Tertiary source rocks, coals and reservoir potential in the Asem Asem and Barito Basins, Southeastern Kalimantan, Indonesia

Hermes Panggabean
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong
Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
A thesis submitted in (partial) fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

from

THE UNIVERSITY OF WOLLONGONG

by

HERMES PANGGABEAN

(B.Sc., A.G.P., Bandung; M.Sc (Hons), Wollongong)

Department of Geology

1991
ABSTRACT

The Asem Asem and Barito Basins, in southeastern Kalimantan, are likely areas for coal exploitation and have good potential for hydrocarbon accumulation. Therefore, an understanding of the development of the basins, the coal and source rock potential within the sedimentary sequence, together with the physical properties of the rocks, will provide valuable information for the economic assessment and development of the region.

Rifting occurred on the southeastern margin of the Sundaland continent during the Late Paleocene-Early Eocene. This formed a large, initially contiguous basin, comprising the Barito, Asem Asem and Kutei Basins, in the southeast and east Kalimantan areas. The Meratus Uplift commenced in Late Miocene and continued during the Plio-Pleistocene causing the subdivision of the large basin into the present Barito, Asem Asem and Kutei Basins.

The Barito and Asem Asem Basins were filled with Tertiary and Quaternary sedimentary sequences. Deposition of the Tangung Formation commenced in the Eocene from a meandering river system which gave way to a fluvial-dominated delta and shallow marine systems. The Tanjung Formation was succeeded by the peak of the Late Eocene transgressive phase, represented by the carbonate-dominated facies of the Berai Formation. The overlying unit is the regressive lower delta plain and fluvioestuarine succession of the Miocene Warukin Formation. The sequence ends with the Plio-Pleistocene Dahor Formation which unconformably covers the earlier units.

Both the Tanjung and Warukin Formations have abundant sandstone units which consist largely of quartzarenite and sublitharenite, whilst feldspathic litharenite and subarkose are minor constituents. The Berai Formation is composed mainly of wackestone, packstone and grainstone with subordinate carbonate mudstone. The Dahor Formation is composed of conglomerate, sandstone, siltstone and mudstone.

The clastic rocks of the Tanjung and Warukin Formations were transported southwards from a recycled orogen source, which probably included the Kuching High, part of the Mangkalihat Ridge and the Sundaland continent or Schwanner Block.

Organic petrology shows that vitrinite and liptinite are the dominant macerals within both fine-grained clastic rocks and coal in the Tanjung, Warukin and Dahor Formations. Inertinite is a minor maceral in these units, but it is slightly more prominent in the Berai Formation.

The Eocene and Miocene coals do not differ greatly in terms of maceral group composition. However, the Eocene coal contains more liptinite than the Miocene coal. The rank of the Eocene coal ranges between sub-bituminous and
where the average vitrinite reflectance (R_{max}) is 0.43%. The Miocene coal contains less mineral matter than the Eocene coal. Mineral matter comprises mainly kaolinite, quartz, pyrite, carbonate and small amounts of chlorite.

Both the Tanjung and Warukin Formations have very good hydrocarbon generation potential. The Berau Formation has less significant source potential as this unit contains little organic matter. The vitrinite reflectance data indicates that the onset of oil generation occurs below 1600 m depth throughout both basins. In most parts of the basins the Tanjung Formation entered the oil window zone during the Miocene. In the deeper parts of the basins the Berau Formation and, locally, the lower and middle parts of the Warukin Formation also lie within the oil window. The oil generation zone does not extend up into the Dahor Formation.

The results of maturation modelling and burial history indicate that relatively rapid, early coalification of the section of Eocene age occurred over most of both the Asem Asem and Barito Basins. A second, more rapid, phase of coalification affected the lower part of the Miocene succession. A late Miocene-Pliocene history of constant or falling temperature resulted in a lowered thermal drive for maturation and migration.

Microscopic features indicating hydrocarbon generation occur in many samples from the Tanjung and Warukin Formations, but they are most prominent within coal samples. These features comprise migrabitumen, oil droplets, oil cuts, oil haze and dead oil. Organic geochemical analyses show that the Warukin Formation has produced some oil in the Barito Basin. A minor quantity of oil from the Tanjung Formation may have migrated into reservoir rocks in the Warukin Formation. The study proved that the oil is mainly of terrestrial higher plant origin.

