Immune responses of a liposome/ISCOM vaccine adjuvant against streptococcal fibronectin binding protein 1 (Sfb1) in mice

Jason D. McArthur
University of Wollongong, jasonm@uow.edu.au

K Schulze
Co-operative Research Centre for Aboriginal & Tropical Health

James Chin
NSW Agriculture

B J. Currie
University of Wollongong

K S. Sriprakash
Queensland Institute of Medical Research

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/smhpapers

Part of the [Medicine and Health Sciences Commons](https://ro.uow.edu.au/smhpapers) and the [Social and Behavioral Sciences Commons](https://ro.uow.edu.au/smhpapers)

Recommended Citation

Immune responses of a liposome/ISCOM vaccine adjuvant against streptococcal fibronectin binding protein 1 (Sfb1) in mice

Abstract
BACKGROUND & OBJECTIVES: The fibronectin binding protein Sfb1 of Streptococcus pyogenes is a well characterised antigen which induces protection against lethal challenge with group A streptococcus (GAS) when adjuvanted with cholera toxin B-subunit (CTB). As an alternative to CTB adjuvanted intranasal immunisations we investigated the immune responses generated in mice using Sfb1 incorporated in to the skin and mucosal adjuvant SAMA4. METHODS: Mice (BALB/c) were vaccinated intradermally with 100 microl of either SAMA4 (adjuvant only group) or SAMA4/Sfb1 and were boosted 7 days later. Mice vaccinated with CTB based vaccines were immunised by intranasal inoculation with a mixture containing 30 microg Sfb1 and 10 microg CTB on days 1, 3, 5 and 15. At 14 days after the last booster immunisation the immune response was characterised and mice were challenged with 10(8) CFU of S. pyogenes. RESULTS: Mice vaccinated with SAMA4/Sfb1 elicited a Sfb1-specific IgG response in the sera that was significantly higher than that seen in control mice and mice immunised with the adjuvant only (P<0.05). No significant differences were seen for specific IgA antibodies in the sera in all groups examined. Compared with non-immunised and adjuvant only immunised controls, mice immunised with the Sfb1/ SAMA4 vaccine exhibited a significant increase (P<0.05) in the number of Sfb1 reactive spleen cells in lymphoproliferation assays which were three fold higher than those seen for mice vaccinated with the Sfb1/CTB vaccine. Mice vaccinated with CTB/Sfb1 had the highest level of protection (80%) as where mice vaccinated with SAMA4 and SAMA4/Sfb1 displayed no protection (20% and 40%). INTERPRETATION & CONCLUSION: These data suggest that the SAMA4 adjuvant used in this study fails to elicit protective immunity in BALB/c mice when used to adjuvant the known protective antigen Sfb1.

Keywords
sfb1, 1, protein, binding, fibronectin, mice, streptococcal, immune, against, adjuvant, vaccine, iscom, liposome, responses, CMMB

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Authors

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers/1960
Immune responses of a liposome/ISCOM vaccine adjuvant against streptococcal fibronectin binding protein 1 (Sfb1) in mice

*Department of Biological Sciences, University of Wollongong, **NSW Agriculture, Elizabeth Macarthur Agricultural Institute, Camden, ***Menzies School of Health Research, Darwin, †Bacterial Pathogenesis Laboratory, Queensland Institute of Medical Research, ‡Co-operative Research Centre for Aboriginal & Tropical Health, Darwin, Australia & ‡‡GBP National Research Center for Biotechnology, Braunschweig, Germany

Received August 7, 2003

Background & objectives: The fibronectin binding protein Sfb1 of Streptococcus pyogenes is a well characterised antigen which induces protection against lethal challenge with group A streptococcus (GAS) when adjuvanted with cholera toxin B-subunit (CTB). As an alternative to CTB adjuvanted intranasal immunisations we investigated the immune responses generated in mice using Sfb1 incorporated in to the skin and mucosal adjuvant SAMA4.

