Tertiary source rocks, coals and reservoir potential in the Asem Asem and Barito Basins, Southeastern Kalimantan, Indonesia

Hermes Panggabean
University of Wollongong

This paper is posted at Research Online.
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
a. Cutinite (C), bright yellow, in siltstone; Warukin Formation; sample 22529, PB-1, 402 m; R\textsubscript{max}=0.43%; field width=0.46 mm, fluorescence-mode.

b. Same field of view as for (a), vitrinite (v); reflected light.

c. Cutinite (C), bright orange, in siltstone; oblique section; Warukin Formation; sample 22519; PRN-2, 1601 m; R\textsubscript{max}=0.62%; field width=0.46 mm; fluorescence-mode.

d. Same field of view as for (c): vitrinite (v); reflected light.

e. Sporinite (Sp), bright orange; liptodetrinite (L), bright orange, in shale; Warukin Formation; sample 22492; BK0-1, 2551 m; R\textsubscript{max}=0.73%; field width =0.23 mm, fluorescence-mode.

f. Sporinite (Sp), bright orange; in sandstone; Tanjung Formation; sample 22564, MRTP-IX, 2990 m; R\textsubscript{max}=0.60%; field width=0.18 mm; fluorescence-mode.

b. Same field of view as for (f); reflected light.

g. Same field of view as for (f); reflected light.

h. Resinite (R), orange, in siltstone; Tanjung Formation; sample 22311; SMD-1, 3771 m R\textsubscript{max}=0.83%; field width=0.28 mm; fluorescence-mode.

i. Same field of view as for (h); reflected light.
a. Suberinite (Sb), yellow; gelovitrinite (V); Miocene coal, Warukin Formation; sample 22571; DS-1, 1302 m; \(R_{\max} = 0.50\%\); field width = 0.46 mm; fluorescence-mode.

b. Same field of view as for (a); reflected light.

c. Botryococcus-related telalginitite (Al), bright yellow, sporinite (Sp) and telovitrinite (V); Miocene Coal, Warukin Formation; sample 22295; SMD-1, 924 m; \(R_{\max} = 0.46\%\); field width = 0.37 mm; fluorescence-mode.

d. Same field of view as for (c), pyrite (py); reflected light.

e. Suberinite (Sb), yellow; sporinite (Sp); mibrabitumen/exsudatinite (Mb/E), bright yellow; clarite; Miocene coal, Warukin Formation; sample 22153; DS-1, 132 m; \(R_{\max} = 0.34\%\); field width = 0.46 mm; fluorescence-mode.

f. Same field of view as for (e), detroitvitrinite (V), inertodetrinite (Id), sclerotinite (Sc); reflected light.

g. Fluorinite greenish yellow, telovitrinite (textinite) with gelovitrinite, Eocene coal, Tanjung Formation; 22596; shallow drilling; 53 m; \(R_{\max} = 0.58\%\); field width = 0.23 mm; fluorescence-mode.

h. Same field of view as for (g); reflected light.

i. Cutinite (C), orange; Botryococcus-related telalginitite, (Al), bright yellow; telovitrinite (V); Eocene coal, Tanjung Formation; sample 22587; shallow drilling, 21 m; \(R_{\max} = 0.55\%\); field width = 0.18 mm; fluorescence-mode.
a. Migrabitunen in gelovitrinite, bright yellow, Eocene coal, Tanjung Formation; sample 22587; shallow drilling, depth=21 m; $R_{max}=0.55\%$; field width=0.23 mm; fluorescence-mode.

b. Same field of view as for (a), gelovitrinite (V); reflected light.

c. Fluorinite (F), greenish yellow, Eocene coal, Tanjung Formation; sample 22596; shallow drilling, depth=51 m; $R_{max}=0.58\%$; field width=0.23 mm; fluorescence-mode.

d. Same field of view as for (c), telovitrinite (V) and suberinite, dull yellow fluorescence as shown in plate (c); reflected light.

e. Sporangium, bright yellow, Eocene coal, Tanjung Formation; sample 22629; shallow drilling, depth=48 m; $R_{max}=0.62\%$; field width=0.23 mm; fluorescence-mode.

f. Same field of view as for (e), telovitrinite (V); reflected light.

g. Resinite (R), bright orange, Eocene coal, Tanjung Formation; sample 22620; outcrop; $R_{max}=0.73\%$; field width=0.42 mm; fluorescence-mode.

h. Same field of view as for (g), telovitrinite (V); reflected light.

i. Botryococcus-related telalginate (Al), bright yellow, sporinite, dull yellow, telovitrinite (V), Eocene coal, Tanjung Formation; sample 22796; $R_{max}=0.58\%$, field width=0.27 mm; fluorescence-mode.
a. Migrabitum/en/exsudatinite
(Mb/E) and oil droplets (Od),
bright yellow, in vitrinite
(V), sporinite (Sp), dull
yellow, Miocene coal; Warukin
Formation; sample 22570, DS-1,
1005 m; R_max=0.52%;
field width=0.46 mm;
fluorescence-mode.

