2014

Identification of historical lead sources apportionments in estuary sediments from atmospheric aerosols/ NSW/Australia

Yasir M. Alyazichi
University of Wollongong, ymmay555@uowmail.edu.au

Brian Jones
University of Wollongong, briangj@uow.edu.au

Errol McLean
University of Wollongong, errol@uow.edu.au

Publication Details

Identification of historical lead sources apportionments in estuary sediments from atmospheric aerosols/ NSW/Australia

Abstract
Abstract of a poster that presented at the IAC2014 conference.

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details
Identification of historical lead sources apportionments in estuary sediments from atmospheric aerosols/ NSW/Australia.

Yasir M. Alyazichi\(^1, 2\)*, Brian G. Jones\(^1\) and Errol McLean\(^1\)

\(^1\)School of Earth and Environmental Sciences, University of Wollongong, NSW, Australia.
\(^2\)Dams and Water Resources Research Centre, University of Mosul, Mosul, Iraq.
*Corresponding author: ymmay555@uowmail.edu.au

Keywords: pollution, lead isotope, marine sediments and atmospheric aerosols

X-Ray fluorescence and stable lead (Pb) isotopic analyses have been determined in surface sediments from urbanized areas in south of Sydney, NSW, Australia. The main objective of this investigation was to determine the histologic record of Pb pollution. Surface and subsurface sediment samples were collected in the study areas. The concentration of lead varied from site to site in the study areas depending on several factors, such as number of discharge points (storm water), population, sediment particles (sand, silt and clay), grain size and mineral composition. The isotope composition found in the sediment samples, expressed here as \(\frac{^{206}\text{Pb}}{^{204}\text{Pb}}\), is relatively constant at 18.1 at a depth below 35 cm, whereas, the lead isotope declined with decreasing depth. These results are corresponded with increased lead concentration within surface sediment (Fig. 1).

As indicated by these figures the isotope ratio has increased with time since European settlement.

In addition, the lead isotope ratio of Botany Bay and Port Hacking sediment samples is represented by \(\frac{^{207}\text{Pb}}{^{206}\text{Pb}}\) vs. \(\frac{^{208}\text{Pb}}{^{206}\text{Pb}}\) in (Fig.2). The lead isotope ratio of the surface samples lies with and above some samples roof dust samples Chiaradia et al. (1997), and below Broken Hill, Mt Isa (the old lead deposited in Australia) and gasoline-air (Gulson, 1986). The lead isotope ratio of the subsurface sediment samples (background) of the study areas was below that of other samples, except the Lake Illawarra samples, which had isotope ratio of 2.1 and 0.85 of \(\frac{^{208}\text{Pb}}{^{206}\text{Pb}}\) and \(\frac{^{207}\text{Pb}}{^{206}\text{Pb}}\) respectively.

Acknowledgements

This work is a part of the first author’s PhD thesis undertaken at School of Earth and Environmental Sciences, University of Wollongong. It was financially supported by the Ministry of Higher Education, Iraqi Government and GeoQuest research Centre, University of Wollongong.

References