Methods: Mice (BALB/c) were vaccinated intradermally with 100 µl of either SAMA4 (adjuvant only group) or SAMA4/Sfb1 and were boosted 7 days later. Mice vaccinated with CTB based vaccines were immunised by intranasal inoculation with a mixture containing 30 µg Sfb1 and 10 µg CTB on days 1, 3, 5 and 15. At 14 days after the last booster immunisation the immune response was characterised and mice were challenged with 10³ CFU of S. pyogenes.

Results: Mice vaccinated with SAMA4/Sfb1 elicited a Sfb1-specific IgG response in the sera that was significantly higher than that seen in control mice and mice immunised with the adjuvant only (P<0.05). No significant differences were seen for specific IgA antibodies in the sera in all groups examined. Compared with non-immunised and adjuvanted only immunised controls, mice immunised with the Sfb1/SAMA4 vaccine exhibited a significant increase (P<0.05) in the number of Sfb1 reactive spleen cells in lymphoproliferation assays which were three fold higher than those seen for mice vaccinated with the Sfb1/CTB vaccine. Mice vaccinated with CTB/Sfb1 had the highest level of protection (80%) as where mice vaccinated with SAMA4 and SAMA4/Sfb1 displayed no protection (20% and 40%).

Interpretation & conclusion: These data suggest that the SAMA4 adjuvant used in this study fails to elicit protective immunity in BALB/c mice when used to adjuvant the known protective antigen Sfb1.

Key words: Sfb1 liposome/ISCOM vaccine adjuvant

Fibronectin binding proteins of Streptococcus pyogenes are believed to mediate adhesion of the pathogen to host tissue, a critical step in the initial stages of infection. Sfb1 is a well characterised fibronectin binding protein of group A streptococcus (GAS). This protein mediates bacterial attachment to host cells and internalisation of GAS into nonphagocytic cells1,2. Sfb1 has also been shown to interfere with host clearance mechanisms being mediated by macrophages by binding to the Fc fragment of human immunoglobulins3.

Fibronectin binding proteins have been proposed as potential vaccine targets for preventing GAS infections4. Antibodies directed against such adhesins
may prevent bacterial attachment and inhibit colonisation. When adjuvanted with cholera toxin B-subunit (CTB), intranasal immunisation with Sfb1 induces protection against lethal challenge with GAS. Other characteristics which make Sfb1 an attractive candidate antigen are the presence of highly conserved epitopes and the fact it is expressed on the surface of GAS in 70 per cent of clinical isolates belonging to different serotypes and strains, independent of their geographic origin. Anti-Sfb1 antibodies do not cross-react with heart proteins and therefore may not trigger autoimmune reactions that are responsible for post streptococcal sequelae.

Although ADP-ribosylating bacterial toxins such as cholera toxin and Escherichia coli heat-labile enterotoxin are excellent mucosal adjuvants capable of inducing both systemic and mucosal immune responses, currently none of these toxins or their derivatives have been approved for use in humans. Recently these toxins have been shown to target and accumulate in olfactory nerves/epithelium and olfactory bulbs of the central nervous system which has highlighted the possibility for neuronal damage through the intranasal use of these proteins in humans. As an alternative to CTB adjuvanted intranasal immunisations we investigated the immune responses generated in mice using Sfb1 incorporated in to the skin and mucosal adjuvant SAM44 (a liposome/ISCOM combination adjuvant). The immune responses and protective potential were compared to those elicited by CTB/Sfb1 antigen/adjuvant combination which is known to be protective.

Material & Methods

Bacterial strains, media and growth conditions:
S. pyogenes NS192 is a blood isolate from Northern Territory, Australia. GAS was cultured overnight without shaking at 37°C in Todd-Hewitt broth (Difco, Detroit, MI) supplemented with 1 per cent yeast extract or on 5 per cent sheep blood agar (Microdiagnostics, Australia). *E. coli* strains were routinely grown on Z agar or in Luria Bertani (LB) broth. When required, antibiotics were added to the medium at a concentration of 100 μg/ml for ampicillin and 50 mg/ml for kanamycin. Recombinant protein expression was induced by the addition of Isopropyl-β-D-galactopyranoside (IPTG) to a final concentration 1 mM. Liquid cultures were agitated during incubation in an orbital-shaking incubator (Paton Industries) at 180 rpm when required.

