Numerical modelling of the propagation of ocean waves

Huan-Wen Liu

University of Wollongong

Recommended Citation
Numerical modelling of the propagation of ocean waves

Huan-Wen Liu
University of Wollongong

This paper is posted at Research Online.
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Numerical Modelling of the Propagation of Ocean Waves

A thesis submitted in partial fulfilment of the requirements
for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

Huan-Wen Liu
BSc, MSc

School of Mathematics and Applied Statistics
2001
Declaration

In accordance with the regulations of the University of Wollongong, I hereby state that
the work described herein is my own original work, except where due references are
made, and has not been submitted for a degree at any other universities or institutions.

Huan-Wen Liu

Date:
Table of Contents

Table of Contents

Table of Contents iii

Abstract iv

Acknowledgements vi

Symbols and abbreviations vii

1 Introduction 1

2 Basic theory 10

2.1 Wave shoaling, diffraction and refraction 10

2.2 Governing equations 12

2.3 The mild-slope equation 15

2.4 The Boussinesq equations 17

3 The dual reciprocity boundary element method 19

3.1 Conventional BEM 19

3.2 Domain integral 23

3.3 Computing particular solutions 24

3.4 The choice of interpolation functions 26

3.5 Multiple reciprocity boundary element method 27

3.6 Approximation to internal partial derivatives 28

4 A linear wave model: GDRBEM 30

4.1 Introduction 31

4.2 DRBEM and integral equations 32

4.3 Numerical examples 36

4.3.1 Homma’s island 37

4.3.2 Conical islands 42
5 A weakly nonlinear wave model: PDRBEM

5.1 Governing equations .. 59
5.2 Formation of integral equations 67
5.3 Run-ups of nonlinear waves 69
5.4 Numerical examples .. 72
 5.4.1 Diffraction around a vertical cylinder 73
 5.4.2 Combined refraction and diffraction on a conical island 75

6 Conclusions ... 98

A Numerical discretization 100

B $G(x, y)$ and its derivatives for nonzero water depth 105

C $G(x, y)$ and its derivatives for zero water depth 110

D Particular solutions used in DRBEM 112

E Publications of the author 114

Bibliography ... 119
Abstract

This thesis considers the refraction and diffraction of both linear and nonlinear waves. In the first part, a linear numerical model based on the dual reciprocity boundary element method (DRBEM) is presented for the study of combined diffraction and refraction of linear waves. This model is more general than that presented by Zhu (1993a) in the sense that areas or coastlines where the water depth is zero can be successfully dealt with. Our comparison study shows that the new model is very accurate for the propagation of long waves such as tsunamis. Moreover, it is numerically very efficient in comparison with models based on finite elements or differences. Using the new model, the interaction between the diffractive and refractive effects is examined.

In the second part, a numerical model is developed by expanding the Boussinesq equations using a perturbation method and the DRBEM. Based on the assumption that the incident waves are harmonic, the time-dependent nonlinear Boussinesq equations are transformed into three time-independent linear equations, where no approximation for the seabed slope is made. Then the first-order solution η_0 is found as the solution of the linear shallow-water equation. The first-order solution is then used in the governing equations at second-order. By employing a transformation, all the third-order and the fourth-order partial derivatives of η_0 in the right-hand sides are
removed, resulting in the minimization of any errors which occur in approximating these derivatives. To validate the new model, the wave run-ups of weakly-nonlinear waves scattered by islands are found. Thirteen cases of run-ups around a vertical cylindrical island are considered and it is found that the nonlinear and dispersive contributions of the new model are significant and a much better comparison with experimental results is obtained than for the linear diffraction theory. The combined wave diffraction and refraction by a conical island is also modelled and discussed. Our model is found to be more accurate than other nonlinear models as the dispersive effects have been included, but is also more computationally efficient since there is no time marching and the spatial dimensionality of the numerical calculation has been reduced by one with the adoption of the DRBEM.
Acknowledgements

I would like to express sincere gratitude to Associate Professor Song-Ping Zhu and Dr. Timothy R. Marchant, my supervisors, for leading me to the fields of dual reciprocity boundary element method and ocean waves which were totally new to me a few years ago. Without their many valuable suggestions and constant support this thesis would never have come into existence.

Special thanks must go to Dr. Ahmed El-Feki who taught me how to write Fortran codes when I started this research project. I would like to thank Dr. Anna Maria Milan, Dr. Qiyin Wang and Mr. Weiliang Wu who gave me much help in using Latex to prepare the thesis.

