Diagnostic accuracy of the CAM-ICU and ICDSC in detecting intensive care unit delirium: A bivariate meta-analysis

Ting-Jhen Chen
University of Wollongong

Yi-Wei Chung
Taipei Medical University

H.C. Chang
University of Wollongong, hchang@uow.edu.au

Pin-Yuan Chen
Chang Gung University

Chia-Rung Wu
Taipei Medical University

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/smhpapers1

Publication Details Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Diagnostic accuracy of the CAM-ICU and ICDSC in detecting intensive care unit delirium: A bivariate meta-analysis

Abstract

Background Delirium is a critical and highly prevalent problem among critically ill patients. The Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) and the Intensive Care Delirium Screening Checklist (ICDSC) are the most recommended assessment tools for detecting intensive care unit (ICU) delirium. Objectives To synthesize the current evidence and compared the diagnostic accuracy of the two tools in the detection of delirium in adults in ICUs. Design Systematic review and meta-analysis. Data source A comprehensive search of the following electronic databases was performed using PubMed, Embase, CINAHL and ProQuest Dissertations and Theses A&I. The date range searched was from database inception to April 26, 2019. Review methods Two researchers independently identified articles, systematically abstracted data and evaluated the sensitivity and specificity of the CAM-ICU or the ICDSC against standard references. Bivariate diagnostic statistical analysis with a random-effects model was performed to summarize the pooled sensitivity and specificity of the two tools. Results In total, 29 CAM-ICU and 12 ICDSC studies were identified. The pooled sensitivity was 0.84 and 0.83 and pooled specificity was 0.95 and 0.87 for the CAM-ICU and the ICDSC, respectively. The CAM-ICU had higher summary specificity than the ICDSC did (p = 0.04). The percentage of hypoactive delirium, ICU type, use of mechanical ventilation, number of participants, and female percentage moderated the accuracy of the tools. Most of the domains of patient selection, index test, reference standards, and flow and timing were rated as having a low or unclear risk of bias. Conclusions Although both the CAM-ICU and the ICDSC are accurate assessment tools for screening delirium in critically ill patients, the CAM-ICU is superior in ruling out patients without ICU delirium and detecting delirium in patients in the medical ICU and those receiving mechanical ventilation. Further investigations are warranted to validate our findings.

Keywords
care, accuracy, unit, cam-icu, delirium:, bivariate, meta-analysis, diagnostic, icdsc, detecting, intensive

Publication Details

Authors

Ting-Jhen Chen, Yi-Wei Chung, H.C. Chang, Pin-Yuan Chen, Chia-Rung Wu, Shu-Hua Hsieh, and Hsiao-Yean Chiu

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers1/1696
Diagnostic accuracy of the CAM-ICU and ICDSC in detecting intensive care unit delirium: A bivariate meta-analysis

Ting-Jhen Chen a,b, Yi-Wei Chung c, Hui-Chen (Rita) Chang b,d, Pin-Yuan Chen c,f, Chia-Rung Wu a,g, Shu-Hua Hsieh a,g, Hsiao-Yean Chiu a,h

AFFILIATIONS:
aSchool of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
bSchool of Nursing, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
cDepartment of Cardiology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
dIllawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW 2522, Australia
eSchool of Medicine, Chang Gung University, Taoyuan, Taiwan
fNeurosurgical Department, Chang Gung Memorial Hospital, Keelung, Taiwan.
gDepartment of Nursing, Far Eastern Memorial Hospital, New Taipei, Taiwan
hResearch Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

Corresponding authors
● Hsiao-Yean Chiu
Address: 250 Wu-Hsing St., Taipei, 110 Taiwan
Abstract

Background: Delirium is a critical and highly prevalent problem among critically ill patients. The Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) and the Intensive Care Delirium Screening Checklist (ICDSC) are the most recommended assessment tools for detecting intensive care unit (ICU) delirium.

Objectives: To synthesize the current evidence and compared the diagnostic accuracy of the two tools in the detection of delirium in adults in ICUs.

Design: Systematic review and meta-analysis.

Data source: A comprehensive search of the following electronic databases was performed using PubMed, Embase, CINAHL and ProQuest Dissertations and Theses A&I. The date range searched was from database inception to April 26, 2019.

Review methods: Two researchers independently identified articles, systematically abstracted data and evaluated the sensitivity and specificity of the CAM-ICU or the ICDSC against standard references. Bivariate diagnostic statistical analysis with a random-effects model was performed to summarize the pooled sensitivity and specificity of the two tools.

