Systematic approaches to the presentation of academic studies

Nigel Cox
University of Wollongong

1998

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE
This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
SYSTEMATIC APPROACHES TO THE PRESENTATION OF ACADEMIC STUDIES

A thesis in fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

from

THE UNIVERSITY OF WOLLONGONG

by

NIGEL COX. M.A., (Cantab), Dip. Ed. (Sydney).

FACULTY OF EDUCATION
1998
<table>
<thead>
<tr>
<th>SHORT TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION TO PART I</td>
</tr>
<tr>
<td>THE EDUCATION OF THE MIND</td>
</tr>
<tr>
<td>CHAPTER I: INTRODUCTION</td>
</tr>
<tr>
<td>CHAPTER II: AN ACADEMIC APPROACH TO THE HUMAN BRAIN</td>
</tr>
<tr>
<td>CHAPTER III: THE STUDENT BRAIN AND ITS SELF</td>
</tr>
<tr>
<td>INTRODUCTION to PART II</td>
</tr>
<tr>
<td>THE THREE WORLDS OF KNOWLEDGE</td>
</tr>
<tr>
<td>CHAPTER IV: LANGUAGE AND CONCEPTS</td>
</tr>
<tr>
<td>INTRODUCTION to PART III</td>
</tr>
<tr>
<td>EDUCATION AND KNOWLEDGE</td>
</tr>
<tr>
<td>CHAPTER V: THE BEHAVIOURAL SCIENCES AND RESEARCH</td>
</tr>
<tr>
<td>CHAPTER VI: PROBLEMS IN RESEARCH</td>
</tr>
<tr>
<td>CHAPTER VII: AN INTRODUCTION TO THE ELEMENTS OF GENERAL SYSTEMS THEORY</td>
</tr>
<tr>
<td>CHAPTER VIII: EXPLANATION AND SYSTEMATICS</td>
</tr>
<tr>
<td>CHAPTER IX: EXPLANATION AND THE JUSTIFICATION OF BELIEFS</td>
</tr>
<tr>
<td>INTRODUCTION to PART IV</td>
</tr>
<tr>
<td>SCIENCE AND SYSTEMS ANALYSIS</td>
</tr>
<tr>
<td>CHAPTER X: EXPLANATIONS AND SYSTEMS</td>
</tr>
<tr>
<td>CHAPTER XI: THE ADVANCEMENT OF SCIENCE</td>
</tr>
<tr>
<td>APPENDICES</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
</tr>
<tr>
<td>GLOSSARY</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Statement</td>
<td>ix</td>
</tr>
<tr>
<td>Preface</td>
<td>x</td>
</tr>
</tbody>
</table>

INTRODUCTION TO PART I

THE EDUCATION OF THE MIND

1

CHAPTER I: INTRODUCTION

§ 1: The Objective 4
§ 2: The Historical Background to Language 5
§ 3: Language and Analytical Thinking 11
§ 4: Modern Education 13
§ 5: The Period 1750 - 1950 15

CHAPTER II: AN ACADEMIC APPROACH TO THE HUMAN BRAIN

- **THE SELF**

§1: Introduction 18
§ 2: The Brain: a Neuroscientific Approach 20
§ 3: The Search for the Conscious Self 23
§ 4: Language Brain Lateralisation 24

CHAPTER III : THE STUDENT BRAIN AND ITS SELF

§ 1: Introduction 27
§ 2: Moral Issues 28
§ 3: The discipline of Academic Study 31
§ 4: Preliminary training for 'Taskmaster' 31
§ 11: Experiment in the Social Sciences 82

CHAPTER VI: PROBLEMS IN RESEARCH 86
§ 1: The Problem of the Problem of Induction 87
§ 2: The Falsification of Hypotheses 91
§ 3: Statistical Generalisation and research in the social sciences 92
§ 4: Statistical Generalisation 94

CHAPTER VII: AN INTRODUCTION TO THE ELEMENTS OF GENERAL SYSTEMS THEORY 97
§ 1: The Origins of General Systems Analysis 98
§ 2: Operational Research and its Origins 101
§ 3: An Introduction to General Systems Analysis 102
§ 4: Systems and the Social Sciences 107
§ 5: Experiments, Models and the Sciences 109
§ 6: Conclusion 111

