Physical, hydraulic, and mechanical properties of clayey soil stabilized by lightweight alkali-activated slag geopolymer

Yan Jun Du
Southeast University

Bo Wei Yu
Southeast University

Kai Liu
Southeast University

Ning Jun Jiang
University of Cambridge

Martin D. Liu
University of Wollongong, martinl@uow.edu.au

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Physical, hydraulic, and mechanical properties of clayey soil stabilized by lightweight alkali-activated slag geopolymer

Abstract
Lightweight cement materials are extensively used in the infrastructure construction. Geopolymer is a low-carbon and environmentally friendly cementitious material. This paper presents an investigation on the physical, hydraulic, and mechanical characteristics of lightweight geopolymer stabilized soil (LGSS) and a comparison with lightweight cement stabilized soil (LCSS). Measurements of volumetric absorption (VA) of water, hydraulic conductivity (k), and unconfined compressive strength (qu), scanning electron microscope (SEM) observation, mercury intrusion porosimetry (MIP) test, and thermogravimetric analysis (TGA) are conducted. The results show that LGSS has higher VA than LCSS. The k of LGSS is one order of magnitude higher than that of LCSS. The qu of LGSS is 2-3.5 times of that of LCSS. Microstructurally, the VA and k of LGSS are found to be positively correlated with the volume of large air pores (>10 μm). Higher qu of LGSS than LCSS is attributed to more hydration products that fill up the voids of soil. It is concluded that LGSS gives better engineering performances than LCSS in terms of water absorption, permeability, and strength characteristics.

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/2010
Abstract: Lightweight cement materials are extensively used in the infrastructure construction. Geopolymer is a low-carbon and environmentally-friendly cementitious material. This paper presents an investigation on the physical, hydraulic, and mechanical characteristics of lightweight geopolymer stabilized soil (LGSS), and a comparison with lightweight cement stabilized soil (LCSS). Measurements of water absorption, hydraulic conductivity, and unconfined compressive strength (UCS), scanning electron microscope (SEM) observation, mercury intrusion porosimetry (MIP) test, and thermogravimetric analysis (TGA) are conducted. The results show that LGSS has higher volumetric absorption than LCSS. The hydraulic conductivity of LGSS is one order of magnitude higher than that of LCSS. The UCS of LGSS is 2 to 3.5 times of that of LCSS. Microstructurally, the volumetric absorption and hydraulic conductivity of LGSS are found to be positively correlated with the volume of large air pores (> 10 µm). Higher UCS of LGSS than LCSS is attributed to more hydration products that fill up the voids of soil. It is concluded that LGSS gives better engineering performances than LCSS in terms of water absorption, permeability, and strength characteristics.
Keyword: Geo-materials; lightweight; geopolymer; water absorption; hydraulic conductivity; strength

Introduction

Ordinary Portland cement (OPC) is one of the prevailing construction materials in the world. However, OPC production is energy-intensive, as the raw materials need to be heated to a temperature higher than 1400°C, which consumes substantial electrical and hydraulic energies. Its manufacturing process also consumes enormous non-renewable natural resources (1.5 tonne limestone and clay per tonne of OPC). The production process also emits large amounts of greenhouse gases (e.g., 0.95 tonne carbon dioxide per tonne of OPC) and polluting chemicals (e.g., sulfur dioxide, carbon monoxide and nitric oxide), posing potential hazards to the air quality and societal sustainability. Therefore, less energy-intensive, environmentally-friendly and economic cementing materials are urgently been sought. Geopolymer, a synthetic alkali aluminosilicate material from the reaction between solid aluminosilicate and concentrated aqueous alkali hydroxide solution or hydroxide-silicate mixture solution, is a promising alternative (Davidovits 1991; Duxson et al. 2007). Its production process demands less fuel energy and emits less greenhouse gases (Davidovits 1991; Aguilar et al. 2010). A wide range of industrial waste materials containing silicate and/or alumina can be used as the solid aluminosilicate to manufacture geopolymers, such as fly ash (FA), ground granulated blast-furnace slag (GGBS), and metakaolin (Aguilar et al. 2010; Arul et al. 2015; Posi et al. 2013; Liu et al. 2014; Abdullah et al. 2015). Aqueous alkali hydroxide is also widely available from
materials rich in sodium hydroxide or potassium hydroxide (Rowles et al. 2003; Xu et al. 2006).

As a cementitious binder, geopolymer has been proved to have prestigious engineering properties such as high mechanical strength, high thermal stability, and good durability performances, depending on the specified chemical compositions used and reaction processes involved (Bakharev 2005; Kong and Sanjayan 2008; Liu et al. 2014; Zhang et al. 2013).