Vaccine preparation and immunisation schedule: Fusion proteins consisting of N-terminally hexa-histidyl tagged Sfb1 were purified under denaturing conditions using Ni-NTA agarose according to manufacturers instructions (Qiagen, Chatsworth CA). Formulation of SAM4 adjuvant and SAM44-containing Sfb1 vaccines were performed as previously described. Each dose of vaccine contained 50 μg Sfb1 and 0.6 μg of QuilA (Advet, Lulea Sweden). Female BALB/c mice aged 10 wk were vaccinated intradermally with 100 μl of either SAM44 (adjuvant only group) or SAM4/Sfb1 and were boosted 7 days later. Mice vaccinated with CTB based vaccines were immunised by intranasal inoculation (10 μl/nare) with a mixture containing 30 μg Sfb1 and 10 μg CTB on days 1, 3, 5 and 15. For the characterisation of the immune response serum samples, spleens and lung washes were collected 14 days after the last booster immunisation. Lung washes were obtained by tracheal cannulation and gentle washing with 0.7 ml of cold PBS containing 2 mM PMSF.

Enzyme linked immunosorbent assay (ELISA): Immunoassay plates (96 flat bottom wells, Greiner) were coated by overnight incubation at 4°C with 50 μl of recombinant Sfb1 at 5 μg/ml in carbonate buffer (15 mM sodium carbonate, 35 mM sodium bicarbonate, pH 9.6). Unbound antigen was removed and plates were washed three times with PBS containing 0.05 per cent Tween 20 (PBS-T20). Wells were blocked with 100 μl of PBS containing 0.05 per cent v/v Tween 20 and 1 per cent w/v bovine serum albumin (Sigma, USA) for 1 h at 37°C. After washing three times with PBS containing 0.05 per cent Tween 20 (PBS-T20), plates were incubated for 2 h at 37°C with serial dilutions of individual serum or lung wash samples. The plates were again washed, and incubated for 1 h at 37°C with 50 μl of horseradish peroxidase-labelled goat anti-mouse IgG (Kirkegaard and Perry Laboratories) or IgA (Sigma) secondary antibodies diluted 1:2000 in PBS-T20. After washing, 50 μl of orthophenylenediamine substrate solution (Sigma) was added to each well and the reaction was allowed to proceed at room temperature for 15 min. The reaction was stopped by the addition of 25 μl of 2M H₂SO₄, and read at 490 nm with a SpectraMax 250 microplate.
spectrophotometer (Molecular Devices). Titres for anti-Sfb1 antibodies were determined using the SoftMax program (Molecular Devices).

To determine the concentration of total IgG or IgA immunoglobulin present in lung washes, plates were coated with rat anti-mouse IgG and IgA (Pharmingen) as capture antibodies and were incubated with serial dilutions of lung wash samples or purified mouse IgG or IgA to generate standard curves. Captured Immunoglobulin was then detected as described above.

