Comment on "cycling Li-O2 batteries via LiOH formation and decomposition"

Yue Shen
Huazhong University of Science and Technology

Wang Zhang
Huazhong University of Science and Technology

Shulei Chou
University of Wollongong, shulei@uow.edu.au

S X. Dou
University of Wollongong, shi@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons
Comment on "cycling Li-O2 batteries via LiOH formation and decomposition"

Abstract
Copyright 2016 by the American Association for the Advancement of Science; all rights reserved. Liu et al. (Research Article, 30 October 2015, p. 530) described a lithium-oxygen (Li-O2) battery based on lithium iodide (LiI)-assisted lithium hydroxide (LiOH) formation and decomposition. We argue that LiOH cannot be oxidized by triiodide (I3-). The charge capacity is from the oxidation of I- instead of LiOH. The limited-capacity cycling test is misleading when the electrolyte contributes considerable parasitic reaction capacity.

Keywords
formation, decomposition, cycling, li, comment, o2, batteries, via, lioh

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/2082
Comment on “Cycling Li-O$_2$ battery via LiOH formation and decomposition”

Authors: Yue Shen,\(^1\) Wang Zhang,\(^1\) Shu-Lei Chou,\(^2\) Shi-Xue Dou\(^2\)

Affiliations:
\(^1\)State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
\(^2\)Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong NSW 2522, Australia.

*Corresponding Authors: Email address: shenyue1213@hust.edu.cn (Y.S.) and shulei@uow.edu.au (S.L.C.)

Abstract: Liu et al. (Research Article, 30 October 2015, p.530) described a Li-O$_2$ battery based on LiI assisted LiOH formation and decomposition. We argue that LiOH cannot be oxidized by I$_3^-$. The charge capacity is from the oxidation of I$^-$ instead of LiOH. The limited capacity cycling test is misleading when the electrolyte contributes significant parasitic reaction capacity.

Main Text:
Liu et al. (\(^1\)) reported a breakthrough” of Li-O$_2$ battery (LOB). Their cathode was able to cycle 2000 times at limited capacity of 1000 mAh g$^{-1}$ and the overpotential was as small as 0.2 V. In contrast to previous studies (\(^2\), \(^3\)), they claim that the excellent cycling stability is based on the formation and decomposition of LiOH. Small amounts of water and LiI depress the oxidation potential of LiOH down to 3.0 V.

The major conclusion in Liu et al.’s paper was the following reactions:

<table>
<thead>
<tr>
<th>Discharge Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) electrochemical: $4\text{Li}^+ + 4\text{O}_2 + 4\text{e}^- \rightarrow 4\text{Li}_2\text{O}_2$</td>
</tr>
<tr>
<td>(2) chemical: $4\text{Li}_2\text{O}_2 + 2\text{H}_2\text{O} \xrightarrow{\text{via the action of I}_3\text{I}^-} 4\text{LiOH} + 3\text{O}_2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charge Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) electrochemical: $6\text{I}^- \rightarrow 2\text{I}_3^- + 4\text{e}^-$</td>
</tr>
<tr>
<td>(2) chemical: $4\text{LiOH} + 2\text{I}_3^- \rightarrow 4\text{Li}^+ + 6\text{I}^- + 2\text{H}_2\text{O} + \text{O}_2$</td>
</tr>
</tbody>
</table>

Adding the two charge reactions together will get the total charge reaction as:

$4\text{LiOH} \rightarrow 4\text{Li}^+ + 2\text{H}_2\text{O} + \text{O}_2 + 4\text{e}^-$
This reaction is well known as the charge reaction of aqueous lithium-air batteries (4, 5). The potential of this reaction is widely agreed as 3.84 V (versus Li⁺/Li) in neutral solutions or 3.42 V when pH=12, much higher than 3.0 V in Liu et al.’s paper. The equilibrium potential is a thermodynamic value; it cannot be influenced by the existence of I₃⁻ species which is a catalyst. The solvation effect of different solvents may bring a little difference to the charge potential. But it cannot explain the difference as big as 0.4 V. Liu et al. further claimed that even with 45,000 ppm of water, no appreciable change in the electrochemical profile was observed. The solvation situation in highly hydrated DME should be similar with the aqueous lithium-air batteries. Thus, the potential should not change very much. Therefore, LiOH cannot be oxidized at 3.0 V (versus Li⁺/Li).

