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ZECKENDORF R E P R E S E N T A T I O N S USING N E G A T I V E 
F I B O N A C C I NUMBERS 

M. W. B u n d e r 
The University of Wollongong, Wollongong, N.S.W. 2500, Australia 

(Submitted May 1990) 

It is well known that every positive integer can be represented uniquely as 
a sum of distinct, nonconsecutive Fibonacci numbers (see, e.g., Brown [1])-
This representation is called the Zeckendorf representation of the positive 
integer. Other Zeckendorf-type representations where the Fibonacci numbers are 
not necessarily consecutive are possible. Brown [2] considers one where a 
maximal number of distinct Fibonacci numbers are used rather than a minimal 
number. 

We show here that every integer can be represented uniquely as a sum of 
nonconsecutive Fibonacci numbers F^ where £ < 0 and we specify an algorithm 
that leads to this representation. We also show that no maximal representation 
of this form is possible. 

We note that for all integers i, 

F^ = (-l)i+1Fi 
and 

(1) *"*+i = Fi + Fi-i-
We note further that FQ = 0, F-i, F-3> ^-5, ... are positive and F_2* F-i** 

... are negative. Also for i > 1, 

\F-i\ < \F-i-l\-
The f o u r lemmas be low w i l l show t h a t t h e a l g o r i t h m t h a t f o l l o w s them i s 

e f f e c t i v e . 

Lemma 1: I f n9 k > 0 and -F.2k - n < F-2k-l ~ 1 t h e n , f o r some £ , k > £ > 0 , 

~F-2k+2i-l ^ n - F_2k-l < -F-2k + 2i + l < 0 . 

I f n = F_2k-l ~ 1» t h e n 

n - F_2k-l = - ^ - l -

Proof: I f -F-2k ^ n < F_2k - l - 1* t h e n 

1 < F-2k-l " W < F_2k-l + F-2k> 
i . e . , 

1 < F_zk-l - n < F_2k+l = F2k-l° 
Now e v e r y i n t e g e r p > 1 i s i n a r a n g e 0 < F2m-s < V - F2m-l w n e r e m - 2 . 
We m u s t , i f p = F_2k-l ~~ n» t h e n have m + £ = k + 1 f o r some £ > 0 and s o : 

0 < F2k-2l-l < F-2k-l ~ n < F2k„2l+ll 
t h u s , 

-F-2k+2l-l ^ n - F-2k-l < -F-2k + 2SL + l < ° -
Lemma 2: I f n, k > 0 and F_2k+l K n - ~F-2k t h e n , f o r some £ , k > £ > 0 : 

0 < -F-2k+2l + 2 < n - F-2k+l ^ ~-F-2k + 2l-

Proof: i f F_2/c+i < n < -F-2k> t h e n 

0 < n - F-2k+l * ~F-2k - F-2k+\> 
so 

0 < Yl - F-2k+l ^ -F~2k + 2 = F2k-2-
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Now e v e r y p o s i t i v e i n t e g e r p i s i n t h e r a n g e 

0 * Fzrn-H < V ± F2m~2 

where m > 2 . 
We m u s t , i f p = n - F-2k+l> t h e n have m + £ = k + 1 f o r some I, k > I > 0 , 

and so 
0 ^ F2k-2l-2 < n - F_2k+l ^ F2k-2l> 

i . e . , 
0 - ~F-2k + 2Z+2 < n - F_2k+1 ^ ~F-2k + 2Z' 

Lemma 3: I f n < 0 , k > 0 , and 1 + F _ 2 ^ < ft < -F-zk+1 t h e n , f o r some I, k > I > 0, 
0 - ~^-2£ + 2£+2 < n ~ F-2k ~ ~F-2k+2l-

I f n = F_2k + 1, 

w - F-2k = h i -
p r o o f : I f 1 + F_2k < n < ~F-2k+l> t n e n 

1 < n - F_2k ^ -F-2k + 2 = F2k-2 
and a s i n t h e p roof of Lemma 2 , 

0 < Flk-2i-2 < n - F_2k < F2k-2z f o r some %, k > I > 0 ; 
t h u s , 

0 < -F_2k + 2Z + 2 < n - F_2]< < ~F-2k + 2JL' 

Lemma 4: I f n < 0 , k > 0 , and -F„2k-l-n <F-2k ~ l t h e n , f o r some I, k > I > 0, 

~F-2/c + 2 £ - l ^ n "" F-2k < ~F-2k + 2z + l < ° -
I f ft = F_ 2 ^ - 1, 

ft - *L 2 k = F_2. 