Sandstone beds in the Tanjung and Warukin Formations have good to very good potential as petroleum reservoir rocks. The Berau Formation is considered to be marginally favourable as a reservoir rock for hydrocarbon accumulation. Diagenetic regimes (eodiagenesis and mesodiagenesis) have controlled the enhancement of secondary porosity after reducing primary porosity within the reservoir rocks.

The most economically viable areas for coal are on the eastern flank of the Senakin Peninsula, and in the Kintap, Bunati and Gunung Kukusan areas. For petroleum exploration, the eastern and southern Barito Basin, and south of Pulau Laut and the A-1 and A-2 wells in the Asem Asem Basin, probably have the highest potential for hydrocarbon discovery.
AKNOWLEDGEMENTS

The research work for this thesis was carried out in the Department of Geology, University of Wollongong. It was undertaken through tenure of an Indonesia-Australia Geological Mapping Project (I.A.G.M.P.) Scholarship funded by the Australian International Development Assistance Bureau (AIDAB). I wish to record my deep appreciation to both my supervisors, Professor Alan C. Cook and Associate Professor Brian G. Jones for their suggestion of this study, encouragement, patient guidance and general assistance throughout the study.

The author wishes to thank Associate Professor A.J. Wright, Chairman of the Department of Geology, University of Wollongong, and his predecessor, Professor Alan C. Cook, for providing many facilities during the work on this research. I would like to express my sincere gratitude to all the academic and technical staff of the Department of Geology, for their help, especially Dr A.C. Hutton, Messrs Aivers Depers, David Carrie, John Paterson, Max Perkins, David Martin, Ms T. Carmody, Mrs R. Varga and Mrs B.R. McGoldrick.

Scanning electron microscopy analyses were carried out in the Department of Metallurgy, University of Wollongong, and I would like to thank Mr David Carrie and technical staff of this Department. Geochemical analyses were done in the Bureau of Mineral Resources, Canberra. I am thankful to Drs T.G. Powell, R.E. Summons, C. Boreham and J. Hope for their valuable advice and
comments on biomarker studies.

Special appreciation is accorded to the Director of Geological Research and Development Centre (GRDC), Dr R. Sukamto and his predecessor, Mr M. Untung, the Project managers of the I.A.G.M.P., Mr J. Casey and Mr D.S. Trail and their staff, for permitting me to undertake the present project.

The author wishes to specially thank to the management and all the staff of Pertamina Pusat Jakarta and Pertamina UEP IV Balikpapan for providing permission to use samples and material from oil wells. I would also like to express my sincere gratitude to Trend Energy Co., Phillip Petroleum and Union Carbide Co. for providing oil well samples and material with the permission of BKKA Pertamina.

Shallow drilling samples from the Sangsang coal mine area were supplied by P.T. Arutmin Indonesia. For providing valuable data, material, assistance and facilities in the field, I am thankful to Mr A.B. Grant and Mr L.P. Connolly and their staff, including Messrs Al Johnet, S. Pangestu, D. Zein and G. Deacon.

Special thanks go to Mr D. Wise, Mr B. Rush and Ms G. Ward, AIDAB, for assistance during this study. Also my thanks to post-graduate students in the Department of Geology, including Messrs B. Daulay, M. Faiz, T. Ratkolo, Susilohadi, Herudiyanto, Ch. Nas, R. Heryanto, Surono, N. Sherwood and others. Finally, my wife Norma, daughter Ruth Pergie and the rest of my family offered endless support, love and encouragement for which I am forever thankful.
The contents of this thesis are the results of original research and the material included has not been submitted for a higher degree to any other University or similar institution.