To determine the true charge reaction, a transparent battery was built to repeat the cycling experiment with similar weight ratio of the rGO cathode to electrolyte as in Liu’s experiment (Fig. 1A). The charge potential was indeed lower than 3.2 V (Fig. 1B), but the electrolyte became darker after every charge process, indicating the concentration of I₃⁻ was increasing. This result is against Liu et al.’s mechanism, since they believe that the I₃⁻ should react with LiOH and transform back to colorless I⁻. The cathode after 100 cycles of discharge and charge was measured with XRD, and the result confirmed the LiOH accumulation (Fig. 1C).

Figure 1. Cycling test of a transparent battery. (A) Photograph of the battery before and after 100 cycles. (B) Discharge-charge curves of the battery for selected cycles. (C) XRD pattern of the cathode after 100 cycles of discharge and charge.
In Liu et al.’s paper, the amount of electrolyte was 1 mL. The LiI concentration was 0.05 mol L\(^{-1}\). Three I\(^-\) acquire two electrons to become I\(_3^-\). So, the capacity of the I\(_3^-/I^-\) redox couple should be:

\[
\frac{0.05 \times 10^{-3} \text{mol} \times 96485 \text{ C mol}^{-1}}{3.6 \text{ C mAh}^{-1}} \times \frac{2}{3} = 0.89 \text{ mAh}
\]

Meanwhile, the mass loading of Liu et al.’s rGO cathode (active materials) was as low as 0.01 mg. When the battery was cycling at a specific capacity limiting method of 1000 mAh g\(^{-1}\), the capacity of the battery should be:

\[
1000 \text{ mAh g}^{-1} \times 0.01 \times 10^{-3} \text{ g} = 0.01 \text{ mAh}
\]

This value is only about 1% of the capacity of the I\(_3^-/I^-\) redox couple. Thus, during charging, the LiOH does not need to be oxidized since the oxidation of I\(^-\) could sustain the charge reaction. The charge potential is very low simply because it is the I\(_3^-/I^-\) redox reaction.

The “Comparison of the Capacity Obtained with the I/I\(_3^-\) Couple (in Ar) with that Obtained for the Li-O\(_2\) Cells” part in Liu et al.’s supplementary materials does not support what they claimed, because the LiI was originally in its reduced state and so there was nothing to be further reduced and the discharge capacity was thus very small. They unfortunately did not show the complete charge curve with LiI electrolyte in Liu et al.’s Fig. S3 and Fig.1 (B).

On the whole, we believe that Liu et al. proposed explanation of the reversible decomposition of LiOH is not scientifically sound. Their battery is actually a combination of an irreversible lithium-air battery and a reversible lithium-iodine battery, as shown in the following reactions:

\[
\text{Initial discharge} \quad 4\text{Li}^+ + \text{O}_2 + 2\text{H}_2\text{O} + 4\, \text{e}^- \xrightarrow{\text{Irreversible}} 4\text{LiOH}
\]

Following cycles

\[
\begin{align*}
3\text{LiI} & \quad \xrightarrow{\text{Charge}} \quad 3\text{Li}^+ + \text{I}_3^- + 2\text{e}^- \\
4\text{Li}^+ + \text{O}_2 + 2\text{H}_2\text{O} + 4\, \text{e}^- & \quad \xrightarrow{\text{Irreversible}} 4\text{LiOH}
\end{align*}
\]

For lithium-oxygen batteries, limited capacity cycling test results can be misleading. They may conceal a large amount of parasitic reactions, especially when the weight ratio of the cathode material to the electrolyte is very small. It is necessary to use multiple techniques (6, 7) to confirm if the charge capacity is from the oxidation of the discharge product or from the side reactions.
Acknowledgement

Funding support from Natural Science Foundation of China (51202076) and Australian Research Council linkage project (LP120200432).

References and Notes: