1-1-2014

Optimal design of semi active control for adjacent buildings connected by mr damper based on integrated fuzzy logic and multi-objective genetic algorithm

Mehmet Uz
University of Wollongong, meuz@uow.edu.au

Muhammad N. S Hadi
University of Wollongong, mhadi@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation
Uz, Mehmet and Hadi, Muhammad N. S, "Optimal design of semi active control for adjacent buildings connected by mr damper based on integrated fuzzy logic and multi-objective genetic algorithm" (2014). Faculty of Engineering and Information Sciences - Papers: Part A. 2235.
https://ro.uow.edu.au/eispapers/2235

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Abstract
An optimal design strategy based on genetic algorithms (GA) is proposed for nonlinear hysteretic control devices that prevent pounding damage and achieve the best results in seismic response mitigation of two adjacent structures. An integrated fuzzy controller is used in order to provide the interactive relationships between damper forces and input voltages for MR dampers based on the modified Bouc-Wen model. Furthermore, Linear Quadratic Regulator (LQR) and H2/LQG (Linear Quadratic Gaussian) controllers based on clipped voltage law (CVL) are also used to compare the results obtained by fuzzy controller. This study employs the main objectives of the optimal design that are not only to reduce the seismic responses but also to minimize the total cost of the damper system. A set of Pareto optimal solutions is also conducted with the corresponding results obtained from the optimal surface of Pareto solutions in this study. As a result, decreasing the number of dampers does necessarily increase the efficiency of the system. In fact, reducing the number of dampers for the dynamic response of the system can contribute more than increasing the number of dampers.

Keywords
design, semi, active, control, adjacent, buildings, connected, mr, damper, integrated, fuzzy, logic, multi, objective, optimal, genetic, algorithm

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/2235
Optimal Design of Semi-active Control control for Adjacent Buildings Connected by MR Damper Based on Integrated Fuzzy Logic

Mehmet E. Uz
Muhammad N.S. Hadir
mhadi@uow.edu.au
School of Civil, Mining & Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

Abstract

An optimal design strategy based on genetic algorithms (GA) is proposed for nonlinear hysteretic control devices that prevent pounding damage and achieve the best results in seismic response mitigation of two adjacent structures. An integrated fuzzy controller is used in order to provide the interactive relationships between damper forces and input voltages for MR dampers based on the modified Bouc-Wen model. Furthermore, Linear Quadratic Regulator (LQR) and H_2/LQG (Linear Quadratic Gaussian) controllers based on clipped voltage law (CVL) are also used to compare the results obtained by fuzzy controller. This study employs the main objectives of the optimal design that are not only to reduce the seismic responses but also to minimize the total cost of the damper system. A set of Pareto optimal solutions is also conducted with the corresponding results obtained from the optimal surface of Pareto solutions in this study. As a result, decreasing the number of dampers does necessarily increase the efficiency of the system. In fact, reducing the number of dampers for the dynamic response of the system can contribute more than increasing the number of dampers.

Keywords: Adjacent Buildings; Semi-active control; Clipped-optimal algorithm; Magneto-Rheological (MR) damper

1 Introduction

In structural design it is necessary that the total displacement and the inter-storey drift of the structures should be limited whereas the absolute acceleration must be kept small for the human comfort. Structures with installed fluid visco-elastic dampers (VEDs) [1–4], friction dampers [1–5], active devices [6–9] and semi-active magnetorheological (MR) dampers [10–13] systems have been introduced for the human comfort in today's modern concepts. The control systems that are optimized using the procedures developed in previous studies [14–16] are capable of mitigating the response of the structure. Several types of dampers have been studied onto structures as paramount interest over the past two decades. Despite high-rise buildings being constructed in close proximity, various methodologies of interconnecting adjacent buildings have been examined for seismic hazard mitigation. Despite the development of recent control strategies like semi-active control, research in the area of passive and active structural control is still continuing [17].

According to stochastic response of the building in the parametric study of Kim et al. [18], there is a certain size of fluid visco-elastic dampers to minimize the response of the structures subject to white noise and earthquake excitation. In recent years, owing to the adaptability of semi-active control devices, considerable attention has been directed to research and development. One such innovative device is the magnetorheological (MR) damper, which utilizes MR fluids for providing control capability. A MR damper offers a highly reliable mechanism for response reduction at a modest cost, and is fail-safe because the damper becomes passive if the control hardware breaks down [19]. Dyke et al. [20], Ni et al. [21], Park and Ok [22] and Kim and Kang [23] have investigated the effectiveness of MR dampers for civil engineering structures. A wide range of theoretical and experimental studies of a 20-tonne MR damper at the University of Notre Dame have demonstrated that MR devices can provide forces of the magnitude required for full-scale structural control applications [24].

For the optimization of damper parameters, Luco and De Barros [25] investigated the optimal damping values for the distribution of passive dampers. In general, analytical and experimental studies have investigated the dynamic responses of the structures before and after installing a damping device to understand their effectiveness. However, very little study has been done with regard to the effect of non-uniform distribution of the dampers [3,6,14,15]. None of these studies show a clear comparison so as to signify the quality of their own proposed arrangement/solution. For example, Bhaskararao and Jangid [6] proposed a parametric study to investigate the optimum slip force of the dampers in the responses of two adjacent structures. The authors also confirmed that the response reduction is associated with optimum placement of dampers. Yang et al. [3] showed that in order to minimize loss in performance the number of dampers can be decreased. The authors showed that it is not necessary to equip every single floor with a viscous damper in accordance with the solution of trial and error. But no solution for the optimal arrangement was provided.
A similar study for MR dampers conducted by Bharti et al. [15] proposed that the placement of damper is not necessary for every single floor. Bharti et al. [15] also confirmed the results obtained by Ok et al. [14] which studied the performance of adjacent buildings equipped with MR dampers by the use of genetic algorithms. As an attempt to bring a clear method to provide the optimal arrangement, Bigdeli et al. [26] introduced optimization algorithms to find the optimal configuration for a given number of dampers. For the purposes of comparison, the authors also used the highest relative velocity heuristic approach based on the work of Uz [27]. Uz and Hadi [28,29] proposed that fluid viscous dampers should be placed in floors where the maximum relative velocity occurs. This work was repeated by Patel and Jangid [30].

For developing other recent control strategies, various control algorithms developed for passive, semi-active and active control have been directly useful. The most common optimal control algorithms such as Linear Quadratic Regulator (LQR), H2/LQG (Linear Quadratic Gaussian), H∞ and the FLC theory can be chosen with combining the GAs. The fuzzy logic controller (FLC) theory has attracted the attention of engineers during the last few years [16,31], there are some drawbacks in FLC systems. The fuzzy sets and rules that require a full understanding of the system dynamics must be correctly pre-determined for the system to function properly. Furthermore, in order to mitigate the responses of a seismically subjected civil engineering structures, multiple MR dampers distributed between the adjacent buildings should be used [16]. Zhou et al. [32] successfully applied an adaptive fuzzy control strategy for control of linear and nonlinear structures. The authors found that the adaptive feature of a fuzzy controller has various advantages in the control of a building including a MR damper system.

Another trend in the development of a FLC system is to combine genetic algorithms (GA) as an optimization tool in designing control systems [26,33–39]. Optimizing the dampers to mitigate seismic damage for adjacent buildings has hitherto not been investigated well in spite of enhancing structural control concepts in the structural vibration control through the application of optimization in an integrated genetic algorithm (GA)–FLC. Based on the improvements in the fuzzy logic controller for multiple mode contributions, nonlinear base isolated structures using semi active devices together with passive devices in a hybrid manner were investigated in order to utilize a set of bench mark problems [40,41]. Atalay and Ramaswamy [42] proposed an optimum design of dampers using a multi-objective version of the GA. Arfiadi and Hadi [36] improved a simple optimization procedure with the help of GAs to design the control force. They used a static output feedback controller utilizing the measurement output. For obtaining the best results in the reduction of the structures, combined application of the GAs and FLC has been proposed to design and optimize the different parameters of active dampers by Pourzeynali et al. [43].