Lightweight cement materials have attracted the attentions from the building construction industry for decades, due to their advantages in reducing the deadload of building structures, improving thermal and acoustic insulation efficiency of buildings and saving transportation and construction costs (Aguilar et al. 2010; Pimraksa et al. 2011; Zhang et al. 2014). In the construction of road embankments and bridge foundations on soft clay deposits, deep mixing method is commonly used to stabilize the soft soil. The settlement of the stabilized soil is largely determined by the self-weight of the stabilized soil. A reduction in the self-weight of the stabilized soil can substantially reduce the binder content needed to meet settlement requirement. Several approaches have been explored to produce the lightweight cement materials. One is to introduce air into the cement paste to reduce the material density (cellular aerated or foamed cement) (Horpibulsuk et al. 2012b, 2013, 2014; Neramitkornburi et al. 2015a, b); the other is to replace normal-weight materials in the cement or concrete with lightweight ones (Aguilar et al. 2010; Pimraksa et al. 2011; Posi et al. 2013; Liu et al. 2014; Arul et al. 2015). This study aims at the applicability of geopolymer as lightweight materials in cement and its use in soil stabilization.

To the knowledge of the authors, limited studies have been done with respect to the applications of geopolymer-based lightweight materials. One of the few studies is carried out by Suksiripattanapong et al. (2015) for the sludge–fly ash lightweight cellular geopolymer.
Most of the existing research focuses on lightweight geopolymer concrete. Posi et al. (2013) examine the strength and density properties of lightweight geopolymer concrete containing aggregate from recycled lightweight block. Liu et al. (2014) investigate the thermal and mechanical properties of the oil palm shell foamed geopolymer concrete. Pimraksa et al. (2011) explore the syntheses of lightweight geopolymer from diatomaceous earth and rice husk ash. Aguilar et al. (2010) study the strength behavior of lightweight geopolymeric materials composed of metakaolin, fly ash and sodium silicate. It is noted that in lightweight geopolymer concrete, the geopolymer usually serves as cementitious agent and alternative lightweight materials are used as aggregates. Nevertheless, the utilization of lightweight geopolymer in soil stabilization is different from that in concrete-making since no coarse aggregate is involved. Instead, the lightweight geopolymer acts as cementitious agents as well as weight-reduction contributor in soil stabilization. The objective of this study is to investigate the physical, hydraulic, and mechanical properties of lightweight geopolymer stabilized soil (LGSS). The lightweight geopolymer is composed of ground granulated blast furnace slag (GGBS) as a precursor, sodium silicate (Na₂SiO₃)-calcium carbide residue (CCR) mixture as an alkali activator, and air foam. Normal lightweight cement stabilized soil (LCSS) is used as a benchmark.

Materials and Testing Methods

Materials

The clayey soil used in this study is collected from Nanjing, Jiangsu Province, China. Some basic properties of the clayey soil are summarized in **Table 1**. Based on the Unified Soil
Classification System (ASTM 2011), this clayey soil is classified as low plasticity clay (CL).

Na_2SiO_3-CCR mixture is selected as the alkali activator due to the following considerations: (1) CCR is a by-product from acetylene gas factories, and is considered as a low-carbon and environmentally-friendly binder in stabilizing silty and clayey soils (Horpibulski et al. 2012a; Jiang et al. 2016; Du et al. 2011, 2016); (2) CCR is found to be effective in activating aluminosilicate-rich materials such as fly ash and GGBS (Phetchuay et al. 2014); and (3) Na_2SiO_3 is able to further increase the strength of the geopolymers (Arul et al. 2015) because of the gel-like products generated from the aluminosilicate-sodium silicate reactions (Arul et al. 2015). CCR used in this study is sampled from the stock-pile of Nanjing Acetylene Gas Factory. Its specific gravity is 2.31 and pH is 12.57. Commercially available reagent grade $\text{Na}_2\text{SiO}_3\cdot9\text{H}_2\text{O}$ (white powder form) composed of 50% SiO_2 and 50% Na_2O is used. GGBS is an industrial by-product produced during the refining of iron ore. It can be used as a partial replacement for OPC as a cementing agent (Yu et al. 2016) and soil stabilizing agent (Ktnuthia and Wild 2001; Yi et al. 2015) which can substantially increase soil resistance to sulfate-attack (Yu et al. 2016). The GGBS used in this study, which is purchased from Nanjing Iron & Steel Group Corp., is in a gray powder form.

The chemical compositions of the parent soil, CCR, GGBS, and PC are shown in Table 2. The alkalinity of GGBS is defined as the ratio of the summed content of CaO, MgO, and Al_2O_3 to that of SiO_2, which are measured through X-ray fluorescence spectrometer as shown in Table 2. The physical and chemical properties of GGBS are listed in Table 3. The specific surface area and average size of the GGBS are measured using the Brunauer-Emmett-Teller (BET) method via a Physisorption Analyzer ASAP2020.
Sample preparation

