A simple and versatile method for microencapsulation of anti-epileptic drugs for focal therapy of epilepsy

Yu Chen
University of Wollongong, yc456@uowmail.edu.au

Zhilian Yue
University of Wollongong, zyue@uow.edu.au

Simon E. Moulton
University of Wollongong, smoulton@uow.edu.au

Patricia Y. Hayes
University of Wollongong, phayes@uow.edu.au

Mark J. Cook
University of Melbourne, mark@neurology.net.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation
https://ro.uow.edu.au/aiimpapers/1685

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
A simple and versatile method for microencapsulation of anti-epileptic drugs for focal therapy of epilepsy

Abstract
Nearly 30% of epilepsy cases cannot be adequately controlled with current medical treatments. The reasons for this are still not well understood, but there is a significant body of evidence pointing to the blood-brain barrier. Resective surgery can provide an alternative method of epilepsy control; however this treatment option is not suitable for most epilepsy sufferers. Local drug delivery through micro-injection to or implantation into the brain provides an innovative approach to bypass the blood-brain barrier for epilepsy treatment. In order to develop effective local delivery systems for anti-epilepsy drug (AED), we have prepared a variety of core-shell microcapsules via electrojetting, where a more hydrophobic polymer shell acts as a physical barrier to control the rate of drug release from the drug-loaded polymeric core. The resulting microcapsules demonstrate highly drug encapsulation efficiency, narrow size distribution and uniform morphology. Moreover, the release rate of AED can be modulated by controlling the morphologies of the core-shell microcapsules.

Keywords
simple, anti, versatile, epileptic, drugs, focal, therapy, epilepsy, method, microencapsulation

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Yu Chen, Zhilian Yue, Simon E. Moulton, Patricia Y. Hayes, Mark J. Cook, and Gordon G. Wallace

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/1685
A simple and versatile method for microencapsulation of anti-epileptic drugs for focal therapy of epilepsy

Yu Chen,* Zhilian Yue,a Simon E. Moulton,*ab Patricia Hayes,a Mark J. Cook,c,d and Gordon G. Wallace*aa

Introduction

Epilepsy is a long-term neurological disorder, affecting more than 60 million people worldwide. It is characterised by recurrent and unpredictable seizures, which can cause loss of consciousness, falls and injury, psychosocial disability, and even mortality. Medication provided via oral administration is the first approach to epilepsy treatment, but controls only up to 70% of the cases, whilst the rest of the patients remain incompletely responsive to medication.1,2 The reasons for this are not yet fully understood, but there is significant body of evidence pointing to the blood–brain barrier.3 Moreover, this high systemic dosage causes serious whole body side-effects, such as rashes, nausea and weight changes.

For patients whose seizures cannot be controlled by medications, surgery represents an alternative option, which can be provided only to appropriately selected patients, where the seizure origin in the brain can be localized. In addition, a comprehensive pre-surgical assessment must be conducted in order to ensure the benefits of the operation. Following surgical therapy, the patients still need to take AEDs for a long time to prevent epilepsy relapse.9,10

To improve epilepsy control, local drug delivery through micro-injection or implantation in the brain to bypass the BBB may offer an innovative approach to improve the efficacy of medication. This approach can significantly reduce the dosage of AEDs, while concurrently minimising the side effects associated with systemic administration of AEDs.11,12 In addition, compared to surgical resection, direct injection or implantation would significantly reduce potential brain damage.13

An ideal local drug delivery system should be biocompatible, biodegradable and exhibit an optimal drug release profile pertaining to the targeted application. It should also be amenable to fabrication and large scale production. Poly(lactic-co-glycolic acid) (PLGA) has been intensively studied for local drug delivery.14–16 In particular, it has been explored in treating central nervous system disorders, such as Alzheimer’s,17,18 and Parkinson’s19,20 diseases, as well as in treating brain injury,21 demonstrating excellent brain biocompatibility. Lacosamide, the R-enantiomer of 2-acetamido-N-benzyl-3-methoxypropionamide, is a novel antiepilepsy drug. Based on the efficacy and therapeutic index observed in a range of animal models of epilepsy at the National Institutes of Health...
Materials and methods

**Materials**

Poly(ε-l-lactic-co-glycolic acid) (PLGA) ($M_w \approx 60,000 \text{ Da}$) with various molar ratio of lactide to glycolide, including PLGA 75/25 (lactide/glycolide = 75/25) and PLGA 85/15 (lactide/glycolide = 85/15), were purchased from Purac, Singapore, and used as received. Lacosamide, an anti-epilepsy drug, was provided by UCB Pharma Pty Ltd. All the others chemicals and reagents were purchased from Sigma-Aldrich.