b. Oil haze (Oh) and
migrabitum/en/exsudatinite
(Mb/E), bright yellow,
detritovitrite (Ds), showing
secondary fluorescence of dull
yellow, Miocene coal; Warukin
Formation; sample 22492;
BKO-1, 2551 m; R_max=0.70%;
field width=0.23 mm;
fluorescence-mode.

c. Migrabitum (Mb), oil
droplets (Od), bright yellow;
vitrinite (V), in siltstone,
Warukin Formation; sample
22484, BKO-1, 1347 m; R_max=
0.45%; field width=0.23 mm;
fluorescence-mode.

d. Dead oils, bright orange, in
sandstone, Warukin Formation,
sample 22484; BKO-1, 1347 m;
R_max=0.45%; field width=0.23 mm;
fluorescence-mode.

e. Migrabitum/en/exsudatinite,
in siltstone, Tanjung Formation;
sample 22536, PB-1, 1673 m;
R_max=0.55%; field width=0.29 mm;
fluorescence-mode.

f. Migrabitum/en/exsudatinite,
bright yellow, filling cracks,
telovitrite (V); Eocene
coal, Tanjung Formation;
sample 22690; shallow
drilling, depth=27 m;
R_max=0.56%; field width=
0.23 mm, fluorescence-mode.

g. Migrabitum/en/exsudatinite
(Mb/E) bright yellow,
telovitrite (V); Eocene
coal, Tanjung Formation;
sample 22629; outcrop; R_max=
0.62%; field width=0.23 mm;
fluorescence-mode.

h. Oil droplet/migrabitum (Od),
yellow, showing fractures/
cracks; telovitrite (V);
Eocene coal, Tanjung
Formation; sample 22616;
outcrop; R_max=0.56%;
field width=0.42 mm,
fluorescence-mode.

i. Migrabitum/en/exsudatinitelte
(Mb/E) and oil cut (Oc),
yellow; telovitrite (V),
Eocene coal, Tanjung
Formation; sample 22578;
outcrop; R_max=0.60%; field
width=0.23 mm; fluorescence-
mode.
PLATE 5

a. Fine-grained sublitharenite, Warukin Formation, showing quartz grains (Q) and rock fragments (RF); the grains are commonly coated by very thin chlorite; pore spaces are partially filled by clay matrix; porosity 15%; sample HP557, outcrop; field width=1.8 mm; crossed-polars.

b. Same field of view as for (a), plane-polarized light.

c. Fine-grained sublitharenite, Warukin Formation, showing quartz grains (Q), chert (CR) and volcanic rock fragments; pore spaces are partially filled by clay matrix; porosity 16%; sample 22495, cuttings, BK0-1, 3124 m; field width=1.6 mm; crossed-polars.

d. Same field of view as for (c), quartz grain (Q), quartz overgrowths (o); plane-polarized light.

e. Medium-grained quartzarenite, Tanjung Formation, showing quartz (Q), calcite cement (C) and siderite (S) partly filling pore spaces; porosity 25%; sample HP685, shallow drill core; depth=6 m; field width=1.8 mm; crossed-polars.

f. Same field of view as for (e), quartz (Q), calcite (C), plane-polarized light.

g. Coarse-grained quartzarenite, Tanjung Formation, showing quartz grain (Q) rimmed by quartz overgrowths (o) and clay minerals (kaolinite); porosity 32%; sample HP521, shallow drill core; depth=22 m; field width=0.8 mm; crossed-polars.

h. Same field of view as for (g), quartz (Q), quartz overgrowths (o), feldspar (F), pore spaces (P); fracture is filled by silica cement (Si); plane-polarized light.
a. Very coarse-grained sublitharenite, Tanjung Formation, showing quartz grains (Q), chert; carbonate cement (C) and clay matrix filling pore spaces, porosity 25%; sample HP378, shallow drill core; depth=105 m; field width=4.9 mm; crossed-polars.

b. Same field of view as for (a); quartz (Q), chert (CR); plane-polarized light.

c. Coarse-grained quartzarenite, Tanjung Formation, showing quartz grains (Q) coated by thin clay minerals (probably smectite/illite); porosity 25%; sample HP184, shallow drill core; depth=77 m; field width=1.8 mm; crossed-polars.

d. Same field of view as for (c); quartz grain (Q), pore space (P); plane-polarized light.

e. Fine-grained sublitharenite, Tanjung Formation, showing quartz grains (Q); feldspar (F) which were partially altered and dissolved to form pore; porosity 18%; sample HP529, shallow drill core; depth=41 m; field width=0.7 mm; crossed-polars.

f. Same field of view as for (e); quartz grains (Q) and feldspar (F), pore space (P); plane-polarized light.

g. Medium-grained quartzarenite, Tanjung Formation, showing quartz (Q) and an altered feldspar grain (F); porosity 25%; sample HP511, outcrop; field width=1.8 mm; crossed-polars.

h. Same field of view as for (g); quartz (Q), feldspar (F) and pore space (P); plane-polarized light.
PLATE 7

a. Sublitharenite, Warukin Formation, showing quartz grains (Q) of fine sand size (0.2 mm); pore spaces are clearly visible and partial filled by carbonate cement and kaolinite clays; porosity 25%; sample 22488, side wall core, BK0-1, 2024 m; magnification x85.