To prepare the samples, predetermined weights of binder (air-dried CCR powder, Na$_2$SiO$_3$·9H$_2$O powder, and GGBS powder with a ratio of 8:1:1 (dry weight basis) for LGSS, and predetermined weight of PC for LCSS), are firstly added into the air-dried parent soil that is passed through a sieve with an opening size less than 2 mm. The soil-binder mixtures are then mixed with predetermined volume of distilled water thoroughly for 10 min via an electric agitator at the speed of 125 rpm to obtain homogenous soil-binder slurry. Two water contents (1.6 w_L and 1.9 w_L for LGSS and LCSS respectively, where w_L is the liquid limit of the parent soil) are adopted in this study to facilitate the thorough and homogeneous mixing of all the raw materials and to meet the designed target density of stabilized soils (i.e., 900, 1000, 1100, and 1200 kg/m3). The air foam is pre-formed by mixing predetermined volume of distilled water and foaming agent with a ratio of 40:1 (v/v) as suggested by ASTM C796 (ASTM 2012) in a stainless 20 L air receiver, and then introducing compressed air into the air receiver with a controlled pressure of approximately 0.2 MPa under the temperature of 20 ± 2 °C. The foaming agent, purchased from a chemical plant located in Weifang City of Shandong Province, is a viscous liquid with pH of approximately 6.5 to 7.5. The foaming agent is a combination of surfactants which are originated from the tropical plant palm nuts and are processed through chemical rectification and neutralization. Predetermined volume of the preformed air foam is then mixed with the soil-binder slurry with predetermined weight for 7 min via the electric agitator at the speed of 125 rpm. The air foam blended slurry whose density reaches the target (i.e., 900 kg/m3, 1000 kg/m3, 1100 kg/m3, or 1200 kg/m3) is poured into a polyvinyl chloride mold with size of Ф50×H100 mm, wrapped by vinyl bags, and cured for 3 days under the temperature of 20 ± 2 °C and relative humidity of 95% (hereinafter referred to as standard...
curing). The volume of water, air foam, and binder added to the soil specimens are recorded. Then the soil specimens are carefully extruded from the mold by hand, wrapped by vinyl bags, and subjected to the standard curing again until the total curing time (including initial 3 days) reaches 7 days, 14 days, 28 days, 56 days, and 90 days separately. The preparation of the LCSS follows the same manner as for the LGSS, except that Portland cement (PC) replaces the geopolymer. The lightweight geopolymer is composed of 27.8% to 44.8% geopolymer and 55.2% to 72.2% air foam (w/w). The normal lightweight cement is composed of 27.6% to 44.7% PC and 55.3% to 72.4% air foam (w/w). Tables 4 and 5 show the proportions of each components within LGSS and LCSS, respectively. The water content, density and initial void ratio (e_0) of stabilized soils are measured after the samples are cured under the standard condition for different periods (i.e., 7, 14, 28, 56, and 90 days). The water content here is defined as the ratio of the weight of the water to that of the total solids including soil and binder, and is determined by heating the soil in an oven at a constant temperature of 105 °C for 24 hours.

Testing Methods

In this study, a series of laboratory tests including measurements of water absorption, hydraulic conductivity and unconfined compressive strength (UCS), scanning electron microscope (SEM) observation, mercury intrusion porosimetry (MIP) test, and thermogravimetric analysis (TGA) are performed accordingly. The macro-properties including water absorption, hydraulic conductivity and UCS of the LGSS and LCSS are assessed by the micro-scale analyses of microstructure, pore size distributions and hydration products obtained from SEM, MIP and TGA tests, respectively. The curing periods of the samples for each test are shown in Table 6.
The flow ability test is conducted in accordance with High Grade Soil Research Consortium (2005) in which a flowability of 180 mm is requested. The water absorption test is performed based on the method presented by Nambiar and Ramamurthy (2007). Triplicate stabilized soil samples (of 50 mm in diameter and 100 mm in height) cured for 28 days are soaked in distilled water for 60 days at a constant temperature of 20 °C. The weights of the soil samples after soaking for 0, 1, 2, 3, 4, 6, 9, 12, 15, 18, 21, 24, 27, 30, 40, 50, and 60 days respectively are measured. The density of each of the three identical samples is then calculated based on the measured soil weight and volume and the average values are reported. The value of coefficient of variation (COV) is less than 5% indicating the repeatability of the test results. According to Nambiar and Ramamurthy (2007), water absorption in weight basis is not applicable for lightweight construction materials, since it can not reflect the effect of initial density on the amount of water absorbed onto the lightweight material. With this in consideration, volumetric absorption (VA) of water by the soil sample is adopted in this study and it is calculated by the following equation (Madhkhan et al. 2008):

$$VA = \frac{m_i - m_0}{\rho_w V_0} \times 100\%$$

(1)

where \(m_0\) is the weight of the stabilized soil samples prior to the absorption test (kg); \(m_i\) is the weight of the stabilized soil samples immediately after \(i\)th days of soaking (kg); \(V_0\) is the initial volume of stabilized soil (m\(^3\)); \(\rho_w\) is the density of water (1000 kg/m\(^3\)). It is evident from Eq. (1) that higher VA value indicates that more water is absorbed on the testing sample with unit volume.

The constant-head hydraulic conductivity test is conducted using a flexible-wall permeameter according to ASTM D 5084 (ASTM 2010b). Before the test, the vacuum method
is used to facilitate the soil saturation (Du et al. 2012). The hydraulic conductivity test is performed by applying confining pressure and upward seepage pressure of 120 kPa and 60 kPa, respectively. The hydraulic gradient is controlled as 60. Preliminary tests show that this hydraulic gradient, though higher than that prescribed by ASTM D 5084 (ASTM 2010b), results in insignificant impact on the measured hydraulic conductivity.