Results: In total, 29 CAM-ICU and 12 ICDSC studies were identified. The pooled sensitivity was 0.84 and 0.83 and pooled specificity was 0.95 and 0.87 for the CAM-ICU and the ICDSC, respectively. The CAM-ICU had higher summary specificity than the ICDSC did (p = 0.04). The percentage of hypoactive delirium, ICU type, use of mechanical ventilation, number of participants, and female percentage moderated the accuracy of the tools. Most of the domains of patient selection,
index test, reference standards, and flow and timing were rated as having a low or unclear risk of bias.

Conclusions: Although both the CAM-ICU and the ICDSC are accurate assessment tools for screening delirium in critically ill patients, the CAM-ICU is superior in ruling out patients without ICU delirium and detecting delirium in patients in the medical ICU and those receiving mechanical ventilation. Further investigations are warranted to validate our findings. The study protocol is registered at PROSPERO (CRD42020133544).

Keywords: Confusion Assessment Method for the Intensive Care Unit, critical care, delirium, Intensive Care Delirium Screening Checklist, intensive care unit
What is already known about the topic?

- Critically ill patients have a high risk of delirium, which affects patients’ physical and psychological prognoses.
- The Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) and the Intensive Care Delirium Screening Checklist (ICDSC) are valid and reliable assessment tools for the daily screening of intensive care unit delirium, and they are commonly used in clinical settings.

What this paper adds

- The CAM-ICU and the ICDSC had comparable pooled sensitivity (84% vs. 83%), but the CAM-ICU had higher pooled specificity than the ICDSC did (95% vs. 87%, \(p = 0.04 \)).
- The CAM-ICU is superior in detecting delirium in patients in the medical ICU and those receiving mechanical ventilation.
1. Introduction

Delirium, a common type of acute brain dysfunction in critically ill patients, is characterized by the acute disturbance of consciousness, disorientation, inattention, and fluctuating mental status. It is divided into three subtypes according to psychomotor activity levels: hyperactive, hypoactive, and mixed (Lipowski, 1989; Liptzin and Levkoff, 1992); hypoactive delirium is the most frequent but the most difficult to observe (Krewulak et al., 2018). Factors including age, sex, disease severity, mechanical ventilator use, and intensive care unit (ICU) type have been linked with the occurrence of ICU delirium (Ely et al., 2001; Pandharipande et al., 2008; Zaal et al., 2015). Such acute psychiatric changes may lead to prolonged mechanical ventilation and ICU or hospital stay, increased mortality, and impaired long-term cognitive function (Lin et al., 2004; Salluh et al., 2015; Van den Boogaard et al., 2012). Therefore, Society of Critical Care Medicine (SCCM) guidelines recommend that delirium be detected in patients in the ICU by using valid assessment tools (Barr et al., 2013).

The Confusion Assessment Method for the Intensive Care Unit (CAM-ICU, Ely et al., 2001) and Intensive Care Delirium Screening Checklist (ICDSC, Bergeron et al., 2001) are the most widely used tools for detecting delirium in critically ill patients. Both the CAM-ICU and the ICDSC were established in 2001 on the basis of Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria. The four-feature CAM-ICU was initially applied for nonverbal patients receiving mechanical ventilation. A flow sheet form was subsequently developed for convenient use in clinical practice (Ely et al., 2001). The eight-domain ICDSC is used to evaluate the features of...
delirium and can be rapidly applied at bedside for all patients in an ICU. The two scales have been translated into different languages with high reliability and validity (Danzeng et al., 2019; Larsen et al, 2019; Nishimura et al., 2016). The National Institute for Health and Care Excellence (NICE) and the SCCM have produced inconsistent recommendations; the NICE recommends the CAM-ICU for detecting ICU delirium (Young et al., 2010), whereas the SCCM reports that both the tools can be used to assess ICU delirium (Barr et al., 2013). This makes the section of the optimal tool for screening ICU delirium difficult. In addition, the diagnostic accuracy of the two scales has varied in relevant studies.

To date, two meta-analyses comparing the CAM-ICU and the ICDSC have been published (both in 2012); however, the inclusion of different studies contributed to inconsistent accuracy results (Neto et al., 2012; Gusmao-Flores et al., 2012). Additionally, neither publication compared the diagnostic accuracy or examined the moderating effects of study features and patient characteristics on the diagnostic accuracy of the two scales. Moreover, because more studies have been published since the two meta-analyses were conducted, new data may address whether the CAM-ICU or the ICDSC is a superior screening tool. Therefore, an updated and comprehensive diagnostic meta-analysis is of clinical importance.

We compared the diagnostic accuracy of the CAM-ICU and the ICDSC against reference standards (i.e., various editions of the DSM or International Classification of Diseases [ICD]) in detecting ICU delirium. In addition, potential moderating effects on diagnostic accuracy were investigated.
2. Materials and methods

The study protocol is registered at PROSPERO (CRD42020133544).