b. Same sample as for (a); showing quartz grains (Q) and rock fragments (RF) which have partially been dissolved during diagenesis; magnification x280.

c. Same sample as for (a); showing calcite cement (c) and kaolinite filling pore spaces; micropores within carbonate cement and detrital kaolinite are clearly defined ranging from 2 to 20 μm; magnification x2700.

d. Very fine- to fine-grained sublitharenite, Warukin Formation, showing grain framework of quartz (Q), feldspar (F) and rock fragments; pore spaces were partly filled by clay matrix; porosity 15%; sample 22489, side wall core, BK0-1, 2056 m; magnification x110.

e. Same sample as for (d), showing an irregular form of detrital kaolinite (K) filling pore spaces, micropores are visible ranging from 2 to 5 μm; magnification x1700.

f. Detrital kaolinite (K) filling pore spaces in sandy siltstone from the Warukin Formation; sample 22496, side wall core, BK0-1, 3125 m; magnification x1500.

g. Same sample as for (f), showing quartz grains (Q) and a mica-flake (M); porosity 10%; magnification x870.

h. ?Smectite-illite (Sm) lining pore spaces in fine-grained sublitharenite, Warukin Formation; sample 22209, side wall core, BK0-1, 1073 m; magnification x2000.

i. Same sample as for (h); calcite crystals filling pore spaces; magnification x3000.
PLATE 7
a. Medium-grained sublitharenite, Tanjung Formation, showing grain framework, quartz grains (Q), pore spaces are well defined ranging from 20 to 500 um; porosity 28%; sample Hp781, shallow drill core, depth=58 m; magnification x34.

b. Same sample as for (a), showing booklets of authigenic kaolinite cement filling pore spaces, micropores are clearly visible ranging from 2 to 10 um; magnification x1200.

c. Detrital kaolinite (K) and "verniform" kaolinite, filling pore spaces in sublitharenite, Tanjung Formation; porosity 20%; micropores within kaolinite range from 2 to 10 um; sample HP521, shallow drill core, depth=22 m; magnification x3200.

d. Authigenic kaolinite booklets filling pore spaces in sublitharenite, Tanjung Formation, micropores within kaolinite range from 5 to 20 um, sample HP685, shallow drill core, depth=5 m; magnification x2000.

e. Pore-filling clots of kaolinite (K) and ?organic matter (OM), probably vitrinite, sandy siltstone, Tanjung Formation; sample HP721, shallow drill core, depth 7 m; magnification x1800.

f. Authigenic smectite/chlorite (Sm/Cl) clays filling pore spaces in medium-grained sublitharenite, Tanjung Formation; porosity 12%; sample Hp551, shallow drill core, depth=43 m; magnification x3300.

g. Medium-grained sublitharenite, Tanjung Formation, showing detrital of rock fragments (RF), quartz (Q) and mica-flakes (M); porosity 20%; sample HP624, shallow drill core, depth=28 m; magnification x280.

h. Rhombohedral dolomite in sublitharenite, Tanjung Formation, also showing smectite-illite (S-I); sample HP685, shallow drill core, depth= 5 m; magnification x1100.

i. Quartz overgrowths (O) in sublitharenite, Tanjung Formation, smectite/chlorite (SM/Cl) coates quartz overgrowths; sample Hp630, shallow drill core, depth=59 m; magnification x2000.
PLATE 9

a. Medium-grained sublitharenite, Tanjung Formation, showing quartz grain (Q) and pore spaces which are well defined; porosity 23%; sample HP249, shallow drill core, depth=120 m; magnification x29.

b. Same sample as for (a) showing detrital kaolinite (K) filling pore spaces, micropores are visible ranging from 2 to 10 um; magnification x2000.

c. Detrital quartz (Q) and "vermiform" kaolinite (Kv), Tanjung Formation; sample HP715, shallow drill core, depth=50 m; magnification x2000.

d. Smectite/chlorite (Sm/Cl) matrix filling pore spaces in medium-grained sublitharenite, pyrite (p); porosity 10%; sample HP622, shallow drill core, depth=137 m; magnification x5000.

e. Sublitharenite showing feldspar grain (F) and quartz (Q); quartz overgrowths (Qo) bridging pore spaces; kaolinite matrix (K); porosity 20%; sample HP184, shallow drill core, depth=77 m; magnification x1300.

f. Authigenic quartz overgrowths (Qo) in sublitharenite, Tanjung Formation; sample HP405, outcrop; magnification x2400.

g. Kaolinite (K) matrix filling pore spaces in fine-grained sublitharenite, Tanjung Formation; sample HP147, shallow drill core, depth=71 m; magnification x2200.

h. Carbonate cement (C) in sublitharenite showing intracemnt pores ranging from 40 to 60 um, sample HP756, shallow drill core, depth=127 m; magnification x790.

i. Feldspar grain (F) has partially been dissolved forming pore spaces, kaolinite (K); porosity 12%; sample HP768, shallow drill core, depth=123 m; magnification x1100.