**Electrojetting (electrospinning and electrospraying)**

A range of solutions of PLGA 75/25 and lacosamide were prepared as the core solutions for electrojetting. In these solutions, the ratio of polymer/drug (w/w) was kept constant at 10/1, while the polymer concentration varied from 0.75 to 15 wt%. A range of drug-free PLGA 85/15 solutions were prepared as the shell solutions for electrojetting, with the polymer concentration ranging from 0.5 to 10 wt%.

Electrojetting (electrospinning and electrospraying, respectively) was conducted at room temperature using an NANON-01A electrospinning system (MECC Co. Ltd, Japan). A coaxial spinneret with 0.2 mm core and 0.8 mm sheath nozzles were connected to the core and shell solutions. The distance from the spinneret tip to collector was maintained at 12 cm, and the applied voltage for electrospinning and electrospraying was 21 kV and 10 kV, respectively. The feed rate was 0.1 mL h$^{-1}$ for the core solutions and 0.4 mL h$^{-1}$ for the shell solutions. Aluminium foil was used to collect the fabricated core–shell microcapsules, and the samples were further dried in a vacuum oven at room temperature for 48 hours to remove any residual organic solvent.

**Morphological and dimensional statistical analysis**

The morphologies of the as-prepared microcapsules were examined using a Field Emission Scanning Electron Microscope (FESEM, JEOI JSM-7500FA). The samples were sputter-coated with 20 nm gold to avoid charge accumulation. Dimensional statistical analysis was conducted by analysis of the SEM micrographs using the imaging software, Leica Application Suite. All data were expressed as mean ± standard deviation (SD).

**Determination of drug encapsulation efficiency**

An extraction method was used to determine the drug encapsulation efficiencies of the as-fabricated core–shell microcapsules. Briefly, each sample (1 cm $\times$ 1 cm) was placed into 1 mL methanol for 12 hours, after which the methanol was removed and replenished with 1 mL of fresh methanol. This extraction procedure was repeated four times with each methanol sample allowed to evaporate to leave residual drug behind which was reconstituted using artificial cerebrospinal fluid (aCSF, 0.866 wt% NaCl, 0.224 wt% KCl, 0.0164 wt% MgCl$_2$, 6H$_2$O, and 0.0206-6H$_2$O CaCl$_2$, 6H$_2$O in 0.001 M Phosphate Buffer Solution). Each aCSF sample was then analysed for drug content using HPLC (see below). The 4th reconstituted sample showed absence of drug indicating that the entire drug had been extracted from the electrojetted sample.

HPLC analysis was conducted on an Agilent 1260 Infinity HPLC system. The analytical column used was an Atlantis® T3 C18 column (5 μm, 250 mm $\times$ 4.60 mm). The mobile phase consisted of MilliQ water, acetonitrile (HPLC grade) and methanol (HPLC grade) (65 : 26.2 : 8.8, v/v/v). The mobile phase flow rate was 0.8 mL min$^{-1}$, and the UV-vis detection wavelength was 210 nm.$^{31}$ The amounts of released drug were calculated according to a pre-established calibration curve that was obtained by plotting the peak areas against respective concentrations of a range of standard lacosamide solutions prepared in aCSF.

**In vitro drug release study**

**In vitro** drug release was conducted in artificial cerebrospinal fluid (aCSF). Each sample (1 cm $\times$ 1 cm) was incubated in 1 mL of aCSF at 37 °C in a shaking water bath. At appropriate time intervals, the release medium was withdrawn and replaced with 1 mL of fresh aCSF. The released samples were stored at –20 °C prior to the HPLC analysis for quantification of the amounts of the lacosamide released.

**Results and discussion**

**Preparation of various forms of electrojetted core–shell microcapsules**

Electrojetting, including electrospinning and electrospraying, represents a simple and versatile method for producing monodisperse polymeric spheres and fibres at the nano- and microscale.$^{23,34}$ Electrojetting is governed by the interactions between...
the electrostatic repulsion induced by an applied electric field, and surface tension of a liquid droplet. When the electrostatic repulsion surpasses the surface tension to a critical point, liquid ejection will occur at the surface of the droplet. The liquid jet will undergo a whipping process, which leads to the formation of either fibres (electrospinning, as shown in Fig. 1a), or spheres (electrospraying, as shown in Fig. 1b) at the nano- or micro-scale. Therefore, the final electrojetted structure is determined by the electric force applied and the properties of polymer solutions. The polymer solution properties are governed by the molecular weight and concentration of the polymer, as well as the solvent properties.