2.1. Study identification

We conducted a comprehensive search of electronic databases, including PubMed, Embase, CINAHL, and ProQuest Dissertations and Theses A&I. Each database was searched from its inception to April 26, 2019. The following keyword combinations developed with the librarian’s assistance were used: (ICU OR critical) AND (sensitivity OR specificity OR valid*) AND (CAM-ICU or “confusion assessment method for the intensive care unit”) and (ICDSC OR “Intensive Care Delirium Screening Checklist”). An example of a search string is presented in Table S1. In addition, we manually searched the reference lists of primary articles included in the meta-analysis to identify more relevant articles for review.

2.2. Inclusion criteria and study selection

We included full-text studies assessing the sensitivity and specificity of the CAM-ICU or the ICDSC against reference standards (i.e., various editions of the DSM or ICD) in adult patients (aged ≥18 years) who were admitted to an ICU. Incomplete published theses and dissertations were also included if they met the aforementioned criteria. No language restrictions were applied. Studies published in conference proceedings or book chapters without full text were excluded. Full-text articles were reviewed after duplicate and irrelevant studies were excluded on the basis of title and abstract screening by two independent reviewers (TJC and CRW). Any disagreement was resolved
in discussion with a third reviewer (HYC).

2.3. Scales

The CAM-ICU can be applied for verbal and nonverbal patients in the ICU. Four features are assessed in this scale, namely (1) acute change or fluctuating course of mental status, (2) inattention, (3) disorganized thinking, and (4) altered level of consciousness. The CAM-ICU returns a dichotomous value of either delirium or no delirium. If features 1 and 2 and are preset with either feature 3 or 4, the patient has a delirious status (Ely et al., 2001). The ICDSC is used for evaluating delirium on the basis of eight domains (i.e., level of consciousness, inattention, disorientation, hallucination, psychomotor activity, speech or mood disturbance, sleep disturbance, and symptom fluctuation). Patients are considered to have delirium if their ICDSC score is ≥4 (Bergeron et al., 2001). Other details regarding the two tools are presented in Table 1.

2.4. Data extraction

Relevant data, namely author, publication year, study country, study design, ICU type, number of participants, participant age, percentage of female participants, Acute Physiology and Chronic Health Evaluation II score, standard reference, duration between index and reference tests, and the cutoff point of the index test, were independently extracted by the two reviewers (TJC and CRW) by using a predesigned extraction form. If more than one pair of sensitivity and specificity values were reported in an included study, we selected the highest Youden’s index value (Fluss et al., 2005). All disagreements were resolved through discussion or consultation with the third reviewer (HYC) for consensus.
2.5. Assessments of methodological quality

The risk of bias for each study was independently assessed in accordance with the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2, Whiting et al., 2011) by the two reviewers (TJC and CRW). The QUADAS-2 consists of four domains: patient selection, index test, reference standard, and flow and timing. The first three domains concurrently evaluate applicability. The risk of bias in each domain is judged as “high,” “low,” or “unclear” on the basis of a set of signaling questions. The risk of bias was rated “low” if all signaling questions yielded “yes” answers. If any domain had at least one “no” response, the study was rated as having a “high” risk of bias. Studies had an “unclear” risk of bias if insufficient information was reported.

2.6. Statistical analysis

Data analyses were conducted using Stata version 14 with the metandi and midas user-written commands (StataCorp LP, College Station, TX, USA). A bivariate diagnostic statistical analysis with a random-effects model was conducted to produce pooled sensitivity and specificity. If any of the cells in the 2×2 table had values of 0, the value of 0.5 was added to the cell to prevent sensitivity and specificity from equaling 1 (Walter, 2002). The I^2 statistic, representing the total variance percentage across the included studies, was used to assess heterogeneity. An I^2 value of approximately 0% represents homogeneity, and that greater than 50% indicates substantial between-study heterogeneity (Higgins and Thompson, 2002). Univariate moderator and metaregression analyses were further performed to explore the causes of heterogeneity. The prior causes were examined by entering predefined covariates into the moderator and metaregression
analyses on the basis of the aforementioned predesigned extraction form. To ensure sufficient data for analyses, at least two studies were included in each group of moderator analyses. Deeks’ funnel plot was used to detect potential publication bias, with p values of >0.1 indicating no publication bias (Deeks et al., 2005). We compared the two instruments by using the PROC MIXED module in SAS version 3.9 (SAS Institute Inc., Cary, NC, USA), and the restricted maximum likelihood estimation method was used to estimate covariance parameters.