UCS tests are conducted for the triplicate samples as per ASTM D 4219-08 (ASTM 2008). The rate of vertical load remains 1 mm/min until the failure of samples. The average values are reported and the COV values are less than 5% indicating the repeatability of the results.

The SEM observation is conducted by using a LEO1530VP scanning electron microscope. After curing for 28 days under the temperature of 20 ± 2 °C and relative humidity of 95%, 1 cm × 1 cm cubic samples are extracted from samples for UCS test in a careful manner to eliminate disturbance. After being vacuum-dried and coated with gold, the cubic samples are then subjected to the SEM observation to obtain the microstructural images.

The MIP test is based on the non-wetting nature of mercury so that it can be pressurized to penetrate a porous medium (Diamond 1970). Jurin’s equation is adopted to calculate the diameter of intruded pores based on the capillary theory, as all pores are assumed to be of cylindrical shape in MIP method (Mitchell and Soga 2005):

\[d = -\frac{4\tau \cos \theta}{p} \]

(2)

where \(d \) is the diameter of the pore intruded, \(\tau \) is the surface tension of intruded liquid (i.e. mercury), \(\theta \) is the contact angle, and \(p \) is the applied pressure. In this study, MIP test is conducted using AUTOPORE 9500 mercury intrusion porosimeter (Micromeritics Co. Ltd., USA). The maximum applied pressure is 228 MPa and the surface tension of mercury is 4.84×10^{-4} N/mm at 25°C (Mitchell and Soga 2005). The contact angle is taken as 135°. After curing for
200 28 days under the temperature of 20 ± 2 °C and relative humidity of 95%, 1 cm × 1 cm cubic
201 samples are extracted from samples for UCS test in a careful manner to eliminate disturbance.
202 The cubic samples are then subjected to the MIP to obtain the pore size distributions.
203 TGA is conducted by heating a test sample continuously from room temperature to 750 °C
204 at a heating rate of 20 °C/min in a nitrogen environment. This method is widely used to
205 characterize cementitious compositions in cement, concrete and stabilized soils (Jin and Al-
206 Tabbaa 2013; Jiang et al. 2016). In this study, TGA is performed using a differential scanning
207 calorimeter DSC Q2000 (TA Instruments, USA). After designated curing period of 28 days,
208 three identical cubic samples (1 cm × 1 cm) are extracted and soaked in absolute ethyl alcohol
209 for 96 hr to terminate the hydration. The specimens are then dried at 30 °C and ground through
210 a 200-mesh sieve. Approximately 30 ± 0.5 mg sieved specimens are used for the TGA test. The
211 results of TGA are presented as a curve of the mass loss versus temperature. The first derivative
212 of the mass loss curve is recorded as a function of time, which is known as derivative
213 thermogravimetric analysis (DTG).

214

Test Results

215 Water Absorption

216 Figure 1 presents the variations of soil density with soaking time. Error bars are also
217 marked to show the credibility of the test results. It is evident that, at initial 3 days of soaking,
218 the density of both LGSS and LCSS increases regardless of their initial target densities.
219 Nevertheless, the magnitudes of density increase are quite different between LGSS and LCSS.
220 The LGSS gains density increment ranging from 900 kg/m³ to 1200 kg/m³ while LCSS has
221 much smaller density change ranging from 30 kg/m³ to 100 kg/m³.
Figure 2 shows the variations in VA with soaking time for both stabilized soils. Similarly to the temporal variation of soil density, both stabilized soils display significant water absorption at the initial 3 days soaking. After this period, the VA increases slowly and becomes stable after 30 days. Moreover, samples with lower target density reach higher VA than those with higher target density. In particular, ultimate VA in the cases of two LGSS samples denoted D900 (target density of 900 kg/m3) and D1200 (target density of 1200 kg/m3), are 13.6% and 8% respectively (see Fig. 2(a)), whereas they are only 4% and 1.3% for the LCSS samples with the same target density values (see Fig. 2(b)). Regardless of the target density, the VA of LCSS is found to be smaller than that of LGSS, which is consistent with the results of soil density.

Hydraulic conductivity

Figure 3 depicts the void ratio (e) and hydraulic conductivity (k) on a semi-logarithmic scale. It can be seen that k of the LGSS is approximately one order of magnitude higher than that of LCSS. Generally, the hydraulic conductivity of the soils increases with e. The e-logk relationship is expressed by a linear function with coefficient of determination (R^2) of 0.98 and 0.99 for LCSS and LGSS respectively, which is consistent with previous study on lime and cement stabilized natural clayey soils (Onitsuka et al. 2001).

Unconfined compression strength (q_u)

Figure 4((a) and (b)) presents the development of q_u for LGSS and LCSS, respectively. **Fig. 4(c)** shows the ratio of q_u of LGSS over that of LCSS. It is evident that q_u of LGSS is 2 to 3.5 times that of LCSS at the same target density. The q_u ratio is high at the early curing period
and then tends to be stable after 28 days. Meanwhile, this ratio for the soil with lower target
density (D900 and D1000) is higher than that with higher density (D1100 and D1200). Higher
$q_{u, LGSS}/q_{u, LCSS}$ for the soil with lower target density means that strength of LGSS is less affected
by the initial soil density than that of the LCSS. This is probably because that the LGSS has
more formed cementitious materials (e.g. C-S-H) than the LCSS, which makes the LGSS less
vulnerable to the strength deterioration from density reduction. This will be further discussed
in the section of “MIP and TGA”.

