analyzed from a strategic management perspective. From this perspective, it was found that the traditional 'make and sell' attitude of manufacturers has now almost entirely given way to a customer orientated 'sense and respond' service philosophy. This is compounded by the needs for waste avoidance, cost efficiency and service to the customer. This research investigates the strategic opportunities for establishing advantages over competitors by designing unique service oriented supply chain strategies. Rather than relying on functional hierarchy and command and control governance where a chain of commitments are poorly connected and difficult to reconfigure, the pipeline construction participants are challenged to develop more flexible process designs around a state of the art service based architecture. Complexity reduction has traditionally been used to deal with intricate construction supply chains. However, the architecture developed and demonstrated in this thesis will allow participants in pipeline construction to develop strategic opportunities around ideas of complexity absorption. The architecture is built on the premise that complexity absorption creates an organization that is strategically superior because it becomes a complex adaptive system that is unique to that organization. A case study is presented based on a major onshore gas transmission pipeline construction organization that illustrates an application consisting of Pipeline Construction Portal and Service Oriented Architecture. This model is internet-based and has three main constituents of Web Services, Portal and Client Services.
ACKNOWLEDGEMENTS

I acknowledge the assistance of and offer my thanks and appreciation to the following people in the preparation of this thesis:

- Associate Professor Peter Gibson, my supervisor, who provided much encouragement and enthusiasm for this project. His knowledge of all areas of engineering business management continuously challenged me;

- Professor John Norrish, my co-supervisor, who has supported my internet pipeline projects with funding and equipment as well as expertise and has introduced me to valuable industry contacts for this research;

- My family for their continuous encouragement and support.
CHAPTER ONE __ - 8 -

1.1 Overview __ - 8 -

1.2 Background __ - 9 -

1.3 Research Design __ - 12 -

1.4 Justification __ - 13 -

1.6 Research Scope __ - 13 -

1.7 Thesis Organization __ - 14 -

1.8 Summary __ - 15 -

CHAPTER TWO __ - 16 -

2.1 Introduction and Overview ______________________________________ - 16 -

2.2 Findings __ - 16 -

2.2.1 21st Century Manufacturing is a Buyer’s Market - 16 -

2.2.2 Sustainable Competitive Advantage in Today’s Organizations is Achieved by Business Concept Innovation - 19 -

2.2.3 To Compete, Organizations Must Recognize Customer Experience and Service Along With Facilitating Goods - 20 -

2.2.4 Sustainable Competitive Advantage is Linked to Intangible Assets - 21 -

2.2.5 The Right Operations Strategy is Crucial for Value Creation - 23 -

2.2.6 The Role of the Operations Strategy Has Changed - 24 -

2.2.7 The Scope of the Operations Strategy is the Value Chain or Network - 25 -

2.2.8 The Operations Strategy Must Leverage the Organization’s Core Competencies and Capabilities to Create Value - 26 -

2.2.9 The Operations Strategy is NOT a Plan - 31 -

2.2.10 The Operations Strategy is not the Project Strategy - 43 -

2.3 The Case Study __ - 46 -

2.3.1 The Complexity of Gas Transmission Pipeline Construction - 46 -

2.3.2 Characteristics of Pipeline Construction Projects - 49 -

2.3.3 Current Shortcomings in Gas Transmission Pipeline Construction Management - 52 -

2.4 Summary __ - 58 -

CHAPTER THREE __ - 59 -

3.1 Overview __ - 59 -

3.2 Overall Research Design _______________________________________ - 59 -

3.3 Philosophical Background ___________________________________ - 61 -

3.3.1 Engineering Management as a Field of Study - 63 -

3.4 Research Strategies __ - 63 -

3.5 Research Questions Revisited _________________________________ - 67 -

3.5.1 Research Objectives - 67 -

3.5.2 Research Questions - 68 -

3.6 Research Methods __ - 69 -

3.6.1 Data Collection Methods - 69 -

3.6.2 Data Analysis and Evaluation - 70 -

3.7 Analytical Strategy ___ - 71 -

3.7.1 Unit of Analysis - 71 -
Level of Tariff - 141 -
Shape of Tariffs - 141 -
Finalization and approval of detailed project designs - 145 -
Participate in post Project Review /Audit - 146 -
Develop and Conduct Training in Operations and Maintenance - 146 -
Definition of Project Organization Structure, Organization Chart - 149 -
Directory - 149 -
Audit requirements and or procedures - 149 -
CTR Scheduling - 159 -
Break project up into manageable sections - 159 -
Cost Schedule - 160 -
APPENDIX B - 165 -
Information Technology Systems for Pipeline Construction - 165 -
The components of the system - 165 -
Procedure database - 166 -
On Line Weld Monitoring - 167 -
GPS coordinate recording on site - 167 -
Video surveillance on site - 168 -
Interfacing with NDT systems - 168 -
Wireless data communication - 168 -
Proposal - 168 -
Benefits to the user - 168 -
Figure 1, System outline - 169 -
Intellectual property - 170 -
Mobile Data communications - 171 -
APPENDIX C - 172 -
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The 21st Century Buyer’s Market</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Managerial Frameworks for Manufacturing Organizations</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>A Static Operations Strategy</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Container Yard Operations Under a Static Operations Strategy</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Complex Adaptive System</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>A Dynamic Operations Strategy</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Static vs Dynamic Operations Strategy Example</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>A Gas Transmission Pipeline Capability Network</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Operations Strategy in Current Pipeline Construction</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Pipeline Construction Value Chain</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Shortcoming and Waste in Current Pipeline Construction Value Chain</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>The Construction Swamp of Complexity</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Dynamic Integrated e-Operations Strategy for Gas Transmission Pipeline</td>
<td>50</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Elements of a Service Oriented Architecture</td>
<td>94</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Evolution of IT Architectures</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Service Oriented Terminology</td>
<td>97</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>A CRM Service and its Interfaces</td>
<td>98</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Layered Application Architecture</td>
<td>99</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Collaboration of Software Services</td>
<td>100</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Purchase Order Component Model</td>
<td>102</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Web Services Collaboration Architecture</td>
<td>104</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>The WS-I Technical Architecture for Supply Chain Management</td>
<td>105</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Portals and Portlets</td>
<td>106</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Portal Aspects</td>
<td>107</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Portal layers</td>
<td>107</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Portal Types and Services</td>
<td>108</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>An Example of a Simple Web Service Workflow</td>
<td>109</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>An Example of a More Complex Workflow</td>
<td>110</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>An Example of a Composed Workflow</td>
<td>111</td>
</tr>
<tr>
<td>Figure 4.17</td>
<td>Further Example of a Web Service Workflow Composition</td>
<td>112</td>
</tr>
<tr>
<td>Figure 4.18</td>
<td>As-Is Gas Transmission Pipeline Construction Business Architecture</td>
<td>113</td>
</tr>
<tr>
<td>Figure 4.19</td>
<td>Pipeline Construction as an Integrated Process</td>
<td>114</td>
</tr>
<tr>
<td>Figure 4.20</td>
<td>A Suggested Web Service For Pipeline Construction With Private Workflow</td>
<td>116</td>
</tr>
<tr>
<td>Figure 4.21</td>
<td>Proposed Pipeline Construction Portal and SOA</td>
<td>117</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>A Dynamic Needs/Capabilities Model for Gas Transmission Pipeline Construction</td>
<td>122</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1.1 Compilation of Data on Construction Waste……………………………3
Table 2.1 Eisenhardt and Martin’s Reconceptualized Dynamic
 Capabilities.. 24
Table 2.2 Mintzberg’s Ten Schools of Strategy..25
Table 3.1 Key Features of The Positivist vs Interpretivist Paradigms.........55