3. Results

3.1. Search results

As presented in Figures 1 and 2, the comprehensive review initially included 663 studies that assessed the CAM-ICU and 352 studies that assessed the ICDSC. After duplicates were removed using Endnote and titles and abstracts were screened, 36 studies on the CAM-ICU and 13 studies on the ICDSC were considered potentially suitable. No study was excluded because of unavailable full text. After the full text of the studies was reviewed, seven studies on the CAM-ICU were excluded. Among them, six did not employ the DSM or ICD as the reference standard and one used the same sample for data estimations. For the ICDSC, one study was excluded because it used the same sample for estimations of diagnostic accuracy. The lists of excluded studies after the full-text review are presented in Table S2. Finally, we identified 29 studies on the CAM-ICU (Adamis et al., 2012; Akinci et al., 2005; Aljuaid et al., 2018; Barman et al., 2018; Boettger et al., 2017; Bui et al., 2017; Chanques et al., 2018; Chuang et al., 2007; Danzeng et al., 2019; Ely et al., 2001; Ely et al., 2001; Gusmao-Flores et al., 2011; Heo et al., 2011; Karlicic et al., 2016; Koga et al., 2015; Larsen et al.,
2019; Lin et al., 2004; Luetz et al., 2010; Mitášová et al., 2010; Mitasova et al., 2012; Nishimura et al., 2016; Pipanmekaporn et al., 2014; Selim et al., 2018; Tobar et al., 2010; Toro et al., 2009; van Eijk et al., 2011; Van Eijk et al., 2009; Vreewijk et al., 2009; Wang et al., 2013) and 12 studies assessing the ICDSC (Barman et al., 2018; Boettger et al., 2017; Chanques et al., 2018; Domenico and Federica, 2012; George et al., 2011; Gusmao-Flores et al., 2011; Kose et al., 2016; Larsen et al., 2019; Nishimura et al., 2016; Radtke et al., 2009; Van Eijk et al., 2009; Bergeron et al., 2001) for further analyses (Figures 1 and 2).

3.2. Study characteristics

The details of the study characteristics are presented in Tables S3 and S4.

3.2.1. CAM-ICU

Of the 29 studies that used the CAM-ICU as the index test, 1 enrolled 5 different group of patients: acute stroke, mechanical ventilation, dementia, depression, and schizophrenia (Mitášová et al., 2010). However, we included data for only patients with acute stroke and mechanical ventilation because the other three study populations did not report the occurrence of delirium. Therefore, 30 pairs of diagnostic sensitivity and specificity values were used in the meta-analysis. The meta-analysis included a total of 4002 participants with a mean age of 63.3 years. Prospective and cross-sectional study designs were used in 22 and 7 trials, respectively. Of the studies, 8, 7, and 15 were conducted in medical, surgical, and mixed ICUs, respectively. The DSM was the most commonly used reference for delirium diagnosis (n = 28).

3.2.2. ICDSC
As presented in Table S4, the 12 studies on the ICDSC included 1326 participants with a mean age of 62.7 years. Eight and four studies used prospective and cross-sectional designs, respectively. Three, three, and six studies were conducted in medical, surgical, and mixed ICUs, respectively. An ICDSC score of 4 was used as the cutoff point in nine studies. One study used 3 as the cutoff value on the basis of the highest Youden’s index value (George et al., 2011). The two remaining studies did not report a cutoff value for the index test. The DSM (i.e., fourth edition [DSM-IV], DSM-IV-Text Revision [TR], or fifth edition [DSM-5]) was the most frequently used reference standard for delirium diagnosis (n = 9).

3.3. Study quality

For the patient selection domain, one study that simultaneously investigated the CAM-ICU and the ICDSC had an unclear risk of bias because it had insufficient information to determine whether patient enrollment was consecutive or random. For the index test and reference standard domains, 19 and 8 studies respectively on the CAM-ICU and the ICDSC were rated as having an unclear risk of bias because inadequate information was available to determine whether the index test results were interpreted without knowledge of reference test findings or vice versa. For the ICDSC, one study was rated as having a high risk of bias in the index test domain because it did not use a predefined threshold; the optimal cutoff value was selected post hoc. In the flow and timing domains, five and six studies on the CAM-ICU and the ICDSC, respectively, had an unclear risk of bias because they reported unclear time intervals between the index test and reference standard. One study on the CAM-ICU and one study on the ICDSC were rated as having a high risk of bias in the
flow and timing domains because they reported inappropriate time intervals between the index test and reference standard.

Most of the studies on the CAM-ICU and the ICDSC were rated as having a “low” risk of bias in applicability (Tables S5 and S6), with the exception of one study with high risk because a cutoff value of 3 rather than 4 was used to determine the diagnostic accuracy of the ICDSC; this cutoff value might have affected the estimated diagnostic accuracy.