In this study, the optimal design of semi-active dampers placed between adjacent buildings is investigated into two different sections. In the first section, an adaptive method for the design of a FLC system for protecting adjacent buildings under dynamic hazards using MR dampers is proposed by using single GA. The design of the genetic adaptive fuzzy (GAF) controller is described in the first section of this study. Minimizations of the peak inter-storey drift and displacement related to ground responses are the two objectives of this study. A global optimization method which is a modification of the binary coded genetic algorithm adopted by Arfiadi and Hadi [35,36] has been used. Binary coded GA is used to derive an adaptive method for selection of fuzzy rules of the FLC system. The fuzzy correlation between the inputs (structural responses) and the outputs (command voltages) of the controller is provided with adding, changing and deleting the rules of the FLC system. Inputs are taken as the top floor displacements of both buildings. Nevertheless, the binary coded GA automatically employs and optimizes the fuzzy controller in accordance with the fitness function that reflects the multiple objectives. The last section presents results of this study which show that not only there is a reduction of seismic responses of the adjacent buildings but also the total cost of the damper system is reduced. Therefore, the peak inter-storey drift response and the total number of nonlinear dampers constitute the objective functions of the optimization problem for two buildings.

This study uses two groups of design variables of the optimization. The first group of variables relates to whether a damper exists or not between each of the floors of the buildings. Clearly these floors relate to the shorter building. In order to achieve the objective of this study, dampers are proposed to be installed between the two buildings of each floor up to the top floor of the shorter building. The existence of these dampers and their corresponding voltages are design variables of this study. The design process uses the excitations of the NS components of the El-Centro 1940 and Kobe 1995 ground acceleration records. Numerical results of adjacent buildings controlled with MR dampers and the corresponding uncontrolled result are examined and compared with nonlinear control algorithms.

2 System description

Two n and m storey shear buildings with semi-active dampers installed between them as shown in Fig. 1 are considered. With combining integrated fuzzy logic and GA, the top floor displacements of the adjacent buildings are used as the inputs of a fuzzy controller. The fuzzy controller outputs command voltages in order to control MR dampers for generating damping force.

\[
A = \begin{bmatrix} P_1 \\ 0 \\ P_2 \end{bmatrix}, \quad I = \begin{bmatrix} -M_1E_1 \\ -M_2E_2 \end{bmatrix}, \quad A = \begin{bmatrix} 0_{(n+m) \times (n+m)} & I_{(n+m) \times (n+m)} \\ -M^{-1}K & -M^{-1}C \end{bmatrix},
\]

where E_1 and E_2 are $n \times 1$ and $m \times 1$ unity matrices, respectively. P_1 and P_2 are given as $m \times n_a$ matrices based on the number of actuators of the additional dampers (n_a). m denotes the storey number of the lower building. Here, I is an
identity matrix and 0 in \(\Lambda \) matrix is a \((s \times n_a)\) matrix containing zero. \(\begin{bmatrix} f_{mr}^i \ldots f_{mr}^{n_{mr}} \end{bmatrix}^T \) is control input vector. The equation of motion in Eq. (1) can be arranged as

\[
\dot{X} = AX + BF_{mr}(t) + E \dot{X}_{fr}(t)
\]

(2)

As mentioned above, the control objective in single objective GA is to minimize both the peak displacement and inter-storey drift responses of the adjacent buildings to provide safety of both buildings and maintain an acceptable level of comfort for the occupants.

2.1 MR damper forces

For the first time, Spencer Jr et al. [44] presented the MR dampers force through applying the Bouc-Wen model. The modified Bouc-Wen model was used to simulate the dynamic behavior of the MR damper that involves voltage-dependent parameters to model the fluctuating magnetic fields [44]. The applied force of this model is given by

\[
f_{mr}^i = C_0 \dot{x}_i + C_1 (x_{i+1} - x_i - x_0)
\]

(3)

where the internal pseudo-displacement, \(\dot{y}_i \) and the evolutionary variable, \(\dot{z}_{dli} \) are given by

\[
\dot{y}_i = \frac{1}{(c_0 + c_1)} \{ xZ_{dli} + c_0 (x_{i+1} - x_i - y_i) \}
\]

\[
\dot{z}_{dli} = -y_0 \dot{x}_i + \dot{y}_i \dot{x}_i + xZ_{dli} \{ c_0 + \beta (x_{i+1} - x_i - y_i) \} + A_0 \dot{z}_{dli}
\]

(4)

where \(x_i \) and \(x_{i+1} \) are the displacements of the \(i \)th floor of Building A and Building B, respectively. The displacement of the MR damper \(\Delta x \) is computed using the relative displacement between two inline adjacent floors \((i)\). \(x_0 \) is the initial displacement of spring of the accumulator stiffness \(k_0 \). \(k_i \) is the stiffness at large velocities. \(c_0 \) and \(c_1 \) are viscous damping at large velocities and nonlinear roll-off in the force–velocity loops at low velocities, respectively. \(\alpha \) is the evolutionary coefficient. Other shape parameters of the hysteresis loop are shown as \(y, \lambda, \tau, \) and \(\beta \) in Eq. (4). In this model, Spencer Jr et al. [44] have suggested for the dependence of the force on the voltage applied to the current driver and the resulting magnetic current as

\[
\dot{u} = \dot{\eta} (u - v_i)
\]

Here, \(u \) is given as the output of a first-order filter which models delay dynamics of the current driver and of the fluid to reach rheological equilibrium. Eq. (6) is necessary to simulate the dynamics involved in both reaching rheological equilibrium and driving the electromagnet in the MR damper. The dynamics are accounted for through the first order filter

\[
\dot{u} = -\eta (u - v_i)
\]

(6)
where \(v_i \) is a command input voltage supplied to the damper at \(i \)th floor. \(f_{MR}^i \) is the damper force at the \(i \)th floor level between the buildings. Parameter variables that were obtained by Spencer Jr et al. [44] by optimal fitting their model to test data are given in Table 1 and used in this study.

Table 1 Parameters of Bouc-Wen phenomenological model parameters for 1000 kN MR dampers.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_0)</td>
<td>50.30 kN sec/m</td>
<td>(a_k)</td>
<td>8.70 kN/m</td>
</tr>
<tr>
<td>(c_a)</td>
<td>48.70 kN sec/m</td>
<td>(a_b)</td>
<td>6.40 kN/m/V</td>
</tr>
<tr>
<td>(k_0)</td>
<td>0.0054 kN/m</td>
<td>(\gamma)</td>
<td>496.0 m^{-2}</td>
</tr>
<tr>
<td>(c_\alpha)</td>
<td>8106.2 kN sec/m</td>
<td>(\beta)</td>
<td>496.0 m^{-2}</td>
</tr>
<tr>
<td>(c_b)</td>
<td>7807.9 kN sec/m</td>
<td>(A_c)</td>
<td>810.50</td>
</tr>
<tr>
<td>(k_1)</td>
<td>0.0087 kN/m</td>
<td>(\eta)</td>
<td>2</td>
</tr>
<tr>
<td>(x_0)</td>
<td>0.18 m</td>
<td>(x)</td>
<td>195 sec^{-1}</td>
</tr>
</tbody>
</table>

2.2 Clipped optimal control design

The input voltage, \(v \), to the damper is obtained using the clipped voltage law (CVL) [20] as described below. If these two forces are equal then the applied voltage is not changed. If the absolute of MR damper force is less than the absolute of the calculated optimal control force and both of them have the same sign, the applied voltage should be increased to its maximum value. Otherwise, the input voltage is set to zero. Clipped-optimal method can be summarized in the following equation.

\[
v = V_{\text{max}} H\{f_d - F_{\text{MR}}\} F_{\text{MR}}
\]

where \(V_{\text{max}} \) is the maximum applied voltage that is associated with the saturation of the magnetic field in the MR damper and \(H\{\cdot\} \) is the Heaviside function. The voltage applied to the MR damper should be \(V_{\text{max}} \) when \(H\{\cdot\} \) is greater than zero. Otherwise, the command voltage is set to zero.