Lymphocyte proliferation assays: Splenocytes were isolated and released by teasing spleens into 5 ml 1 x RPMI 1640 (Life Technologies). Cells were collected by centrifugation at 800 g for 10 min and red blood cells were lysed with 5 ml of 0.83 per cent NH₄Cl, 0.1 per cent KHCO₃ and 0.01 M EDTA. Cells were washed twice in 5 ml PBS containing 1 per cent glucose and recovered by centrifugation (800 g for 5 min). Cells were then resuspended in 1 ml Complete Medium, RPMI containing 100 unit Penicillin/100 µg Streptomycin, 2 mM L-Glutamine, 1 mM Sodium Pyruvate, 0.06 mM β-Mercaptoethanol, 10 per cent fetal calf serum. An aliquot of the suspension was diluted tenfold in Trypan Blue and counted using a haemocytometer. The cell concentration was then adjusted to 5 x 10⁶ cells/ml in Complete Medium. A 50 µl volume of the cell suspension (2.5 x 10⁴ cells) was added in triplicate to a 96 well flat bottom cell culture plate (Interpath) containing 200 µl of complete media alone or with 25 µg/ml of Sfb1 antigen. The plate was incubated for 72 h at 37°C in 5 per cent CO₂ in air. At the end of the incubation period, 50 µl (0.5 µCi) of H thymidine (Amersham, TRK120, UK) was added to each well and the plate was incubated for a further 18 h. Cells were harvested with a PHD cell harvester (Cambridge Technology) onto glass fibre filter strips. The filters were punched out into insert vials (Pony vials, Packard, 6000286) containing 2 ml scintillant (Ultima Gold scintillation fluid, Packard, 60133). Tubes were then mixed vigorously and radioactivity were counted for 1 min with a Packard 4000 series liquid scintillation counter (model 4530).

GAS challenge procedure: S. pyogenes NS192 was passaged through mice 6 times to enhance virulence. For intranasal challenge, all mice were challenged with 10⁶ CFU of S. pyogenes NS192 delivered in a 40 µl volume, 14 days after the last boost. Mortality was recorded daily in all groups.

Results

Antigen-specific humoral immune response: Intradermal immunisation with SAMA4/Sfb1 or intranasal CTB/Sfb1 elicited a significant serum IgG antibody response to the vaccine antigen when compared to the non-vaccinated control mice (P=0.038 and P=0.029). Anti-Sfb1 IgG titres in serum were 3 times higher in mice vaccinated with CTB/Sfb1 than those seen in mice vaccinated with SAMA4/Sfb1. There was no significant increase of specific serum IgA in vaccinated animals (Fig.1a).

![Graph A](image1.png)

![Graph B](image2.png)

Fig.1. The humoral immune response directed against Sfb1 at 14 days post last booster immunisation. (a) Specific IgG and IgA present in the serum of control and vaccinated mice. Results are expressed as the geometric means of 5 mice per group. SEM are indicated by vertical bars. The results are statistically significant (Student’s t test) when compared with the values for control mice (P<0.05) (*). (b) Specific antibodies in lung washes of control and vaccinated mice. Results are expressed as the per cent Sfb1-specific antibodies with respect to total immunoglobulin isotype.
Mucosal immune responses were assessed by examining the production of Sfb1-specific antibodies in the respiratory mucosal. Only mice immunised with the CTB based vaccine elicited an increased Sfb1-specific antibody response in the lung. Both IgA and IgG isotypes were seen to increase by a small amount (0.5% to 7%), however these increases may not be significant ($P=0.076$) due to the low numbers of mice per group (Fig.1b).

Antigen-specific cell-mediated immune responses: Lymphocytes isolated from the spleens of mice immunised with the SAMA4 adjuvant or SAMA4 containing Sfb1 showed significantly higher proliferative responses when compared to untreated controls ($P=0.039$ and $P=0.01$) (Fig.2). Proliferative responses were 6.5 times higher for cells isolated from mice vaccinated with SAMA4 containing Sfb1 when compared those seen for mice vaccinated with the SAMA4 adjuvant alone. Cells isolated from mice vaccinated with CTB/Sfb1 did not show a significantly higher proliferative response (Fig.2).

Fig.2. Sfb1-specific proliferative responses of spleen cells. The results are statistically significant (Student’s t test) when compared with the values for control mice ($P<0.05$) (*). Results are expressed as the mean counts per minute (CPM) of triplicate samples for 3-4 mice per group. Standard error of the mean is indicated by vertical lines.

Fig.3. Survival of mice after intranasal challenge with *S. pyogenes* strain NS192. Animals (n=10) were challenged with 10^8 CFU of NS192, 14 days post last boost and mortality was recorded daily.