3.4. Summary of the CAM-ICU and the ICDSC diagnostic accuracy

Pooled sensitivity and specificity values with 95% confidence intervals (CIs) are listed in Table 2. For the CAM-ICU, the pooled sensitivity and specificity were 0.84 and 0.95 (95% CIs = 0.77 to 0.88 and 0.91 to 0.97), respectively. For the ICDSC, the pooled sensitivity and specificity were 0.83 and 0.87 (95% CIs = 0.74 to 0.90 and 0.78 to 0.93), respectively.

A significant difference was observed in pooled specificity but not pooled sensitivity between the CAM-ICU and the ICDSC ($p = 0.04$, degrees of freedom = 1), indicating that the CAM-ICU yielded a higher pooled specificity than did the ICDSC.

3.5. Heterogeneity of the CAM-ICU and the ICDSC diagnostic accuracy

As presented in Table S7, substantial between-study heterogeneity for pooled sensitivity and specificity was observed for both the CAM-ICU and the ICDSC. The I^2 value for the pooled sensitivity and specificity of the CAM-ICU were 87.99% and 96.64%, respectively ($Q = 241.53$ and 863.78, respectively, both $p < 0.001$). For the ICDSC, the I^2 value was 82.70% and 87.93% for pooled sensitivity and specificity, respectively ($Q = 63.57$ and 91.10 respectively, both $p < 0.001$).
Therefore, moderator and metaregression analyses were performed to further explore the causes of heterogeneity.

3.6. Moderator and metaregression analyses

The results of the moderator and metaregression analyses are presented in Tables 3 and 4. For the CAM-ICU, the percentage of hypoactive delirium detection was positively correlated with pooled specificity \((B = 3.50, p = 0.04) \). Studies conducted in medical ICUs had higher pooled sensitivity values compared with those conducted in nonmedical ICUs \((93\% \text{ vs. } 79\%, p = 0.01)\). Studies that included patients undergoing mechanical ventilation at enrollment yielded greater sensitivity and specificity compared with those that did not include all patients using mechanical ventilators \(\text{sensitivity: } 95\% \text{ vs. } 81\%, p = 0.02; \text{specificity: } 99\% \text{ vs. } 94\%, p = 0.04)\).

For the ICDSC, the number of participants was positively associated with pooled specificity, and the percentage of female participants was positively associated with pooled sensitivity. This indicated that more participants yielded greater specificity \((B = 0.007, p = 0.04) \) and that a larger percentage of female participants yielded greater sensitivity \((B = 7.66, p = 0.001) \).

3.7. Publication bias

No significant publication bias was observed in the CAM-ICU or the ICDSC by using Deeks’ funnel plot asymmetry test \((all\ p > 0.01)\).

4. Discussion

The current diagnostic meta-analysis examined and compared the accuracy of the CAM-ICU and the ICDSC against reference standards. Both the tools had comparable pooled sensitivity \((84\%\)
However, the CAM-ICU had higher pooled specificity than the ICDSC did (95% vs. 87%, $p = 0.04$). Our findings provide updated information because several studies have been conducted since the publication of the two previous meta-analyses (Neto et al., 2012; Gusmao-Flores et al., 2012). Because the current meta-analysis included more studies with numerous participants, our findings can be considered credible.

Hypoactive delirium is manifested as lethargy, decreased activity, and an inability to concentrate, and it occurs more frequently than the other two subtypes do (Krewulak et al., 2018); however, hypoactive delirium is also the most under-recognized and undiagnosed subtype in critically ill patients (Pandharipande et al., 2007). We demonstrated that the higher percentage of hypoactive delirium was associated with greater specificity when the CAM-ICU is used to assess ICU delirium. The assessment of patients’ attention and thinking ability might enhance the identification of critically ill patients without hypoactive delirium. Features 2 and 3 (inattention and disorganized thinking, respectively) of the CAM-ICU require patients to cooperate with assessors (Ely et al., 2001). This may partially explain why the CAM-ICU can accurately exclude patients without hypoactive delirium. Because some of the included studies provided insufficient information regarding the hyperactive and mixed types of delirium, further investigations of the diagnostic accuracy of these tools for these two delirium types are warranted.

The CAM-ICU yielded higher sensitivity (93%) when administered in medical ICUs. Disparities in study populations when the instruments were initially developed may explain this difference. The CAM-ICU was initially developed to assess delirium in medical ICU patients, and
sedative use does not preclude the application of the CAM-ICU, even when patients are deeply sedated (Ely et al., 2001). By contrast, the ICDSC was established based on a group of both medical and surgical ICU patients, and deeply sedated patients were classified as “not possible to assess” (Bergeron et al., 2001). A previous study demonstrated that agreement rates between the two tools vary between patients in medical and surgical ICUs, suggesting that disease severity partially affects the diagnostic accuracy of the tools (de Oliveira Fagundes et al. 2012). Therefore, we inferred that differences in characteristics between the two study populations but not the properties of the scales led to such results. However, because we did not observe a similar phenomenon in the ICDSC use, our findings should be interpreted with caution. Further research on the effects of administering the two assessment tools in different ICU types is required.