The main limitation stems from using semi active devices appear for the clipped optimal strategy. The strategy tries to change the voltage of the MR damper from zero to its maximum value, which makes the control force sub-optimal. Moreover, sometimes this swift change in voltage and therefore sudden rise in external control force increases the system responses, which may lead to an inelastic response of the structure. Therefore there was a need for better control algorithms that can change the MR damper voltage slowly and smoothly, such that all voltages between maximum and zero voltage can be covered based on the feedback from the structure using the proposed method by GA.

3 Optimum design of damper system

The main goal of using dampers is to reduce the inter-storey drift, which is denoted as the relative displacement between two successive floors in the study. This study has another aim which is to minimize the total number of MR dampers for economical benefits. Thus, the design of a damper system can be optimally possible using a multi objective optimization formulated as

\[
\text{Minimize}\left[\frac{\max_{i=1,2,\ldots,n_f+1} \{\Delta d_i\}}{n_d}\right]
\]

where \(\Delta d_i \) is the root-mean-square (r.m.s.) inter-storey drift of the \(i \)th floor of the coupled structural system and \(n_d \) is the total number of installed dampers. Combining multiple objective functions into a single-objective function by use of arbitrary importance weights are often done in a conventional optimization approach [45]. However, prior knowledge of the relative importance of multiple objective functions is not practically feasible for an optimization problem. In other words, in a single objective function it is not easy to decide on weighting factors which show the relative importance of two different physical quantities such as the number of dampers and the maximum drift responses. Therefore, this study implements a multi objective optimization approach to obtain a method of optimal designs known as Pareto-optimal solutions and adopts a procedure to choose a reasonable design. Details of an optimization problem for minimizing two objective functions are given in the study of Ok et al. [45,46]. Any of the objective functions can be considered as an acceptable solution as long as none of the solutions on the optimal surface is absolutely better than any other. Pareto-optimal or non-dominated solution set denotes as a set of optimal solutions in this study.

Goldberg [47] suggested a non-dominated sorting procedure in conjunction with a sharing technique. Consequently, for the multi-objective optimization of nonlinear dampers, Srinivas and Deb [48] presented a non-dominated sorting genetic algorithm (NSGA) which follows the conventional single-objective genetic algorithm (SOGA) except for the “elitist” and “fitness assignment” operations. In this study, firstly, the binary coded SOGA is described below.
3.1 Binary coded the SOGA

GA is an effective tool for solving optimization problems in engineering applications. Binary string in GA can represent a candidate of a design variable. GA used binary coding to represent the design variable at its early development [47,49]. After initializing, the fitness of candidates is calculated according to the objective function. The genetic algorithm process is shown in Table 2. The candidates undergo selection process based on the fitness of each individual. In the selection process, the better chromosomes generate higher values than others and place it in the mating pool. Every individual (chromosome) of the design variables (genes) in the population undergoes genetic evolution through crossover and mutation by a defined fitness function. In this study, the roulette wheel selection procedure maps the population in conjunction with the elitist strategy. By using elitist strategy, the best individual in each generation is ensured to be passed to the next generation. After selection, crossover and mutation, a new population is generated in both GA codings. This new population repeats the same process iteratively until a defined condition. Details of the genetic algorithm structures are given below. In this study, binary coding is used for adjacent buildings connected by semi-active dampers. Briefly, the binary coding is presented below.

Table 2 Structure of genetic algorithm.

<table>
<thead>
<tr>
<th>Start (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation: $\tau \leftarrow 0 % \tau$ is iteration number</td>
</tr>
<tr>
<td>Initialize $G(\tau) % G(\tau)$: Population for iteration</td>
</tr>
<tr>
<td>Evaluate $f(G(\tau)) % f(G(\tau))$: Fitness Function</td>
</tr>
<tr>
<td>while (not termination condition) do</td>
</tr>
<tr>
<td>start (2)</td>
</tr>
<tr>
<td>$\tau \leftarrow \tau + 1$</td>
</tr>
<tr>
<td>Perform operation of selection</td>
</tr>
<tr>
<td>Determine the number of crossover based on p_c</td>
</tr>
<tr>
<td>Select the two parents C_1, C_2 from $G(\tau - 1)$</td>
</tr>
<tr>
<td>Perform crossover operation</td>
</tr>
<tr>
<td>Perform mutation operation for the whole population based on p_m</td>
</tr>
<tr>
<td>Insert a number of new random individuals replacing old individuals</td>
</tr>
<tr>
<td>Evaluate $f(G(\tau))$</td>
</tr>
<tr>
<td>end (2)</td>
</tr>
<tr>
<td>end (1)</td>
</tr>
</tbody>
</table>

3.2 Design variables

In the binary coding GA, by using a binary string having 1 or 0, the chromosome can be shown. The mechanics of GA starts with creating an initial population of chromosomes as a set of candidates of initial design variables. The length of sub-chromosome (n_{bits}) can be calculated based on upper (U_i) and lower (L_i) bound values and the significant digit (P_i) of each design variable (i). It is clear that the length of sub-chromosome depends on the required precision (P_i) of the design variable. Details of the length of the individual is described by Arfiadi [33]. On the other hand, in real coding, as the candidates of design variables, real coding GA uses vectors of real numbers to represent individuals. After converting binary chromosome into real values of design, the population of the individuals can be shown as follows.

$$G^i = [g_{i1}^1 g_{i2}^1 \ldots g_{i1}^1]$$
$$G^2 = [g_{i1}^2 g_{i2}^2 \ldots g_{i2}^2]$$
$$\vdots$$
$$G^p = [g_{i1}^p g_{i2}^p \ldots g_{ip}^p]$$

$$\text{Population}$$

$$\begin{bmatrix}
G^1 \\
G^2 \\
\vdots \\
G^p
\end{bmatrix}$$
where \(g_j^i \) represents an element of the \(i \)th individual of the \(j \)th design variable. For example, \(r = (n_a \times m_a) \) controller gains having the both \(n_a \) actuators to drive the control force and \(m_a \) measurements are to be obtained for the feedback.

3.3 Procedure of GA

In binary coding, after initialization, the conversion of binary strings into a real number of design variable is performed using Eq. (10) [39].

\[
\eta_i = L_i + \frac{t_i \times (U_i - L_i)}{2^{h_i+1}} - 1
\]
(10)

where \(r_i \) is the real number of a design variable. \(t_i \) is an integer mapping of a binary string which can be obtained using

\[
t_i = \sum_{j=0}^{m_a} h_j \times 2^j
\]
(11)

In which the binary bit \(h_i \) is as follows \([h_r \ h_{r-1} \ \ldots \ h_1 \ h_0] \) and \(m_a \) is the length of sub-chromosome to represent a particular design variable \(-1\). The fitness of each individual can be obtained according to the defined objective function after determining the real value of each design variable in the population. This function reflects the desired objective. The control objective is to minimize both the peak displacement and peak drift responses of the structure to ensure the safety of the building and maintain the comfort level of the occupants. A set of evaluation criteria based on those used in the second generation linear control problem for buildings to evaluate the various control algorithms are given [50,51]. In this study, three of these criteria which are also regarded as the objectives in GA are selected to evaluate the effectiveness of the proposed method. The first evaluation criterion is a measure of the normalized maximum floor displacement relative to the ground and the peak drift given as

\[
J_1 = \max_{1 \leq i \leq J} \left(\frac{x(t_i)}{x^{\max}} \right) \quad \text{or} \quad \max_{1 \leq i \leq J} \left(\frac{d(t_i)}{d^{\max}} \right)
\]
(12)

where \(x(t) \) is the relative displacement of the \(i \)th floor over the entire response, and \(x^{\max} \) denotes the uncontrolled maximum displacement response. \(d(t) \) is the inter-storey drift of the \(ij \)th floor \((x_i - x_{i-1})\), which is normalized by the peak uncontrolled floor drift denoted as \(d^{\max} \). The other evaluation criterion is the total number of MR dampers installed at floors given by

\[
J_2 = N_d
\]
(13)