Consoli et al. (2012) and Horpibulsuk et al. (2011; 2012b) verify that the ratio of volume
of void (V) over the volume of binder (C, cement in their studies) is the primary parameter
affecting the engineering properties including strength and stiffness characteristics of
lightweight cement stabilized clay. In this study, the parameter V/C (where V includes volume
of water and airfoam) is adopted to evaluate the q_u of the soils and the $V/C-q_u$ corrections are
expressed by the following equation:

$$\frac{q_u}{p_a} = \frac{A}{(V/C)^B}$$

where p_a is the standard atmospheric pressure (100 kPa); A and B are dimensionless constants.
The values of A usually vary in relatively wide range, depending on the soil type, curing time,
and air content. The values of B are usually in a narrow range from 1.26 to 1.29 for cemented
non- to low-swelling clays (Horpibulsuk et al. 2011). In this study, the B value is set to be 1.27
for LGSS and LCSS, which is consistent with that adopted by Horpibulsuk et al. (2012b) for
the lightweight cemented clays.

Figure 5(a) and (b) shows the fitted equations where the values of parameter A are
determined using the Least-Square-Root fitting method. It is found that R^2 values of the fitted
lines are in a range of 0.57 to 0.76. It indicates that the relationship between q_u and V/C for LGSS and LCSS in this study may be slightly different from those reported in published studies (Consoli et al. 2012; Horpibulsuk et al. 2011, 2012b). The variations of parameter A with curing time for LGSS and LCSS are shown in Fig. 5(c). The magnitudes of parameter A reported in this study (56 to 77) mostly fall into the range (60 to 239) reported by Horpibulsuk et al. (2011; 2012b). Moreover, the value of parameter A increases with curing time regardless of the binder type, which is consistent with that reported by Horpibulsuk et al. (2012b) for cement admixed Bangkok clay. The values of parameter A for the LGSS (132 to 177) are approximately 2 to 2.4 times of the A values for the LCSS (56 to 88). Further study is needed to quantitatively evaluate the relationship between the parameter A and curing time, which could be a useful tool for predicting q_u development of LGSS in practice.

SEM, MIP and TGA

Figure 6 shows the microstructure of LGSS and LCSS curing for 28 days. The entire bold black line in the lower right corner represents 20 µm in the image. In the case of LGSS (Fig. 6(a)), it can be found that almost the entire surface of soil aggregates are coated with reticulate hydrate products, which represents C-S-H as reported by Du et al. (2014) and Bensted and Barnes (2002). In the case of LCSS (Fig. 6(b)), both reticulate and needle-shaped hydrate products can be observed, which are C-S-H and ettringite, respectively (Du et al. 2014; Bensted and Barnes 2002). However, these hydrate products are not found to coat the entire surface of soil aggregates. This indicates that better bonds are produced in LGSS than in LCSS.

Figure 7 presents the pore size distributions of LGSS and LCSS cured for 28 days. The total cumulative pore volume of the LGSS is 0.736 mL/g, which is lower than that of the LCSS.
(0.818 ml/g). According to Horpibulsuk et al. (2009), pores in the stabilized soil can be classified as intra-aggregate pores \((d < 0.01 \mu m)\), small inter-aggregate pores \((0.01 \mu m \leq d < 0.1 \mu m)\), large inter-aggregate pores \((0.1 \mu m \leq d < 10 \mu m)\) and air voids \((d > 10 \mu m)\). **Fig. 7 (b)** presents the pore volume percentage of different types of pores in the soils. It is found that the volume percentage of small inter-aggregate pores and entrain air voids in the LGSS are higher than those of LCSS. The higher volume percentage of entrain air voids in the LGSS coincides with its VA and \(k\) shown in **Figs. 2 and 3**, respectively.

Figure 8 shows the TGA and DTG results for the LGSS and LCSS with 1000 kg/m\(^3\) target density at 28 d standard curing. Only one target density is selected for TGA/DTG analysis because the purpose here is just to compare the LGSS and LCSS with the same target density. The results of TGA are presented as curves of the mass loss/derivative of mass loss versus temperature. The first derivative of the mass loss curve is recorded as a function of time, which is known as derivative thermogravimetric analysis (DTG). The peaks in DTG curves correspond to the presence of of C-S-H (main weight loss between 50 °C and 200 °C) and Ca(OH)\(_2\) (main weight loss between 440 °C and 520 °C) (Haha et al. 2011; Pane and Hansen 2005). **Table 7** shows the content of C-S-H and Ca(OH)\(_2\) in the soils tested. The content of Ca(OH)\(_2\) is derived from its stoichiometric relationship with hydroscopic water loss between 440 °C and 520 °C (Jiang et al. 2016). As C-S-H is mostly amorphous, its content could not be calculated by the stoichiometric relation. In this study, the loss of hydroscopic water corresponding to the temperature of 50°C to 200 °C is used to represent the content of C-S-H, which is also adopted by Jiang et al. (2016). As seen in **Table 7**, the content of C-S-H in the LGSS (12.68%) is higher than that in the LCSS (6.8%), which coincides with the superior strength characteristics shown in **Fig. 4**. Meanwhile, the content of Ca(OH)\(_2\) in the LGSS and
LCSS are 0.99% and 2.2% respectively. The higher content of C-S-H found in the LGSS indicates a higher degree of pozzolanic reaction, which leads to the consumption of Ca(OH)$_2$.

Discussion

The water adsorption tests show that LGSS has higher VA than LCSS (see Fig. 2). In addition, the hydraulic conductivity tests show that LGSS display higher k value than LCSS at a given void ratio (see Fig. 3). It is also found that the VA and k values of LGSS are positively correlated with the volume of large air pores (> 10 µm) as shown in Fig. 9. This is fundamentally due to the fact that the VA and k depend on the volume of interconnected large pores (Mitchell and Soga 2005; Wang et al. 2005; Horpibulsuk et al. 2009). Since the pores with diameter > 10 µm are mostly air pores (Horpibulsuk et al. 2009) and are readily available for water intrusion, then it can be expected that VA and k of LGSS are higher than those of LCSS since LGSS has larger volumes of air pores. In addition, alkali-activated geopolymer can form several micro-pores after the geopolymerization process, making the geopolymer more porous than PC (Rovnaník 2010; Nimwinya et al. 2016). This can also substantiate the higher values of water absorption and hydraulic conductivity of LGSS than LCSS.

In contrast, the UCS tests show that q_u of LGSS is higher than that of LCSS regardless of the target density (see Fig. 4). A possible reason is attributed to the larger amount of C-S-H formed in the LGSS (12.68%) than LCSS (6.8%), which is substantiated from the TGA results, shown in Table 7. The larger amount of C-S-H formed in stabilized soil would result in greater bonding strength between soil particles and higher q_u of the soil as a consequence (Chew et al. 2004; Du et al. 2014; Jiang et al. 2016; Shen et al. 2016).
Practice Implications

The results presented in this study demonstrate that LGSS exhibits higher volumetric water absorption than LCSS. This implies that LGSS has a higher tendency to absorb and transmit water. Therefore, the penetration of deleterious materials like sulfate and chloride into LGSS may be easier than LCSS. However, Liu et al. (2015) indicate that LGSS possesses much higher sulfate resistance than LCSS in terms of higher q_u and density after soaking in concentrated sulfate sodium solution, indicating that LGSS has superior durability when exposed to sulfate-rich environmental conditions like coastal areas and sulfate-rich soils. The measured higher k of LGSS indicates that LGSS is more suitable to be used in scenarios where permeability needs to be retained. In addition, the higher q_u of LGSS implies that LGSS may provide higher bearing capacity for soil infrastructures in practice.

Conclusions

A comprehensive investigation of the physical, hydraulic, and mechanical characteristics of lightweight geopolymer stabilized soil (LGSS) and a comparative study with that of lightweight cement stabilized soil (LCSS) are made in this paper. Generally speaking LGSS is a better option for soil improvement in geotechnical engineering. Microstructurally, LGSS soil aggregate is fully coated by hydrate products while LCSS is not. The volume percentage of small inter-aggregate pores and entrain air voids in the LGSS are higher than those of LCSS. Consequently LGSS has more large air pores (> 10 µm) than LCSS. This leads to more water absorbility, higher permeability, and greater material strength than LCSS, which are key parameters for the performance of soil improvement. Following characteristics of the improved soil are observed in this study:
LGSS exhibits higher VA (~7% to 14%) than LCSS (~1.3% to 4%). The k of LGSS is 10 times higher than that of LCSS. The k values of both LGSS and LCSS on logarithmic scale are found to increase linearly with void ratio.

The q_u of LGSS is 2 to 3.5 times that of LCSS at the same density and curing time. q_u is correlated with V/C in a power function.

The content of C-S-H in the LGSS (12.68%) is higher than that in the LCSS (6.8%).

The V/A and k values of LGSS are found to be positively correlated with the volume of large air pores (> 10 μm), which is because of the dependence of V/A and k on the volume of interconnected large pores. The q_u of LGSS is found to be higher than that of LCSS, attributed to more hydration products that fill up the voids of soil, which is substantiated by the fact that more C-S-H is found in the LGSS than in the LCSS from the TGA test.

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (Grant No. 51278100, 41330641, and 41472258) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2012022).

References

metakaolin-fly ash binders, with blast furnace slag aggregates." Constr. Build. Mater.,
(24)7, 1166-1175.

"Spent coffee grounds–fly ash geopolymer used as an embankment structural fill material."
J. Mater. Civil Eng., doi: 10.1061/(ASCE)MT.1943-5533.0001496

ASTM. (2008). "Standard test method for unconfined compressive strength index of chemical-
grouted soils." ASTM D 4219-08, West Conshohocken, PA.

ASTM. (2010a). "Standard test methods for liquid limit, plastic limit, and plasticity index of
soils." ASTM D4318-10, West Conshohocken, PA.

ASTM. (2010b). "Standard test methods for measurement of hydraulic conductivity of
saturated porous materials using a flexible wall permeameter." ASTM D5084-10, West
Conshohocken, PA.

Soil Classification System)." ASTM D2487-11, West Conshohocken, PA.

using preformed foam." ASTM C796/C796M, West Conshohocken, PA.

PA.

35(4), 658–70.

York.

Jin, F. and Al-Tabbaa, A. (2013). "Thermogravimetric study on the hydration of reactive
magnesia and silica mixture at room temperature." *Thermochimica Acta*, 566, 162-168.

Table 1. Properties of clayey soil used in this study

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH a</td>
<td>7.94</td>
</tr>
<tr>
<td>Specific gravity, G_s</td>
<td>2.69</td>
</tr>
<tr>
<td>Plastic limit, w_p (%) b</td>
<td>22.68</td>
</tr>
<tr>
<td>Liquid limit, w_L (%) b</td>
<td>43.21</td>
</tr>
<tr>
<td>Grain size distribution (%) c</td>
<td></td>
</tr>
<tr>
<td>Clay (<0.002 mm)</td>
<td>7.91</td>
</tr>
<tr>
<td>Silt (0.002-0.02 mm)</td>
<td>30.49</td>
</tr>
<tr>
<td>Sand (0.02-2 mm)</td>
<td>61.6</td>
</tr>
</tbody>
</table>

a Based on ASTM D4972 (ASTM, 2013).
b Based on ASTM D4318 (ASTM, 2010a).
c Measured using a laser particle size analyzer Mastersizer 2000.
Table 2. The chemical compositions of the parent clayey soil, OPC, GGBS, and CCR

<table>
<thead>
<tr>
<th>Oxide composition</th>
<th>Parent soil</th>
<th>PC</th>
<th>GGBS</th>
<th>CCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>5.31</td>
<td>63.72</td>
<td>34.0</td>
<td>67.2</td>
</tr>
<tr>
<td>SiO₂</td>
<td>61.53</td>
<td>20.15</td>
<td>34.3</td>
<td>3.94</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.19</td>
<td>4.39</td>
<td>17.9</td>
<td>0.28</td>
</tr>
<tr>
<td>SO₃</td>
<td>-</td>
<td>3.21</td>
<td>1.64</td>
<td>0.42</td>
</tr>
<tr>
<td>MgO</td>
<td>1.86</td>
<td>0.78</td>
<td>6.02</td>
<td>0.048</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.54</td>
<td>2.89</td>
<td>1.02</td>
<td>0.15</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.42</td>
<td>0.90</td>
<td>0.64</td>
<td>-</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.81</td>
<td>0.22</td>
<td>1.17</td>
<td>0.071</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.13</td>
<td>-</td>
<td>0.25</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3. Basic physical and chemical properties of GGBS

<table>
<thead>
<tr>
<th>Material</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGBS</td>
<td>Alkalinity (^{a})</td>
<td>1.689</td>
</tr>
<tr>
<td></td>
<td>Specific surface area (m(^2)/g)</td>
<td>0.2932</td>
</tr>
<tr>
<td></td>
<td>Average grain size (nm)</td>
<td>98.525</td>
</tr>
<tr>
<td></td>
<td>pH (liquid to solid ratio = 1:1) (^{b})</td>
<td>10.96</td>
</tr>
</tbody>
</table>

\(^{a}\) The alkalinity of the GGBS is defined as the ratio of contents of CaO, MgO, and Al\(_2\)O\(_3\) to that of SiO\(_2\)

\(^{b}\) Based on ASTM D4972 (ASTM, 2013)
Table 4. The proportions of each component within lightweight geopolymer stabilized soil

<table>
<thead>
<tr>
<th>Designation</th>
<th>Water (kg/m³)</th>
<th>Na₂SiO₃·9H₂O (kg/m³)</th>
<th>CCR (kg/m³)</th>
<th>GGBS (kg/m³)</th>
<th>Soil (kg/m³)</th>
<th>Foam (kg/m³)</th>
<th>Target density (kg/m³)</th>
<th>Measured density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D900</td>
<td>278</td>
<td>19.25</td>
<td>19.25</td>
<td>154</td>
<td>385</td>
<td>500</td>
<td>900</td>
<td>906.69</td>
</tr>
<tr>
<td>D1000</td>
<td>307</td>
<td>21.5</td>
<td>21.5</td>
<td>172</td>
<td>430</td>
<td>440</td>
<td>1000</td>
<td>1028.05</td>
</tr>
<tr>
<td>D1100</td>
<td>339</td>
<td>23.75</td>
<td>23.75</td>
<td>190</td>
<td>475</td>
<td>380</td>
<td>1100</td>
<td>1095.40</td>
</tr>
<tr>
<td>D1200</td>
<td>370</td>
<td>26</td>
<td>26</td>
<td>208</td>
<td>520</td>
<td>320</td>
<td>1200</td>
<td>1199.65</td>
</tr>
</tbody>
</table>
Table 5. The proportions of each component within normal lightweight cement stabilized soil