In the present study, the CAM-ICU administration in patients receiving mechanical ventilation at enrollment had higher sensitivity and specificity compared with those without mechanical ventilation. The high prevalence of ICU delirium in patients receiving mechanical ventilation and the assessment content of the CAM-ICU may explain this finding. Mechanical ventilator use is commonly accompanied by infusion sedation and physical restraints to manage agitation and prevent self-removal of catheters (De Jonghe et al., 2013; Rose et al., 2016). Such circumstances consequently increase the risk of delirium, resulting in delirium being easier to detect by using the tool (Ouimet et al., 2007). The CAM-ICU features of inattention and disorganized thinking require patient interaction with assessors; this interaction can effectively reveal the presence of delirium even in patients receiving mechanical ventilation. However, the relationship between the ICDSC
and mechanical ventilation could not be validated in the current study because the included studies provided insufficient information regarding mechanical ventilation use for further analysis.

We demonstrated that the number of participants was positively associated with the pooled specificity of the ICDSC. An adequate number of participants is a critical component of diagnostic test evaluations because large numbers of participants can prevent imprecise accuracy estimations (Jones et al., 2003; Leeflang et al., 2008). Future studies on diagnostic tests should consider the effect of the number of participants on the diagnostic accuracy of instruments.

The metaregression analysis indicated that a higher percentage of female participants in studies assessing the ICDSC increased the sensitivity and reduced the specificity of the tool. Female patients who are older (Ahmed et al., 2014), have a lower body mass index (Lee et al., 2011), have mental disorders (Gottlieb et al., 2004; Van de Velde et al., 2010), or have preoperative dementia (Azad et al., 2007; Kim et al., 2018) may have an increased risk of delirium. Nonetheless, because the current study could not ascertain potential confounders or exact reasons, further investigations are warranted to explore the effect of gender on the diagnostic accuracy of the ICDSC.

For study quality, we noted numerous instances of unclear bias risk in the index test and reference standard domains. Insufficient information on whether the assessor was blinded to the results of the index text and reference standard was the main reason for unclear bias risk. This unclear risk may have produced inflated estimates of diagnostic accuracy (Ruitenberg et al., 2001; Lijmer et al., 1999; Whiting et al., 2013). On the basis of these findings, our results should be interpreted conservatively. In addition, we suggest a more rigorous study design involving assessor
An ideal instrument in terms of the detection of ICU delirium, diagnostic properties, delirium features, and feasibility should be considered. For diagnostic properties, both the CAM-ICU and the ICDSC yield comparably high sensitivity, indicating that the two tools can properly detect ICU delirium. Our findings further reveal that the specificity of the ICDSC was lower than that of the CAM-ICU; however, nurses should focus on sensitivity rather than specificity because high sensitivity can enable the accurate diagnosis of more true-positive cases and minimize the consequences of undiagnosed conditions (Lalkhen and McCluskey, 2008). Concerning delirium features, although both tools were established on basis of DSM criteria, the four features of the CAM-ICU and eight domains of the ICDSC were developed for clinical assessment. With respect to feasibility, the two assessments for ICU delirium can be completed within 2–3 minutes if the assessor is familiar with them. A qualitative study reported that nurses believe that the CAM-ICU is difficult to use in some situations, namely when patients are uncooperative or refuse the test and when nurses have time constraints or heavy workloads. In addition, nurses who are unfamiliar with the CAM-ICU initially require more time to complete it (Jung et al., 2013). The assessment approach requiring more patients’ cooperation might explain why nurses believe the CAM-ICU is difficult to administer. The CAM-ICU is based on observation and interaction with patients at a single time point and requires additional attention screening tasks and organized thinking tests. By contrast, the ICDSC is based on continual observation during routine care, which may be more convenient for ICU nurses. Although the CAM-ICU and the ICDSC yield comparable sensitivity
and delirium features, the CAM-ICU requires additional tasks apart from routine care that might increase the difficulty of clinical implementation among nurses who do not receive comprehensive pretraining. We suggest that clinicians and nurses with comprehensive training can use the CAM-ICU and the ICDSC in clinical practice as screening tools for ICU delirium and ICU delirium–related treatment outcomes.

5. Limitations

The present diagnostic meta-analysis has several limitations. First, considerable between-study heterogeneity and unequal sizes in the numbers of participants between the two tools were observed in the included studies; therefore, our findings should be interpreted with caution. Second, approximately one-third to one-half of the studies had an unclear risk of bias regarding assessor blinding to the index test results or reference standards because insufficient information was provided. This unclear risk may have affected the validity of our findings. Nonetheless, because additional studies with numerous participants from various geographic areas were included in our analysis, the external validity of the study findings is acceptable.