Determination of protective immunity: After intranasal challenge with *S. pyogenes*, mice vaccinated with CTB/Sfb1 had the highest level of protection (80% survival). Mice vaccinated with SAMA4 and SAMA4/Sfb1 showed no protection with only 20 per cent and 40 per cent survival respectively. These were both lower than the level of protection seen in control mice (60%) (Fig.3).

Discussion

ISCOM-based adjuvants have been shown to induce both strong antibody and cellular immune responses in a variety of animal species. ISCOMs are active after mucosal delivery and induce both local and systemic immune responses and are believed to be the most potent adjuvant for the induction of cell mediated immunity. A licensed and commercially available ISCOM-based vaccine is currently used to protect horses from equine influenza and another ISCOM-based influenza vaccine is being tested in humans. The liposome/ISCOM combination adjuvant, SAMA4 used in the present study has been shown to produce high specific antibodies in serum and at mucosal sites such as the lung and large intestine. SAMA4 has also been shown to promote good memory responses and cytotoxic T-cell activity. When used to adjuvant outer-membrane proteins from *Actinobacillus pleuro pneumoniae*, a SAMA4 based vaccine was shown to induce protective immunity against intranasal challenge with the wild-type organism. Although the exact mechanisms for adjuvant activity of ISCOM-based vaccines is not known, the synergism between SAMA4 and antigen components is not dependent on the antigen type and is not a particular attribute of the antigen used.

Intradermal immunisation with SAMA4/Sfb1 resulted in a significant increase in antigen specific serum IgG.
However, this was 3 times lower than those seen in mice vaccinated with CTB/Sfb1. SAM4/Sfb1 vaccinated animals failed to elicit a mucosal immune response in the lung, but as expected exhibited a significant increase in the number of Sfb1-reactive spleen cells in lymphocyte proliferation assays. Mice vaccinated with CTB/Sfb1 produced an increased Sfb1-specific antibody response in the lung, where as cells isolated from the spleens of these mice failed to show a significant proliferative response. This is comparable to the results reported by Schulte et al23 where mice were intranasally immunised with various fragments of Sfb1 using CTB as an adjuvant also failed to produce a significant increase in reactive lymphocytes isolated from spleens.

Mice vaccinated with CTB/Sfb1 have previously been shown to be protected against lethal intranasal challenge with GAS6. This was again demonstrated in this study where mice vaccinated with CTB/Sfb1 displayed the highest level of protection (80%). Protection in these animals have been correlated with the level of Sfb1-specific antibodies in serum and lung washes with secretory IgA believed to be critical for immunity6. Mice receiving SAM4A\textsubscript{4} based vaccines displayed no mucosal immunity and had the lowest levels of protection. As these mice also displayed a significant increase in the number of Sfb1-reactive spleen cells, cell mediated immunity does not appear to play a role in protective immunity against an intranasal GAS challenge. In endemic areas, the incidence of streptococcal skin and respiratory infections decrease with increasing age and this corresponds to increasing levels of anti-streptococcal serum antibodies21. However, mice vaccinated with SAM4A\textsubscript{4} based vaccines also displayed an increased susceptibility to GAS infection as demonstrated by having lower levels of protection than those seen for control mice. A reason why SAM4A\textsubscript{4} may exacerbate GAS infections may be due to the systemic toxic effects of QullA (a semipurified saponin component of the adjuvant) which has been reported by others19,22,29.

These data suggests that the skin and mucosal adjuvant, SAM4A\textsubscript{4} used in this study fails to elicit protective immunity in BALB/c mice when used to adjuvant the known protective antigen Sfb1 and cannot be considered as an alternative for the mucosal adjuvant, CTB in this situation.

References

Reprint requests: Dr M. J. Walker, Department of Biological Sciences, University of Wollongong, N.S.W. 2522, Australia e-mail: mwalker@uow.edu.au