My indebtedness must be expressed to the financial support from a Australian Government Overseas Postgraduate Research Scholarship and from a University of Wollongong Postgraduate Award. The support from the Industry and Applied Mathematics Group in the School of Mathematics and Applied Statistics, University of Wollongong is also appreciated.
Symbols and abbreviations

\(\alpha \) \quad \text{coefficient vector}

\(\alpha_j \) \quad \text{coefficients}

\(\alpha(\xi) \) \quad \text{internal angle of the boundary at point } \xi

\(\gamma \) \quad \text{Euler's constant} \approx 0.57721

\(\Gamma \) \quad \text{boundary}

\(\Gamma_i \) \quad \text{coastline of an island}

\(\Gamma_o \) \quad \text{toe of a conical island}

\(\Gamma_B \) \quad \text{artificial boundary}

\(\delta \) \quad \text{Dirac delta function}

\(\epsilon \) \quad \text{wave nonlinearity, small parameter in the perturbation solution}

\(\eta \) \quad \text{free surface elevation without time-dependence}

\(\eta' \) \quad \text{free surface elevation of incident waves without time-dependence}

\(\eta_0 \) \quad \text{free surface elevation of 1st-order without time-dependence}

\(\eta_1 \) \quad \text{free surface elevation of 2nd-order fundamental frequency without time-dependence}

\(\eta_2 \) \quad \text{free surface elevation of 2nd-order double frequency without time-dependence}
\(\eta_0^s \) free surface elevation of 1st-order scattered waves without time-dependence

\(\eta_1^s \) free surface elevation of 2nd-order scattered waves at fundamental frequency without time-dependence

\(\eta_2^s \) free surface elevation of 2nd-order scattered waves at double frequency without time-dependence

\(\phi \) velocity potential without time-dependence

\(\phi^I \) velocity potential of incident waves without time-dependence

\(\phi^s \) velocity potential of scattered waves without time-dependence

\(\phi^* = H_0^{(1)} \), Hankel function of first kind and order zero

\(\phi_\beta = (c^2 + \|x - x_j\|^2)^{\beta/2} \), the family of multiquadrics

\(\tilde{\phi}_j \) particular solution of inhomogenous Helmholtz equation

\(\Phi \) velocity potential with time-dependence

\(\theta \) polar coordinate

\(\omega \) wave frequency

\(\Omega \) two-dimensional domain

\(\xi \) source point

\(\zeta \) free surface elevation with time-dependence

\(\zeta^s \) free surface elevation of scattered waves with time-dependence

\(\zeta_{inc} \) free surface elevation of incident waves with time-dependence

\(\zeta_{phys} \) physical surface elevation, real part of \(\zeta \)

\(a \) radius of shoreline circle

\(A \) amplitude of incident waves
\(b \) radius of island toe

\(C \) phase velocity of waves

\(C_o \) phase velocity of waves in outer region \(\Omega_o \)

\(C_g \) group velocity of waves

\(C_{g,o} \) group velocity of waves in outer region \(\Omega_o \)

\(f_j \) radial basis function, interpolation function

\(g \) gravitational acceleration

\(h \) water depth (varying)

\(h_i \) shoreline water depth

\(h_o \) constant water depth in outer region

\(H \) wave height

\(H_{0}^{(1)} \) Hankel function of first kind and order zero

\(i \) imaginary unit, subscript

\(J_n \) Bessel function of the first kind and order \(n \)

\(k \) wave number, \(k = 2\pi / L \)

\(l \) number of collocation points in domain

\(L \) wave length

\(m \) number of points on \(\Gamma_o \)

\(n \) number of points on \(\Gamma_i \)

\(n \) outward normal unit vector of the inner domain \(\Omega_i \)

\(n' \) outward normal unit vector of the inner domain \(\Omega_o \)
\[p \] nonuniform pressure distribution applied to the free surface

\[P \] pressure

\[q \] directional derivatives of \(\eta \) along the direction \(\mathbf{n} \)

\(r, \theta, z \) cylindrical coordinates with origin at the centre of a cylinder

\(Re \) real part of a complex quantity

\(t \) time

\(T \) wave period

\(\mathbf{u} \) depth-averaged horizontal velocity vector

\(\mathbf{u}_0 \) 1st-order depth-averaged horizontal velocity vector

\(\mathbf{u}_1 \) depth-averaged horizontal velocity vector of 2nd-order at fundamental frequency

\(\mathbf{u}_2 \) depth-averaged horizontal velocity vector of 2nd-order at double frequency

\(x, y, z \) rectangular coordinates

\(x = (x, y) \)

ATPS augmented thin plate spline

BEM boundary element method

DRBEM dual reciprocity boundary element model

GDRBEM general dual reciprocity boundary elements model

MSL mean surface level

MSWE the mild-slope wave equation
PDRBEM perturbation dual reciprocity boundary elements model
RBF radial basis function
TPS thin plate spline