The evaluation criterion, \(J_2 \), is the resulting \(y \) in the \(H_\alpha \) norm to be determined for the parameters of damper \(c_d \ k_d \) because of installation of MR dampers. For simplicity, the objective function that reflects the above objectives in this study is defined as follows

\[
J = \alpha J_1 + \frac{(1 - \alpha) J_2}{2} (U_2 + F_3)
\]
(14)

where \(J_1 \), \(J_2 \) and \(J_3 \) are the evaluation criteria defined above representing normalized maximum floor displacement relative to the ground or normalized peak floor drifts, total number of dampers and damper parameters respectively. \(\alpha \) is a weighting coefficient reflecting the relative importance of the three objectives. Each individual into the fitness function calculates the fitness of each individual. The positive fitness function is needed in GA, the problem of minimization is converted such that the fitness has a positive value. Then the objective value is converted to fitness value given by

\[
F = [C_p - J] \times \mu
\]
(15)

where \(C_p \) is a proper constant to make sure the fitness value is positive, \(\mu \) is a penalty constant to scale the fitness function. Semi-active control system may cause instability if not designed properly. To avoid the instability of the structure, the simplest way is to ensure that the eigen-values of the closed loop system are placed in the left side of the s-plane. This constraint is incorporated to the fitness function by simply setting the fitness of the individuals having positive real-part eigen-value to a very small positive value that can still be accepted by the computer. If the system has a negative real part of the eigen-value then the system is called asymptotically stable [52]. This fitness function forms the basis of the genetic operations in this study.

The selection procedure used in this study is a roulette-wheel selection procedure in binary coding. The reproduction is processed in two stages. In the first stage, the fitness of each individual is evaluated and the sum of the fitness is calculated in order to determine the probability of selecting each chromosome. In the second stage, the selection mechanism picks the highly fitted chromosomes into the mating pool. To perform this stage, the cumulative probabilities of selecting each individual are calculated [36,38,39]. Each random number \(a_i (i = 1, 2, ..., \text{popsize}) \) between 0 and 1 is compared with the cumulative probability of selecting each chromosome \(a_j \) and when the random number \(a_j \leq C_j \), the \(j \)th individual will be selected. Here, popsize is the number of the individual in the population. The best individual is always selected in the next generation using an elitist strategy by simply passing the best fitness individual into the next generation. After selection has been carried out, the crossover and mutation operations are performed.

In this study, a simple crossover is used as the main crossover operator for binary coding. Simple crossover randomly picks two parents from the mating pool. Simple crossover exchanges genetic information for one random split point in the
chromosomes. Two chromosomes are chosen for a simple crossover operation if the random number is smaller than the crossover rate p_c. Details of a simple crossover operation can be referred to Holland [49] and Michalewicz [52]. After a simple crossover in the binary coding, mutation is performed. Mutation is a random operator whereby values of element within a chromosome are modified, $p_m \times (\text{ntbits} \times \text{popsize})$ bits will undergo for mutation operator if a random number n_r from the range $(0–1) < p_m$. Here, ntbits is sum of the length of chromosomes (ntbits). In this case, the mutation is run with the probability of mutation p_m. In order to maintain the variability of the population, mutation in binary coding is the random changing of 0–1s and vice versa.

3.4 NSGA approach

The NSGA approach [48,53] requires the “rank-based sorting” after the fitness assignment progress. It ranks the non-domination of the individuals in the population based on the vectors of multiple objective functions. At this stage, the rank and the crowding distance for each chromosome is added to the chromosome vector for ease of computation [48,53]. Then, the set of solutions corresponding to the most non-dominated set is saved during the elitist operation. In the following set, a “niche-based sharing” procedure is performed to provide a diverse search direction along the Pareto-optimal surface by degrading the fitness of densely populated individuals. Based on the fitness values, the next generation of the population is produced through the selection, crossover and mutation operations.

4 Design of fuzzy controller in GA

Since the correlation between the structural responses and the command voltages is difficult to determine in a conventional design approach, especially for a MIMO system, GA is introduced as an effective method to optimally design the fuzzy controller. In an ordinary design approach, the membership functions and control rules of a fuzzy controller are usually determined by trial and error which is a tedious and time consuming task. For efficiency, an optimal design of fuzzy control rules and membership functions of the fuzzy controller is desired. In this study, for simplicity, GA is only employed as an adaptive method for selection of fuzzy rules of the FLC system, and other parameters of the fuzzy controller such as the shape and the distribution of the membership functions are unchanged once defined. The integrated GA–FLC architecture uses GA to derive proper rules from the initial rules (however, the initial rules are not necessarily needed in this study).

4.1 Encoding the input–output region into bit-strings

Fig. 2 shows graphically the conceptual diagram of the proposed fuzzy control strategy. Encoding information is the most important step in the design of a controller. One of the biggest differences between GA and other optimization methods is that GA works in the genetic space; therefore, it is necessary to code the fuzzy input and output sets into genetic space represented by chromosomes. As can be seen in Fig. 2, the proposed fuzzy control strategy does not require a primary controller. The input voltage to the MR damper as input information from the response of the MR damper as output information can be obtained by the FLC. Composition of the fuzzy logic is four modules as fuzzification, rule-based, inference mechanism and defuzzification [54].
In order to be controlled into fuzzy regions and defining the membership functions, the design of the fuzzy controller begins with selection of a range of input values. Here, a fuzzy controller has been defined using a total of five membership functions for each of the inputs. A fuzzy set in this study is defined using five abbreviations as follows: NL (Negative Large), NS (Negative Small), ZO (Zero), PS (Positive Small) and PL (Positive Large). For the input membership functions, a reasonable range for each input value must be selected. For example, the outermost membership functions can be rarely utilized if the range is too large. Conversely, if the range is too small, the innermost membership functions are rarely utilized. Utilizing either the outermost or the innermost membership functions limits variability of the control system [16,31]. In order to avoid this limitation, 70–80% of the maximum uncontrolled displacement responses of the corresponding floors is taken as a reasonable range for each input in this study. The definition of the fuzzy output membership function abbreviations are as follows: ZO (Zero), S (Small), M (Medium) and L (Large) as shown in Fig. 3.
The fuzzy output is the command voltage of MR damper and the range of output corresponds to the operational voltage range of the MR damper through an iteration process without a normalized voltage range. The command voltage indirectly determines the damping force of the MR damper. A generalized bell-shaped membership function is used in order to approximate almost all other types of membership functions. The shape of the generalized bell shape membership function can be defined by parameters. After all fuzzy rules are evaluated, the results of the rules are combined and defuzzified to a single number output. The expansion and contraction of the horizontal axis in the input membership function directly influence to define whether the output of the fuzzy logic is large or small. The rule-base module is constructed by specifying a set of if-and-then-consequent statements. A fuzzy logic control system with two inputs and single output represents each damper between adjacent buildings to be designed. This two-input–single-output case is chosen to simply clarify the basic ideas of how to represent a fuzzy rule base using bit-strings. Each input is divided into five fuzzy sets in this study. A fuzzy rule base consists of 25 fuzzy rules for the two fuzzy inputs. A five-by-five table with each cell to hold the corresponding outputs can be categorized for these rules. There are four choices for the voltage output corresponding to each rule.

For example, using “IF-THEN” form, IF Input 1 is ZO and Input 2 is PL, THEN Output 1 is M or L or ZO or S. The if-part of the rule is called the antecedent which involves fuzzifying the input and applying any necessary fuzzy operators, while the then-part of the rule is called the consequent known as implication. Each chromosome in the population consists of all the fuzzy rules and has the same input conditions but different output control signals assigned to bit-string. The bit-string is needed only to encode the output signals of the fuzzy rule. There are totally 25 rules that form the fuzzy control rule base, thus 100 bits in total can be used to represent a whole rule base for a single output. Each four consecutive bits are coded to represent the output for each rule. Each four bits from left to right represents the output linguistic variables ZO, S, M and L, respectively. An output signal is selected by GA by setting the corresponding bit to 1 while the other three bits are 0s.

For example, if Input 1 is NL and Input 2 is NL, then Output 1 is M. If Input 1 is NS and Input 2 is PS, then Output 1 is S. If Input 1 is ZO and Input 2 is ZO, then Output 1 is ZO. If Input 1 is PS and Input 2 is PL, then Output 1 is L. Thus, a chromosome can be represented as 100 bits in total.

The current voltage obtained from the FLC combined GA is the same for all dampers installed between the buildings. The proposed integrated fuzzy logic and GA control strategy is especially suitable for designing a MIMO system. The multiple damper cases are similar to the single damper case, except that the bit number that represents the corresponding output voltages has a longer length. For example, while the same current voltages used for \(n \) number of MR dampers at the \(j \) storey level, different current voltages can be used for different storey levels. If different current voltages are needed throughout 10 storey levels, 250 rules are determined by GA using 1000 bits chromosomes. However, the problem in this coding strategy is that it is hard to perform a mutation.
operation since it may result in more than one choice for each output in one rule. So in this study, only the selection and crossover operators are used to perform GA operations while neglecting the mutation operator because crossover is the main evolution operator in GA and mutation is secondary.

Producing fuzzified outputs from the fuzzified inputs in the inference mechanism can be provided by means of the fuzzy rules in the rule base module. All fuzzy statements are resolved in the antecedent to a degree of membership between 0 and 2.25. After the entered and fuzzified input values, the fuzzy operator is applied to the antecedent and two fuzzified results are obtained as a single number. In this study, the min function for the and fuzzy operator (implication method) is used to determine the certainty of the fuzzy output variable for each fuzzy output. The truncated fuzzy set is defuzzified to assign single value to the output command voltage by using the max function. For defuzzification, the centroid calculation is used in this study as the most popular defuzzification method that is the last component of the fuzzy logic. This study adopts the centre of gravity (COG) method among defuzzification methods. The COG method is defined as follows:

$$y_i = \frac{\sum_{k=1}^{N_r} b^{(i)}_k \int \mu^{(i)}_{u_k}}{\sum_{k=1}^{N_r} \int \mu^{(i)}_{u_k}}$$

(16)

where \(N_r\) is the number of rules activated from the inputs, \(\mu^{(i)}_{u_k}\) is the value of the output membership function in the consequent statement for the \(j\)th rule for \(i\)th input, \(b^{(i)}_k\) is the centre of the output membership function \(\mu^{(i)}_{u_k}\) and the integral of output membership function \(\int \mu^{(i)}_{u_k}\) represents the area of the output membership function. By means of the rule base in the inference mechanism, FLC determines the control voltage to the MR damper using the input functions.

5 Solution procedure

A numerical example for adjacent buildings is performed on i7-2630QM @2.9 GHz computer running MATLAB R2011b. The GA built on the MATLAB numeric computing environment is integrated into the SIMULINK block to simulate the FLC controller. Furthermore, binary coding is used to optimize the semi-active device parameters with defining the regulated output to obtain the required voltage and number of dampers for each floor level.

The simple GA procedure is also slightly modified here. The GA parameters used in this study are separated into two sections as shown in Table 3. Some fresh individuals after selection, crossover and mutation are inserted into population and fresh individuals can help for exploring new candidates of the design points. Although some bad fitness individuals can pass into the next generation with inserting new individual, the average fitness of the current population will be better than the average of fitness of the previous population. As the optimum design, the best design points can be obtained in the final generation by copying the highest fitness value into the next generation.

<table>
<thead>
<tr>
<th>Table 3 GA parameters used in this study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA parameters</td>
</tr>
<tr>
<td>Number of generations</td>
</tr>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Probability of crossover</td>
</tr>
<tr>
<td>Probability of mutation</td>
</tr>
<tr>
<td>Number of new random chromosomes to be inserted after crossover and mutation (%)</td>
</tr>
</tbody>
</table>

5.1 Numerical study

A system of buildings located adjacent to each other and interconnected by MR dampers is considered to obtain the optimal semi-active control strategies. Building A is a 20-storey shear building discussed in Bharti et al. [15] and Ok et al. [14]. A 10-storey building discussed in Kalasar et al. [55] and Pourzeynali et al. [43] is taken as Building B. The adjacent buildings are subjected to the 1940 El Centro (117 El-Centro Array -9 station) and the 1995 Kobe (KJMA station) excitations where the maximum ground acceleration scaled to 0.3 g for 1940 El Centro NS for long duration far field and 0.8 g for 1995 Kobe NS for pulse type near field, respectively. The structural parameters having mass, stiffness and damping coefficient are shown for both buildings in Table 4. A stiffness proportional damping is assumed in Building A with the damping ratio of the fundamental mode equals to about 5% while Building B has also 5% of damping ratio of the first mode. The first nine natural frequencies of the 20-storey building and the first five natural frequencies of the 10-storey building are given in Table 5. The effectiveness of the semi active device in each building for each earthquake signal given its frequency content and pulse nature is given in subsequent work of Hadi and Uz [56]. Fig. 4 shows the transfer function from external disturbance to the top floor of Building A. The effect of linking buildings with semi active control system compared with uncontrolled system can be observed from a peak magnitude in bode diagram. The designed adjacent buildings with damper provide the reduction of response of each building around the frequency of the first mode, where the highest contribution to response of each building is as shown in Fig. 4. For uniformity of the obtained results, GA was run four times as shown in Fig. 5. Similar optimal results were obtained from the four runs. The response is obtained with passive-off and passive-on cases which are with constant zero voltage and with constant maximum applied voltage of 10 V, respectively and compared with semi active control case. In this numerical example, the input voltage are taken as the range of 0–2.25 V for fuzzy logic controller. Hence, a maximum value of 2.25 V is shown in the output membership function.
Table 4 The structural parameters of both buildings in numerical example.

<table>
<thead>
<tr>
<th>Floor (i)</th>
<th>Building A</th>
<th>Building B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m_i (t)</td>
<td>$c_i \times 10^3$ (kN sec/m)</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>2</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>6</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>7</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>9</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>11</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>12</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>13</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>14</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>15</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>16</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>17</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>18</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>19</td>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>20</td>
<td>800</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 5 The natural frequencies of model examples used for MR dampers.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Building A</th>
<th>Building B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>0.510</td>
<td>1.148</td>
</tr>
<tr>
<td>ω_2</td>
<td>1.527</td>
<td>3.371</td>
</tr>
<tr>
<td>ω_3</td>
<td>2.535</td>
<td>5.443</td>
</tr>
<tr>
<td>ω_4</td>
<td>3.529</td>
<td>7.347</td>
</tr>
<tr>
<td>ω_5</td>
<td>4.501</td>
<td>9.075</td>
</tr>
<tr>
<td>ω_6</td>
<td>5.447</td>
<td></td>
</tr>
<tr>
<td>ω_7</td>
<td>6.361</td>
<td></td>
</tr>
<tr>
<td>ω_8</td>
<td>8.072</td>
<td></td>
</tr>
<tr>
<td>ω_9</td>
<td>8.860</td>
<td></td>
</tr>
</tbody>
</table>
Before demonstrating the multiple objective functions into a single-objective function, the performance of MR dampers is investigated in reducing the seismic response of adjacent buildings. Firstly, five MR dampers installed at each of the ten floors in numerical example. All fifty dampers have the same input voltage. Nonlinear random vibration analyses using the 4th order Runge Kutta method is performed while varying the uniform input voltage from 0 to 10 V, which leads to the variation of the damping capacity of the MR dampers. Hysteresis behavior of MR damper under four control strategies, namely, passive-off, passive-on, semiactive-LQR and semiactive-for earthquakes is shown in Fig. 6. Fig. 7 shows the maximum values of inter-storey drifts for the variety of the uniform input voltage of the MR dampers. For decreasing the maximum inter-storey drift of the adjacent system, it is explained that an optimal value for the uniform input voltage of the MR dampers exists in a coupled structure system. In this numerical example, the optimal input voltage of the MR dampers is 5.6 V for the uniform distribution of the 50-MR damper system in Kobe 1995 earthquake, while the optimal input voltage is 3.1 V in El-Centro 1940 earthquake.
Fig. 6 The behavior of MR damper under (a) 1940 El-Centro earthquake and (b) 1995 Kobe earthquake.
Using the MR damper is important in damping capacity that can be easily adjusted by modulating the input voltage, without costly replacements or adjustments. In other words, varying the input voltages of the dampers is feasible in order to achieve an optimal performance. Hence, the results of the peak top floor displacement, acceleration and normalized base shear of the adjacent buildings using the optimum uniform voltage (OUV) is evaluated with the other control strategies used in this study. It is noted that varying the uniform input voltage v_{di} from 0 to 2.25 V for each storey is also conducted by means of the rule-based in fuzzy logic control in GA. Table 6 shows the fuzzy rules generated by GA. The optimal input voltages for each floor level are examined by an SOGA optimization for the given example of five MR dampers installed at each of the ten floors. The results of GA optimization are shown and a fuzzy logic controller is identified for both the multi-input single-output (MISO). This rule base obtained by GA establishes the correlation between the selected displacement inputs and the command voltage sent to MR damper when (kN m). K_0 and 10^3 represent the top floor displacements of the Building A and Building B, respectively. When (kN m) in Eq. (14), the multi-objective problem degenerates into a single-objective problem. The proposed strategy has the capability to mitigate the displacement response significantly while keeping the storey drift response at a low level. For GA, the population size is taken as 12 members and the upper limit on the number of generations is taken as 100. Based on an elitist model, in order to perform evolutionary operations, proportional selection and one-point crossover are chosen in FLC combined to GA.

![Control performance of MR dampers with uniform input voltages](image)

Fig. 7 Control performance of MR dampers with uniform input voltages under (a) the 1940 El-Centro earthquake and (b) the 1995 Kobe earthquake scaled to 0.8 g.

Table 6 Fuzzy rule-base generated by GA in Case I under (a) El-Centro 1940 ground motion (b) Kobe 1995 ground motion scaled to 0.8 g.
Results of the damper locations in Case I obtained by Hadi and Uz [56] are compared with the fuzzy controller combined by GA (GAF). In Table 7, using the optimum uniform voltage (OUV) and fuzzy controller combined by GA (GAF), the significant reduction for both buildings is observed under El-Centro 1940 earthquake although these proposed methods are not effective in both buildings under Kobe 1995 earthquake. In Table 8, the top floor drift inter-storey responses show that the percentage reductions for Building A under GAF strategy as compared to the uncontrolled case are: 8.0 and 9.0, while the corresponding response reductions for Building B are 19.5 and 33.1 for El-Centro 1940 and Kobe 1995 earthquakes, respectively. However, a marginal increase in response is seen under semi-active controllers (9 V) for Building B under El-Centro 1940 earthquake. The proposed GAF control strategy and the uncontrolled case show that the correlation established by GA is effective. For Building B, a significant reduction of the normalized base shear responses is shown in the last column in Table 9. As expected, Table 10 shows an increase in damper voltage has shown increase in force of the MR dampers. Using the proposed GAF controller, the damper force of all MR dampers at the top floor level of Building B is kept at a low level compared to the other strategies in Table 10 under both the considered earthquakes. In Case II, only alternate floors of the lower building connected with the adjoining floors of the higher building are considered for MR dampers. The number of MR dampers at each storey levels is minimized by using GA for economical benefits. At the same time, the input voltages are determined based on the optimal number of MR dampers for each storey.

Table 7 Peak top floor displacement under different control strategies for Case I.

<table>
<thead>
<tr>
<th>Earthquakes</th>
<th>Buildings</th>
<th>UNC</th>
<th>Off</th>
<th>Passive-on</th>
<th>Case I</th>
<th>LQR-CVL</th>
<th>H_2/LQG-CVL</th>
<th>OUV</th>
<th>GAF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 V</td>
<td>6 V</td>
<td>9 V</td>
<td>3 V</td>
<td>6 V</td>
<td>9 V</td>
<td>3 V</td>
</tr>
<tr>
<td>El Centro, 1940</td>
<td>A</td>
<td>26.6</td>
<td>22.9</td>
<td>20.1</td>
<td>19.0</td>
<td>19.8</td>
<td>21.8</td>
<td>21.2</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>17.1</td>
<td>8.1</td>
<td>8.6</td>
<td>10.4</td>
<td>11.5</td>
<td>8.4</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>Kobe, 1995</td>
<td>A</td>
<td>61.3</td>
<td>59.4</td>
<td>57.4</td>
<td>58.0</td>
<td>59.2</td>
<td>56.0</td>
<td>55.2</td>
<td>54.8</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>48.0</td>
<td>35.0</td>
<td>25.6</td>
<td>30.6</td>
<td>32.9</td>
<td>29.6</td>
<td>27.5</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Note: the displacement indicated is in ×10 mm. UNC: Uncontrolled.

Table 8 Peak top floor drift inter-storey under different control strategies for Case I.

<table>
<thead>
<tr>
<th>Earthquakes</th>
<th>Buildings</th>
<th>UNC</th>
<th>Off</th>
<th>Passive-on</th>
<th>Case I</th>
<th>LQR-CVL</th>
<th>H_2/LQG-CVL</th>
<th>OUV</th>
<th>GAF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 V</td>
<td>6 V</td>
<td>9 V</td>
<td>3 V</td>
<td>6 V</td>
<td>9 V</td>
<td>3 V</td>
</tr>
</tbody>
</table>

elsevier_JEST_4859
<table>
<thead>
<tr>
<th>Earthquakes</th>
<th>Buildings</th>
<th>UNC</th>
<th>Case I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off</td>
<td>Passive-on</td>
<td>LQR-CVL</td>
</tr>
<tr>
<td></td>
<td>3 V 6 V 9 V</td>
<td>3 V 6 V 9 V</td>
<td>3 V 6 V 9 V</td>
</tr>
<tr>
<td>El Centro, 1940</td>
<td>A 0.20 0.19 0.17 0.16 0.16 0.18 0.17 0.17 0.16 0.16 0.17 0.18</td>
<td>B 0.57 0.28 0.35 0.40 0.40 0.29 0.30 0.31 0.29 0.32 0.035 0.35 0.28</td>
<td></td>
</tr>
<tr>
<td>Kobe, 1995</td>
<td>A 0.40 0.40 0.41 0.42 0.43 0.39 0.39 0.38 0.38 0.37 0.37 0.42 0.41</td>
<td>B 1.56 1.10 0.71 0.90 1.00 0.88 0.80 0.76 0.94 0.83 0.74 0.88 0.89</td>
<td></td>
</tr>
</tbody>
</table>

Table 9 Peak normalized base shear under different control strategies for Case I.