<table>
<thead>
<tr>
<th>Designation</th>
<th>Water (kg/m³)</th>
<th>Cement (kg/m³)</th>
<th>Soil (kg/m³)</th>
<th>Air foam (kg/m³)</th>
<th>Target density (kg/m³)</th>
<th>Measured density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D900</td>
<td>318</td>
<td>187</td>
<td>375</td>
<td>490</td>
<td>900</td>
<td>900.12</td>
</tr>
<tr>
<td>D1000</td>
<td>356</td>
<td>210</td>
<td>420</td>
<td>428</td>
<td>1000</td>
<td>991.08</td>
</tr>
<tr>
<td>D1100</td>
<td>390</td>
<td>230</td>
<td>460</td>
<td>373</td>
<td>1100</td>
<td>1079.15</td>
</tr>
<tr>
<td>D1200</td>
<td>428</td>
<td>252</td>
<td>505</td>
<td>312</td>
<td>1200</td>
<td>1186.35</td>
</tr>
<tr>
<td>Test</td>
<td>Target density (kg/m³)</td>
<td>Curing time (day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water absorption</td>
<td>900, 1000, 1100, 1200</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic conductivity</td>
<td>900, 1000, 1100, 1200</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCS<sup>a</sup></td>
<td>900, 1000, 1100, 1200</td>
<td>7, 14, 28, 56, 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM<sup>b</sup>, MIP<sup>c</sup>, TGA<sup>d</sup></td>
<td>1000</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Unconfined compressive strength
^b Scanning electron microscope
^c Mercury intrusion porosimetry
^d Thermogravimetric analysis
Table 7. The proportion of hydration products in the lightweight stabilized soil

<table>
<thead>
<tr>
<th>Hydration products</th>
<th>Temperature of water loss (°C)</th>
<th>Proportion of weight (%)</th>
<th>LCSS</th>
<th>LGSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-S-H</td>
<td>50-200</td>
<td></td>
<td>6.8</td>
<td>12.68</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>440-520</td>
<td></td>
<td>2.2</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Table 8. Correlations between volumetric absorption (VA), hydraulic conductivity (k) and percentage of pores with size larger than 10 µm

<table>
<thead>
<tr>
<th>Volumetric water absorption (%)</th>
<th>Hydraulic conductivity (m/s)</th>
<th>Percentage of pores with size larger than 10 µm (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2</td>
<td>2.06×10^{-7}</td>
<td>43.1</td>
</tr>
<tr>
<td>3.4</td>
<td>2.32×10^{-8}</td>
<td>34.7</td>
</tr>
</tbody>
</table>
List of Figure Captions

Fig. 1. Variations of soil density with soaking time: (a) LGSS and (b) LCSS

Fig. 2. Variations of water absorption with soaking time: (a) LGSS and (b) LCSS

Fig. 3. Variations of hydraulic conductivity (k) with void ratio (e)

Fig. 4. Variations of q_u (SD $<$ 5%) for lightweight stabilized soil with the curing time: (a) LGSS; (b) LCSS; and (c) $q_u,_{LGSS}/q_u,_{LCSS}$

Fig. 5. Relationship between q_u/p_a and V/C for lightweight stabilized soil: (a) LGSS; (b) LCSS; and (c) variations of parameter A obtained from Eq. (3) with curing time.

Fig. 6. SEM images of samples curing for 28 days: (a) LGSS; (b) LCSS

Fig. 7. Pore size distributions of LGSS and LCSS curing for 28 days: (a) cumulative pore volume and (b) pore volume percentage

Fig. 8. TGA/DTA data of LGSS and LCSS curing for 28 days: (a) LGSS and (b) LCSS
Fig. 1. Variations of soil density with soaking time: (a) LGSS and (b) LCSS
Fig. 2. Variations of water absorption with soaking time: (a) LGSS and (b) LCSS
Fig. 3. Variations of hydraulic conductivity \((k)\) with void ratio \((e)\)
Fig. 4. Variations of q_u (SD < 5%) for lightweight stabilized soil with the curing time: (a) LGSS; (b) LCSS; and (c) q_u,$LGSS/qq_u$,$LCSS$
\[\frac{q_u}{p_a} = \frac{131.95}{(V/C)^{1.27}}, \quad R^2 = 0.66 \]

\[\frac{q_u}{p_a} = \frac{154.24}{(V/C)^{1.27}}, \quad R^2 = 0.75 \]

\[\frac{q_u}{p_a} = \frac{170.11}{(V/C)^{1.27}}, \quad R^2 = 0.75 \]

\[\frac{q_u}{p_a} = \frac{174.87}{(V/C)^{1.27}}, \quad R^2 = 0.76 \]

\[\frac{q_u}{p_a} = \frac{176.80}{(V/C)^{1.27}}, \quad R^2 = 0.75 \]
Fig. 5. Relationship between q_u/p_a and V/C for lightweight stabilized soil: (a) LGSS; (b) LCSS; and (c) variations of parameter A obtained from Eq. (3) with curing time.

Fig 6 are SEM images and will be uploaded separately.
Fig. 7. Pore size distributions of LGSS and LCSS curing 28 days: (a) cumulative pore volume and (b) pore volume percentage.
Fig. 8. TGA/DTA data of LGSS and LCSS curing for 28 days: (a) LGSS and (b) LCSS