CHAPTER VIII: EXPLANATION AND SYSTEMATICS 113
§ 1: The Language of Knowing 113
§ 2: Aspects of Beliefs 114
§ 3: Observation and Experiment 116
§ 4: The Formulation of Laws 119
§ 5: The Consensus Approach 121
§ 6: Conjectures and Refutations 122
§ 7: Explanation in terms of Systems Analysis 125
§ 8: The Harris Experiment 126
§ 9: The Harris Thesis - Approach and Structure 127
CHAPTER IX: EXPLANATION AND JUSTIFICATION OF BELIEFS

137

§ 1: The Identification of the Problem

§ 2: Means of Justification

§ 3: A Simplified GST Analysis of the Harris Thesis

§ 4: The Use of Random Sampling Techniques

§ 5: The Lessons of the Harris Experiment

§ 6: Explanation and Qualitative Research

§ 7: Systematics and its Implications

§ 8: The Academic Relevance of General Systems Analysis

§ 9: Explanation and Operational Research

§ 11: The Validity of Random Sampling

INTRODUCTION TO PART IV

SCIENCE AND SYSTEMS

170

CHAPTER X: EXPLANATIONS AND SYSTEMS

180

§ 1: The Development of Systems Analysis

§ 2: The Algebra of Systems

§ 3: The Symbolic Representation of Systems

§ 4: Ross Ashby, Systematics and CCA

§ 5: Systems, Concepts and Epistemology

§ 6: The Teaching of CCA

§ 7: Systems and Neurophysiology

§ 8: The Wernicke-Geschwind Language Model
I acknowledge the help of my Supervisor, the late Professor R.C.King who perceived and approved the trend of the thesis from the outset, and, in spite of a serious illness, continued to encourage me with meticulous supervision to the end; I also thank Professor Hedberg for his help and patience in the closing stages. Although he was not a Supervisor, I owe a debt to Dr W.Winser for his sustained kindness, encouragement and wise counsel. I must also thank Dr J. Burgess of the Department of Philosophy for his kindness in giving time to enlighten me on certain philosophic issues connected with this thesis.
ABSTRACT

The basic purpose of this Dissertation is to help to fill the gap experienced by many students between secondary and tertiary education; a gap which arises from the failure of students to understand the need for the use of the critical conceptual skills and systems analysis. These have enabled Homo sapiens sapiens (Hss) to use his experience of his environment to apply his understanding to the solution of problems presented by that environment; phylogenetically speaking, it has taken short period for Hss to become the dominant species.

This involves, first, the consideration of historical studies of the intellectual and linguistic means that evolved to meet these needs; complex problems always involve complex systems. Secondly, there is a consideration of the progressive development of those skills by institutionalised education and Hss's outstanding intellectual mastery of his environment and the use of systems analysis and conceptual thinking. This is followed by an attempt, by tracing the development of those skills to show how they may be acquired and developed by the appropriate training and discipline of the vast complexity neurological systems of the human brain, especially in the use of language, that have evolved to deal with those problems involved in securing the survival of Hss. Thus the tertiary student needs to be introduced to the complexities of the infinite variety of systems, the analysis of which forms the basis of the subject matter of the tertiary student's studies.

An argument for the need for systematic approaches to modern academic studies is introduced. The increasing importance for the modern student of an awareness of the developments in systems study and conceptual analysis is emphasised. Some limited idea of the significance of such an approach, may be of value, illustrated by detailed historical examples. The thesis of this study is that students and their teachers from the outset of their tertiary education should be made
specifically aware of this historical background, especially through study of the actual contribution of scientists. Hence the emphasis on the development of systems analysis and conceptual thinking that began with Galileo and Isaac Newton, and was followed later by Einstein and others. Striking developments in academic thinking have developed with the computer age, all of which must be seen in the perspective of the development of language and thinking skills generally, in the axiomatic deductive thinking of Euclid, the systems analysis of Ross Ashby, Wiener and Beer, and the practical studies of academic thinking as exemplified in the Thomas Kuhn's book on the methods of scientists. Stimulated by these, teachers can arouse the interest and enthusiasm of students to cultivate the thinking systems of their own brains and minds, rather than use a purely epistemological approach.

It is suggested that such knowledge and its application should eventually be imparted in structured courses, with explanations and exercises in the presentation of the results of academic studies of typical problems in the form of essays, assessments and examinations. Thus students can become familiar with the structure of modern academic thinking and aware of the methods of systems analysis.
This thesis contains no material which has been accepted for the award of any degree or diploma in any University, and to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text in the thesis.

Nigel Cox