<table>
<thead>
<tr>
<th>Earthquakes</th>
<th>Case I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>3 V 6 V 9 V</td>
</tr>
<tr>
<td>El Centro, 1940</td>
<td>54 127 166 203 181 287 379 192 315 426 127 80</td>
</tr>
<tr>
<td>Kobe, 1995</td>
<td>126 346 499 590 420 692 955 402 637 864 476 254</td>
</tr>
</tbody>
</table>

Table 10 Peak damper force of all MR dampers at the top floor level of the lower building under different control strategies for Case I.

Note: The damper force indicated in kN.

The optimal input voltages for each floor level by SOGA and NSGA II optimizations are determined for Case II in the given example in this study. The number of MR dampers and the corresponding command voltages are chosen as the design variables. Fig. 8 shows the variable distribution of the command voltages corresponding to the optimal uniform distribution under the considered earthquakes. The multi objective optimization is conducted by NSGA II to obtain the Pareto-optimal solutions as shown in Fig. 8. In order to provide the optimal damper systems in terms of cost-saving, another objective function is selected as the number of MR dampers to be minimized. Hence, the max root mean square (r.m.s.) storey drift of the coupled buildings and the total number of the MR dampers are the two objective functions, which are the vertical and horizontal axes in Fig. 8, respectively. It is noteworthy that the total number of the MR dampers is explicitly reduced by means of improved control performance using GA and NSGA II optimizations. In other words, the performance efficiency of the damper system and the cost effectiveness are considered in terms of the vertical and horizontal axes. This study achieves a similar level of seismic performance even with significantly reduced number of dampers with the help of the proposed strategies. At the same time, input damper voltage is optimally determined. The maximum inter-storey drifts by the uniform and varying voltages are 4.67 mm and 4.62 mm as shown Figs. 7 and 8.
The optimum uniform voltage (OUV) is 3.1 V for El-Centro 1940 earthquake while for Kobe 1995 the OUV is 5.6 V under the uniform distribution of the 50 MR damper systems. The total number of MR dampers are reduced from 50 to 6 for El-Centro 1940 and 8 for Kobe 1995 earthquake as referred to Fig. 9. The number of MR dampers \((n_{\text{dii}})\) and the variable distribution of the input voltage \((v_{\text{di}})\) are designed by a simple GA. The total control voltage required to operate the MR dampers in the uniform distribution system turns out to be 155.0 V for El-Centro 1940 and 280.0 V for Kobe 1995 earthquake, whereas the variable distribution system uses a total of 52.1 V for El-Centro 1940 and 66.4 V for Kobe 1995 ground motion as shown in Fig. 9(d–g). The optimal system determined by the NSGA in this section is also denoted, which uses 6 or 8 MR dampers with optimal input voltage at each floor according the related earthquakes. The response parameters of interest for adjacent buildings are the peak top floor \(x_i\), the peak floor drift \(d_i\), the peak normalized base shear \(F_o\) and damper force \(F_{mr}\) as given through Tables 11 and 14.

![Fig. 8 The variation values of design variables under the 1940 El-Centro Earthquake using NSGA II optimization.](image)
Table 11 Peak top floor displacement under different control strategies for Case II.

<table>
<thead>
<tr>
<th>Earthquakes</th>
<th>Buildings</th>
<th>UNC</th>
<th>Case II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>Passive-on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LQR-CVL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H$_2$LOG-CVL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GA</td>
</tr>
</tbody>
</table>
Although the difference in the maximum inter-storey drift is not significant, the optimally designed variable distribution system use less damping capacity with improved control performance in GA and NSGA II optimizations. Table 11 shows the peak top floor displacement of the coupled systems under damper location Case II in terms of control strategies. It is observed that numerical results given by the last column in Table 11, whose control strategy name is GA, shows the effectiveness of the newly generated number of MR dampers and command voltage values. The percentage reduction of the drift inter-storey for Building B under passive-on strategy for Case II (6 V) in Table 12 as compared to the uncontrolled are 14.6 and 5.7 under El-Centro 1940 and Kobe 1995 earthquakes, respectively, and the corresponding reductions under semiactive controller based LQR are 2.44 and 7.1. Similar trends are also observed under damper location Case II and command voltage 3 V and 9 V. This shows that the percentage reduction under passive-on is better in comparison to semiactive strategy.

Table 12 Peak top floor drift inter-storey under different control strategies for Case II.

<table>
<thead>
<tr>
<th>Earthquakes</th>
<th>Buildings</th>
<th>UNC</th>
<th>Case II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off</td>
<td>Passive-on</td>
<td>LQR-CVL</td>
</tr>
<tr>
<td></td>
<td>3 V</td>
<td>6 V</td>
<td>9 V</td>
</tr>
<tr>
<td>El Centro, 1940</td>
<td>A</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.41</td>
<td>0.46</td>
</tr>
<tr>
<td>Kobe, 1995</td>
<td>A</td>
<td>0.88</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.54</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Table 13 Peak normalized base shear under different control strategies for Case II.

<table>
<thead>
<tr>
<th>Earthquakes</th>
<th>Buildings</th>
<th>UNC</th>
<th>Case II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off</td>
<td>Passive-on</td>
<td>LQR-CVL</td>
</tr>
<tr>
<td></td>
<td>3 V</td>
<td>6 V</td>
<td>9 V</td>
</tr>
<tr>
<td>El Centro, 1940</td>
<td>A</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.57</td>
<td>0.47</td>
</tr>
<tr>
<td>Kobe, 1995</td>
<td>A</td>
<td>0.40</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.56</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Table 14 Peak damper force of all MR dampers at the top floor level of the lower building under different control strategies for Case II.

<table>
<thead>
<tr>
<th>Response</th>
<th>Case II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>3 V</td>
</tr>
</tbody>
</table>

Table 11 shows the peak top floor displacement of the coupled systems under damper location Case II in terms of control strategies. It is observed that numerical results given by the last column in Table 11, whose control strategy name is GA, shows the effectiveness of the newly generated number of MR dampers and command voltage values. The percentage reduction of the drift inter-storey for Building B under passive-on strategy for Case II (6 V) in Table 12 as compared to the uncontrolled are 14.6 and 5.7 under El-Centro 1940 and Kobe 1995 earthquakes, respectively, and the corresponding reductions under semiactive controller based LQR are 2.44 and 7.1. Similar trends are also observed under damper location Case II and command voltage 3 V and 9 V. This shows that the percentage reduction under passive-on is better in comparison to semiactive strategy.

Table 13 shows the overall base shear reduction with the optimum command voltage obtained by GA and NSGA II optimizations. In Table 14, it is noteworthy that the peak damper force of all MR dampers increased compared to Case I although the total number of the MR dampers decreased. However, increase in the damper forces of Case II is observed because of increase in command voltage under all control strategies. This shows that connecting only at the alternative floors reduces the cost of dampers significantly by eighty percent and response reduction is also explicitly observed. The increase in voltage causes to increase in damper stiffness, therefore, attracts more force according to formulations as shown in Eqs. (3) and (4).
6 Conclusions

For enhancing the seismic performance of two adjacent buildings, an optimal design method for nonlinear hysteretic dampers is proposed. The stochastic linearization method helps estimate the stochastic responses of adjacent buildings coupled by nonlinear dampers in an efficient manner. As a result, the optimal design process can avoid numerous nonlinear time-history analyses. The numerical example of 10- and 20-storey buildings coupled by MR dampers demonstrate that the proposed optimal design approach can systematically achieve enhanced seismic performance with economical efficiency. The proposed GAF and GA methods for the output voltage of MR dampers achieve enhanced seismic performance with economical efficiency. GAF shows better control in displacement and damper force response of Building A although all used strategies is better for the shorter building (Building B).