6. Conclusion

In summary, both the CAM-ICU and the ICDSC are accurate tools for detecting ICU delirium, but compared with the ICDSC, the CAM-ICU is superior for ruling out patients without ICU delirium. Considering the diagnostic properties, delirium features, and feasibility of the two tools, both the CAM-ICU and the ICDSC are suitable for use by ICU nurses and clinicians who have received comprehensive pretraining. Furthermore, the CAM-ICU is an adequately accurate
instrument for detecting delirium in patients in medical ICUs and those receiving mechanical ventilation. Because of the small number of the ICDSC studies, more investigations of its diagnostic accuracy in specific populations (i.e., patients receiving mechanical ventilation or those in medical ICUs) are required. To accurately estimate the diagnostic accuracy of tools for the detection of ICU delirium, future studies should include consecutively or randomly selected patients and blind the assessor to the results of the index test and reference standard.

Acknowledgment

We thank Mr. Chi-Lung Chang for his assistance in developing the search strategy.

Conflicts of Interest and Source of Funding

The authors declare no potential conflicts of interest regarding the authorship or publication of this article. This meta-analysis was supported by grants from Taipei Medical University Shuang Ho Hospital (108FRP-06) and the Ministry of Science and Technology, Taiwan (MOST 106-2314-B-038-058-MY3).
References

Barr, J., Fraser, G.L., Puntillo, K., Ely, E.W., Gélinas, C., Dasta, J.F., et al., 2013. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the...

Wang, Chunli, Ying Wu, Peng Yue, E Wesley Ely, Jie Huang, Xin Yang, and Yisi Liu. 2013.

Young, John, Lakshmi Murthy, Maggie Westby, Anayo Akunne, and Rachel O’Mahony. 2010.
"Diagnosis, prevention, and management of delirium: summary of NICE guidance." Bmj 341.

Figure 1 Preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2009 flow diagram for Confusion Assessment Method for the Intensive Care Unit

*One study separate participants into two group. Therefore, 30 effect sizes entered this analysis.
Figure 2 Preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2009 flow diagram for Intensive Care Delirium Screening Checklist
<table>
<thead>
<tr>
<th>Instruments</th>
<th>CAM-ICU</th>
<th>ICDSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin population</td>
<td>Adult medical ICU patients.</td>
<td>Adult medical and surgical ICU patients.</td>
</tr>
<tr>
<td></td>
<td>Patients with a history of severe dementia, psychosis, or neurologic</td>
<td>Patients admitted with a diagnosis of delirium were excluded.</td>
</tr>
<tr>
<td></td>
<td>disease were excluded</td>
<td></td>
</tr>
<tr>
<td>Features/ Items</td>
<td>1. Acute changes or fluctuation in mental status</td>
<td>1. Altered level of consciousness</td>
</tr>
<tr>
<td></td>
<td>2. Inattention</td>
<td>2. Inattention</td>
</tr>
<tr>
<td></td>
<td>3. Disorganized thinking</td>
<td>3. Disorientation</td>
</tr>
<tr>
<td></td>
<td>4. Altered level of consciousness</td>
<td>4. Psychosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Altered psychomotor activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Inappropriate speech/ mood</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Sleep disturbance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Symptom fluctuation</td>
</tr>
<tr>
<td>Reliability</td>
<td>Interrater reliability: 89 to 97%</td>
<td>Cronbach’s alpha: 0.71 to 0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interrater reliability: >94%</td>
</tr>
<tr>
<td>Time needed</td>
<td>2-3 mins in average, but may be up to 10 mins when users are unfamiliar with the content</td>
<td>2 mins in average</td>
</tr>
<tr>
<td>Languages available</td>
<td>Arabic, German, Persian, Spanish</td>
<td>Dutch, Japanese</td>
</tr>
<tr>
<td></td>
<td>Czech, Hebrew, Polish, Swedish</td>
<td>English, Persian</td>
</tr>
<tr>
<td></td>
<td>Danish, Hindi India, Portuguese, Turkish</td>
<td>French, Portuguese</td>
</tr>
<tr>
<td></td>
<td>Dutch, Italian, Romanian, Thai</td>
<td>German, Swedish</td>
</tr>
<tr>
<td></td>
<td>Egyptian, Japanese, Russian, Traditional</td>
<td>Italian, Turkish</td>
</tr>
<tr>
<td></td>
<td>English, Korean, Serbian, Chinese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>French, Marathi India, Simplified, Tunisian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greek, Norwegian, Chinese, Zulu</td>
<td></td>
</tr>
<tr>
<td>Scoring systems/</td>
<td>Check every feature is presented or not. Positive for delirium if</td>
<td>Give one point for each symptom manifested, zero point</td>
</tr>
<tr>
<td>cutoff point</td>
<td>Features 1 and 2 and either Feature 3 or Feature 4 are identified.</td>
<td>if symptom dose not manifest. A total score ≥4 indicates the presence of delirium.</td>
</tr>
</tbody>
</table>
Assessment approach | Based on the observation and interaction at one time-point. Need additional test (e.g., attention screening examination) | Based on the continuous observation of routine care.
---|---|---