Proof: I f -F-2fe- l - n < ^-2fc ~ ! ' t n e n 

1 < F-2k ~ n < F_2k + F-Zk-l = F-2k+l> 
so 

1 < F_2k ~ n < F2k-i 

a n d , a s i n t h e p roof of Lemma 1, 
0 < ^ 2 k - 2 £ - l < F-ik - n < F2k-2i + l where k > I > 1, 

i . e . , 
-^-2fc + 2 £ - l ^ n - F_2A: < ~F-2k + 2l + I < ° • 

Algorithm Z: Th i s a l g o r i t h m p r o d u c e s , f o r a g i v e n i n t e g e r , t h e p romised sum of 
F i b o n a c c i number s . 

(1) I f n = F_i f o r some i , t h e n s t o p . 

(2) I f n > 0 and f o r k > 0 , F2k < n < F2k + i> i . e . , -F-zk < n < F-2k-l> w r i t e 
n = F_2k-l + ( n ~ F-2k-0> a n ( l a P P l y t h i s a l g o r i t h m t o n - F-2k-l> g i v i n g 
t h e n e x t t e rm i n t h e sum. 

(3) I f w > 0 and f o r k > 0 , F2k-i < n < F2k, i . e . , F.2k+l < n < -F.2k > w r i t e 
ft = F-2k+l + (^ ~ F-2k + l) * a n d a p p l y t h i s a l g o r i t h m t o n - F-2k + i> g i v i n g 
t h e n e x t t e rm i n t h e sum. 

(4) I f n < 0 and f o r k > 0 , F2k-i < -ft < F2j<>' i . e . , F_2k < n< -F-2k+l> w r i t e 
n = F„2k + (n - F_2k^ > a n c* a p p l y t h i s a l g o r i t h m t o n - F-2k> g i v i n g t h e 
n e x t t e rm i n t h e sum. 
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(5) If n < 0 and for k > 0, -F2k < -n < F2k+l9 i°e-* -F„2k_l < n < F„2k, write 
n = F-zk + (w - F_2k)9 and apply this algorithm to n - F-2k , g i v i n g the 
next term in the sui . 

The algorithm terminates when, eventually, 

n-F.ix -F.i2 . . . -F.im - * _ w 

Lemma 5: Algorithm Z produces a representation of any nonzero integer n as a 
sum of Fibonacci numbers i^ where i < 0 and any two of the ifs differ by at 
least 2. 

Proof: If after the application of (2), n - F-2k-l * ̂ -j f° r a ny <7> w e have, by 
Lemma 1: 

-̂ -2fc + 2£-l < w - ̂ -2/c-l < -^-2k + 2£+l < 0' where A > 0. 

By applying (4) or (5), the algorithm next considers n - F-2k-l "" F-2k + 2i * 
If after (3), n - F-2k+i * F-j> by Lemma 2s 

0 < -^-2fe + 2ii + 2 < n - F..2k+l < -F-.2k + 2l9 where I > 0. 

By (2) or (3), the algorithm next considers n - F„2k+i - £7-2fc+2£ + l° 
If after (4), n - F_2k * F-j * by Lemma 3: 

0 < -F.2k + 2l + 2 < n - F„2k < -F.2k + 2i9 where £ > 0. 

By (2) or (3) the algorithm next considers n - F„2k - ̂ -2fc+2£ + ls 

If after (5), n - F-2k * F-j, by Lemma 4s 

-F-2k + 2JL-l < n ~ F-2k < ~F-2k + 2l + l < 0> w h e r e ^ > 0. 