Hermes Panggabean
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td></td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td></td>
</tr>
<tr>
<td>1.1. LOCATION</td>
<td>1</td>
</tr>
<tr>
<td>1.2. GENERAL GEOLOGY OF SOUTHEASTERN</td>
<td>1</td>
</tr>
<tr>
<td>KALIMANTAN</td>
<td></td>
</tr>
<tr>
<td>1.3. PREVIOUS WORK</td>
<td>2</td>
</tr>
<tr>
<td>1.3.1. Petroleum Exploration</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2. Coal Exploration</td>
<td>4</td>
</tr>
<tr>
<td>1.4. AIMS OF STUDY</td>
<td>6</td>
</tr>
<tr>
<td>1.5. METHODS AND DATA EVALUATION</td>
<td>7</td>
</tr>
<tr>
<td>1.6. SUMMARY</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td></td>
</tr>
<tr>
<td>2.1. INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>2.2. TECTONIC FRAMEWORK AND GEOLOGICAL</td>
<td></td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1. Tectonic Framework</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2. Geological Structure</td>
<td>13</td>
</tr>
<tr>
<td>2.3. STRATIGRAPHY</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1. Pre-Tertiary</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2. Tertiary</td>
<td>16</td>
</tr>
<tr>
<td>2.3.3. Late Tertiary – Quaternary</td>
<td>18</td>
</tr>
<tr>
<td>2.4. SUMMARY</td>
<td>18</td>
</tr>
</tbody>
</table>
CHAPTER FIVE SOURCE ROCK POTENTIAL, MATURITY AND HYDROCARBON GENERATION 108

5.1. INTRODUCTION 108
5.2. SOURCE ROCK POTENTIAL 109
5.3. ORGANIC MATURATION AND HYDROCARBON GENERATION 113
 5.3.1. Level of Maturation 114
 5.3.2. Microscopic Features Indicating Hydrocarbon Generation 120
5.4. THERMAL AND BURIAL HISTORY 122
 5.4.1. Geothermal Gradient 123
 5.4.2. Palaeotemperature 125
 5.4.3. Timing of Hydrocarbon Generation using Lopatin's Method 127
5.5. DISCUSSION 131
5.6. SUMMARY 133

CHAPTER SIX ORGANIC GEOCHEMISTRY 135

6.1. INTRODUCTION 135
6.2. THE RESULTS OF ANALYSES 136
 6.2.1. Gas Chromatography (GC) 137
 6.2.2. Gas Chromatography-Mass Spectrometry (GC-MS) 138
 6.2.3. Saturated hydrocarbons 139
6.3. DISCUSSION 142
6.4. SUMMARY 147

CHAPTER SEVEN POTENTIAL PETROLEUM RESERVOIR ROCKS 149

7.1. INTRODUCTION 149
7.2. MICROSCOPIC FEATURES INDICATING DIAGENETIC REGIMES 150
 7.2.1. Petrography of Thin Section 150
 7.2.2. Scanning Electron Microscopy (SEM) 154
 7.2.3. X-Ray Diffraction 162
7.3. POROSITY AND PERMEABILITY 166
FIGURES

FIGURES TO CHAPTER ONE Figure 1.1 - Figure 1.3
FIGURES TO CHAPTER TWO Figure 2.1 - Figure 2.6
FIGURES TO CHAPTER THREE Figure 3.1 - Figure 3.23
FIGURES TO CHAPTER FOUR Figure 4.1 - Figure 4.22
FIGURES TO CHAPTER FIVE Figure 5.1 - Figure 5.24
FIGURES TO CHAPTER SIX Figure 6.1 - Figure 6.13
FIGURES TO CHAPTER SEVEN Figure 7.1 - Figure 7.9

TABLES

TABLES TO CHAPTER THREE Table 3.1 - Table 3.6
TABLES TO CHAPTER FOUR Table 4.1 - Table 4.3
TABLES TO CHAPTER FIVE Table 5.1 - Table 5.8
TABLES TO CHAPTER SIX Table 6.1 - Table 6.4
TABLES TO CHAPTER SEVEN Table 7.1 - Table 7.3

PLATES

Plate 1 - Plate 4 Photomicrographs of organic petrology
Plate 5 - Plate 6 Photomicrographs of petrography of thin sections
Plate 7 - Plate 9 Photomicrographs of scanning electron microscopy
APPENDICES

APPENDICES TO CHAPTER THREE Appendix 3.1 - Appendix 3.3
APPENDICES TO CHAPTER FOUR Appendix 4.1 - Appendix 4.4