Table 2 Summary estimates of sensitivity and specificity

<table>
<thead>
<tr>
<th>Scales</th>
<th>Pooled sensitivity (95% CI)</th>
<th>Pooled specificity (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM-ICU</td>
<td>0.84 (0.77 to 0.88)</td>
<td>0.95 (0.91 to 0.97)</td>
</tr>
<tr>
<td>ICDSC</td>
<td>0.83 (0.74 to 0.90)</td>
<td>0.87 (0.78 to 0.93)</td>
</tr>
<tr>
<td>F/P value CAM-ICU vs. ICDSC</td>
<td>0.03/0.85</td>
<td>4.32/0.04</td>
</tr>
</tbody>
</table>

Note: F/P value indicates the F value and P value of comparing the CAM-ICU and ICDSC.
<table>
<thead>
<tr>
<th>Variables</th>
<th>n</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Point estimates</td>
<td>P value</td>
</tr>
<tr>
<td>Age</td>
<td>30</td>
<td>0.03</td>
<td>0.27</td>
</tr>
<tr>
<td>Sample size</td>
<td>30</td>
<td>-0.0007</td>
<td>0.46</td>
</tr>
<tr>
<td>Female</td>
<td>30</td>
<td>0.44</td>
<td>0.81</td>
</tr>
<tr>
<td>APACHE II</td>
<td>16</td>
<td>-0.03</td>
<td>0.60</td>
</tr>
<tr>
<td>Hypoactive-delirium</td>
<td>10</td>
<td>-1.43</td>
<td>0.42</td>
</tr>
<tr>
<td>SICU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>0.75</td>
<td>0.10</td>
</tr>
<tr>
<td>No</td>
<td>23</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>MICU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>0.93</td>
<td>0.01</td>
</tr>
<tr>
<td>No</td>
<td>22</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Mixed-ICU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>15</td>
<td>0.82</td>
<td>0.49</td>
</tr>
<tr>
<td>No</td>
<td>15</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>SICU v.s. MICU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SICU</td>
<td>7</td>
<td>0.75</td>
<td>0.02</td>
</tr>
<tr>
<td>MICU</td>
<td>8</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>MV use at enrollment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>0.95</td>
<td>0.02</td>
</tr>
<tr>
<td>Not all</td>
<td>23</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Country-region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>11</td>
<td>0.87</td>
<td>0.35</td>
</tr>
<tr>
<td>Non-Asia</td>
<td>19</td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: APACHE II = Acute Physiology and Chronic Health Evaluation II; MV = mechanical ventilation; SICU = surgical intensive care unit; MICU = medical intensive care unit
<table>
<thead>
<tr>
<th>Variables</th>
<th>n</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Point estimates (95%CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Age</td>
<td>12</td>
<td>-0.008</td>
<td>0.86</td>
</tr>
<tr>
<td>Sample size</td>
<td>12</td>
<td>-0.003</td>
<td>0.34</td>
</tr>
<tr>
<td>Female</td>
<td>12</td>
<td>7.66</td>
<td>0.001</td>
</tr>
<tr>
<td>APACHE II</td>
<td>7</td>
<td>-0.12</td>
<td>0.30</td>
</tr>
<tr>
<td>Hypoactive-delirium</td>
<td>5</td>
<td>3.02</td>
<td>0.07</td>
</tr>
<tr>
<td>SICU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>0.84</td>
<td>0.92</td>
</tr>
<tr>
<td>No</td>
<td>9</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>MICU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>0.87</td>
<td>0.58</td>
</tr>
<tr>
<td>No</td>
<td>9</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Mix-ICU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>0.80</td>
<td>0.49</td>
</tr>
<tr>
<td>No</td>
<td>6</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Country-region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>3</td>
<td>0.89</td>
<td>0.29</td>
</tr>
<tr>
<td>Non-Asia</td>
<td>9</td>
<td>0.81</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: APACHE II = Acute Physiology and Chronic Health Evaluation II; MV = mechanical ventilation; SICU = surgical intensive care unit; MICU = medical intensive care unit