By (4) and (5), the algorithm next considers n - F„2k - F-.2k + 2z. 
Thus, if the first stage of the algorithm produces n - F-i (i > 0), the 

second produces n - F_i - F_i+p9 where p > 2 and -i + p < 0. 
The same applies to later stages of the algorithm which therefore produces 

Fibonacci numbers with subscripts at least two apart. 
The next two lemmas are required to prove the uniqueness of this represen-

tation. 
k 

Lemma 6: (i) Y.F-2i = 1 - F~2k-\% 
i = i 

k 
( i i ) 2 > - 2 i + l = ~F-2kl 

i= 1 
k 

( i i i ) Y,F-i = 1 - J'-k+l-
i= 1 

Proof: The proof is simple and is therefore omitted here. 

Lemma 7: If i\ > i2 > — > ih > 0 and, for 2 < j < fe, i j - i j + i ^ 2, 

"F-i1+l < T,F-ik * -F-i.-l i f il i s odd> 
and 

-F- i - l < Z! ^-ife ~ ""F~̂ i +1 if ^l i s even. 

Proof: If i i is odd, by Lemma 6: 

F. ix + F_^ + 3 + 2 ^ + 5 + . . . + F_2 < £ F_; < F_; + F_± + 2 + • • • + F_x 
fe = 1 * * 1 

ft 
F_^ + 1 - F-i +2 < £ F_; < - F . ^ _ i , 

k=l 
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h 
so, - ^ + 1 < 1 - ^-i1 + i ̂  £ ?-ik < -F-ix -l-

1 k* 1 x 

If ^1 is even, by Lemma 6: 

JLij + F-ix + 2 + • • • + F_2 < £ *Lifc < F-^ •+ ̂  + 3 + • • • + F.3 + F-X 

Theorem 1: Algorithm Z expresses every integer n as a unique sum of a minimal 
number of distinct Fibonacci numbers F^ , where i ^ 0. 

Proof: If n = 0, n = F0. 
If n * 0, by Lemma 5 the algorithm produces a sum of the form 

n = ]T F-.£k , where £k > i^ + i + 2. L 
fc- 1 

If the representation were not unique or not minimal, we would also have 
m 

n = J2 F-j\ > where j k > j\+i + 2, and poss ib ly m < h. 
fc« l 

Let -ip and -jp be the f i r s t of these s u b s c r i p t s , i f any, t h a t a re d i s t i n c t 
and assume ip > j p . Then 

h m 
n - F.ix - . . . - F_i = £ F-ik = T/-Jk • 

k=p k=p 
If ip and j p are odd, then, by Lemma 7, 

h m 
I > _ > -*-*, +i and -F.j ! > £ F-jk • 

k= p k-p 

Also, ip - 2 > j p , and so -^-ip+i ^ " ^ - j p -1> which is impossible. 
If ip is odd and j p is even, then 

h m 
Z2F; is positive and ^ F-j is negative 
fc-P fc=p 

by Lemma 7. 
Similarly, if ip is even and j p is odd, then 

^F_i is negative and £-F-j- is positive 
k = P k=p k 

by Lemma 7. 
If ip and j p are both even, then ip - 2 > j p , and by Lemma 7, 

£ i ^ < - F i + 1 and - ^ ! < £F_j 
k=p * v k=p K 

and also 

~Fip + 1 - ~F~3p - 1 » 
which is impossible. 

Thus, for 1 < k < m> ik = j k . 
If m < h, we have by the above: 

m ft 
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h 

If h > m + 1, then by Lemma 7S if i m + 1 is odd, -F.im + l + l < 0, and if im + l 
is even, then 0 < -F-im+1 + 1, both of which are impossible. 

If h = m + 1, then F_^ = 0S which is impossible because i^ * 0. 
Therefore, the representation of n is unique and minimal. 

As any representation of a number n as a sum of Fibonacci numbers 
ft 

Y^F-iv ' where ii > in > • • - > iy. > 0, 
fc- l 

can be changed to 
h- 1 

k= 1 

it is clear that there can be no maximal number of Fibonacci numbers in a given 
sum. 
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