Appendix A

Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>system matrix in state space equation</td>
</tr>
<tr>
<td>A_0</td>
<td>hysteresis loop parameters</td>
</tr>
<tr>
<td>a</td>
<td>constant value</td>
</tr>
<tr>
<td>a_j</td>
<td>each random number (j = 1, 2, ..., popsize) between 0 and 1</td>
</tr>
<tr>
<td>a_A, a_B</td>
<td>proportional coefficients of Building A and Building B, respectively</td>
</tr>
<tr>
<td>B</td>
<td>system matrix in state space equation</td>
</tr>
<tr>
<td>b_A, b_B</td>
<td>proportional coefficients of Building A and Building B, respectively</td>
</tr>
<tr>
<td>C</td>
<td>damping matrix</td>
</tr>
<tr>
<td>C_p</td>
<td>constant value (1 or 2)</td>
</tr>
<tr>
<td>C_w</td>
<td>regulation matrix</td>
</tr>
<tr>
<td>C_A</td>
<td>damping matrix of Building A</td>
</tr>
<tr>
<td>C_B</td>
<td>damping matrix of Building B</td>
</tr>
<tr>
<td>c_d</td>
<td>damping of the damper</td>
</tr>
<tr>
<td>c_A</td>
<td>hysteresis loop parameters of MR damper</td>
</tr>
<tr>
<td>c_B</td>
<td>hysteresis loop parameters of MR damper</td>
</tr>
<tr>
<td>c_A</td>
<td>hysteresis loop parameters of MR damper</td>
</tr>
<tr>
<td>c_B</td>
<td>hysteresis loop parameters of MR damper</td>
</tr>
<tr>
<td>c_A</td>
<td>hysteresis loop parameters of MR damper</td>
</tr>
<tr>
<td>c_B</td>
<td>hysteresis loop parameters of MR damper</td>
</tr>
<tr>
<td>D</td>
<td>zero matrix in Hamiltonian</td>
</tr>
<tr>
<td>D_p</td>
<td>regulation matrix</td>
</tr>
<tr>
<td>d_i</td>
<td>inter-storey drift of the i-th floor in controlled system</td>
</tr>
<tr>
<td>d_max</td>
<td>the peak uncontrolled floor drift</td>
</tr>
<tr>
<td>E</td>
<td>system matrix in state space equation</td>
</tr>
<tr>
<td>E_1</td>
<td>vector representing the influence of the related earthquake to Building A</td>
</tr>
</tbody>
</table>
\mathbf{E}_2 = vector representing the influence of the related earthquake to Building B

F = fitness function

F_d = desired force matrix at the damper

F_{di} = desired force at the ith damper

F_{mr} = force matrix at the damper

$\|\mathbf{G}_\infty\|$ = transfer function

$\|\hat{\mathbf{G}}_\infty\|$ = H_∞ norm of \mathbf{G}_∞

G^p = individual in the population

g^p_{ij} = one variable in G^p

H_2 = control algorithm

H_∞ = control algorithm

H = Hamiltonian

$H(j)$ = Heaviside function in Matlab

h_j = bit string no. $(j+1)$ starting from right

i_0 = index

I = identity vector

$I, J = (n + m) \times (n + 2m)$ identity matrices, respectively

J = objective function

J_1 = performance index

J_2 = objective function to be minimized the displacement responses

J_2^* = objective function to be minimized the inter-storey drift responses

k = index

K = stiffness matrix of all system

K = gain matrix

K_A = stiffness matrix of Building A

K_B = stiffness matrix of Building B

K_d = stiffness of the damper

h_0 = hysteresis loop parameters of MR damper

h_i = hysteresis loop parameters of MR damper

L_i = lower bound value of design variable

m_0 = length of sub-chromosome

M = total mass matrix

M_A = mass matrix of Building A

M_B = mass matrix of Building B

m = number of floors in Building B

m_i, m_j = mass ($i = 1, 2, \ldots, \eta; j = 1, 2, \ldots, \eta$)
\(m_a \) = number of measurements
\(N_d \) = total number of dampers at all floors
\(n \) = number of floors in Building A
\(n_a \) = number of actuators
\(\text{nbits} \) = number of bits
\(n_{\text{id}} \) = hysteresis loop parameters of MR damper
\(n_r \) = random number
\(P \) = Riccati matrix, matrix of Lyapunov equation
\(P_1 \) = significant digit
\(P_1 \) = control force location matrix of Building A
\(P_2 \) = control force location matrix of Building B
\(P_c \) = crossover rate
\(\text{pm} \) = mutation rate
\(Q \) = state weighting matrix
\(q_{ij} \) = probability of crossover
\(R \) = unit matrix having a random coefficient
\(R \) = scalar control force weighting matrix
\(R \) = control force weighting matrix
\(r_i \) = real number of a design variable
\(S \) = solution of the algebraic Ricatti equation
\(S_{\phi_2,\phi_3} \) = spectral density function of acceleration and measurement noise
\(s \) = difference between the number floors of both buildings
\(s \) = Laplace variable
\(t \) = time
\(t_i \) = integer mapping of a binary string
\(U_i \) = upper bound value of design variable
\(U, \dot{U} \) = control voltage and output of a first-order filter
\(V_{\text{max}} \) = maximum voltage
\(v \) = input voltages of the first order filter
\(\nu \) = measurement noise vector
\(X, \dot{X}, \ddot{X} \) = total displacement, velocity and acceleration matrices, respectively
\(X_1, X_2 \) = displacement matrix of Building A and Building B, respectively
\(\dot{X}_1, \dot{X}_2 \) = velocity matrix of Building A and Building B, respectively
\(\ddot{X}_1, \ddot{X}_2 \) = acceleration matrix of Building A and Building B, respectively
\(\dddot{X}_g \) = acceleration vector of the related earthquake
x^{max} = maximum displacement of the uncontrolled system

x_i, \dot{x}_i = displacement and velocity of the ith floor level, respectively

q_0 = initial displacement of the damper

f_{in} = vector of measured outputs

y_i, \dot{y}_i = internal pseudo-displacement

z_{d1}, \dot{z}_{d1} = evolutionary variable

a, σ_x, σ_y = hysteresis loop parameters of MR damper

σ_x, σ_y = weighting coefficient (1 or 2)

β, γ = hysteresis loop parameters of MR damper

Y_1, Y_2, Y_3 = a random number, upper bound and lower bound of a positive number

$\omega_{ia}, \omega_{ib}, \omega_{ja}, \omega_{jb}$ = structural modal frequencies of modes i and j of both buildings

$\xi_{ia}, \xi_{ib}, \xi_{ja}, \xi_{jb}$ = structural damping ratios for modes i and j of both buildings

μ = constant to scale the fitness function

η = time constant of the first-order filter

Λ = system matrix in state space equation

Γ = vector representing the influence of the related earthquake to all system

0 = zero matrix

References

[8]

[27] Uz ME. University of Wollongong. School of Civil M., Environmental E., Improving the dynamic behaviour of adjacent buildings by connecting them with fluid viscous dampers; 2009.

[29] Uz ME. Optimum design of semi-active dampers between adjacent buildings of different sizes subjected to seismic loading including soil–structure interaction. Doctor of Philosophy, School of Civil, Mining and Environmental Eng, University of Wollongog; 2013.

[34] Y.-J. Kim and J. Ghaboussi, Direct use of design criteria in genetic algorithm-based controller optimization, Earthq Eng Struct Dynam 30 (9), 2001, 1261–1278.

D.E. Goldberg, Genetic algorithms in search, optimization and machine learning, 1989, Addison-Wesley; Reading (MA).

Z. Michalewicz, Genetic algorithms + data structures = evolution programs, 1996, Springer; Berlin.

Highlights

- We use MR damper linkages to reduce seismic response of buildings.
- We use fuzzy controller with GA to reduce drift storey responses.
- The response control is better for the shorter building.
- Decreasing the number of dampers increases the system efficiency.

Queries and Answers

Query: Please confirm that given name(s) and surname(s) have been identified correctly.
Answer: yes

Query: Please update Refs. [9,45,56].
Answer: References [9] and [56] are updated as below. Could you please remove Reference [45] in text and references list? It was the same with Reference [9]. Sorry for the repeated reference.