In this study, PLGA 75/25 and lacosamide were used as the core structural materials, whilst PLGA 85/15, a more hydrophobic copolymer, was used as the shell material. Chloroform was used as the solvent, with a low boiling point of 61.2 °C. By adjusting the applied voltage and screening of the concentrations of the core and shell solutions, microcapsules with various shapes (Fig. 2), including microflakes, flattened microspheres, microspheres, microspheres–fibres, beaded microfibers, and microfibers, were successfully fabricated. These microstructures, together with their respective fabrication conditions, including the concentrations of the core and shell solutions and voltage, are summarised in Table 1. For electrospraying of microflakes, flattened microspheres, microspheres or microspheres–fibers, a 10 kV voltage was used, whereas for electrospinning of beaded microfibers or microfibers, a 21 kV voltage was used.

**Morphological and dimensional statistical analysis**

During the electrojetting process for fabrication of the microflakes or flattened microspheres, both the polymer concentrations in the core...
Table 1  Microcapsules with various structures, drug loading, and their respective fabrication conditions

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Core PLGA (75/25) concentration (wt%)</th>
<th>Shell PLGA (85/15) concentration (wt%)</th>
<th>Applied voltage (kV)</th>
<th>Type of microcapsule formed</th>
<th>Drug loading (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0w</td>
<td>0.75</td>
<td>0.5</td>
<td>10</td>
<td>Microflakes</td>
<td>90.6 ± 5.2</td>
</tr>
<tr>
<td>S2w</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>Flattened microspheres</td>
<td>91.1 ± 8.1</td>
</tr>
<tr>
<td>S4w</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>Microspheres</td>
<td>94.0 ± 3.5</td>
</tr>
<tr>
<td>S8w</td>
<td>7.5</td>
<td>5</td>
<td>10</td>
<td>Microspheres–fibers</td>
<td>95.3 ± 3.0</td>
</tr>
<tr>
<td>S10w</td>
<td>12</td>
<td>8</td>
<td>21</td>
<td>Beaded microfibers</td>
<td>94.9 ± 4.2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>10</td>
<td>21</td>
<td>Microfibers</td>
<td>99.2 ± 5.4</td>
</tr>
</tbody>
</table>

Increasing the polymer concentration leads to an increase in the solution viscosity, and a reduction in the surface tension ($\gamma$), and consequently an increase in microsphere size ($d$) (eqn (1)). When the polymer concentration becomes sufficiently high, the solution can endure continuous and longer stretching from the nozzle tip to the collector, which gives rise to much thinner microfibers through a mechanism of electrospinning.

**Drug encapsulation efficiency**

It is shown in Table 1 that all the fabricated core–shell microcapsules exhibit >90% drug loading efficiencies. The core–shell microfibers demonstrate the highest drug loading efficiency (99.2 ± 5.4%). These encapsulation efficiencies are greater than those prepared using other techniques, including emulsion, suspension, and emulsion polymerization,\textsuperscript{38,39} solvent evaporation,\textsuperscript{38,39} spray drying,\textsuperscript{40} layer-by-layer.\textsuperscript{41} This can be ascribed to (i) the inherent core–shell structures where drug is encapsulated in the core and further protected by a shell of more hydrophobic polymer and (ii) the fast solidification of the microcapsules at room temperature due to the use of a low boiling point solvent, chloroform.\textsuperscript{31,42}

**In vitro drug release study**

The representative in vitro release profiles of lacosamide from the fabricated PLGA microfibers, microspheres, microspheres–fibers, and microfibers are shown in Fig. 4. The sustained release characteristics demonstrated by all the microcapsules could be attributable to their core–shell structures, where the drug-free polymer shells presents an additional barrier to the drug elution from the core.\textsuperscript{32} The release profiles varied significantly with the shape and morphologies of the microcapsules. The microfibers exhibited the most rapid release characteristics, with >96% of the encapsulated lacosamide being eluted within ~43 hours. Within the same period, the cumulative release of the lacosamide from the microfibers, microspheres–fibers, and microfibers, was approximately 75%, 60%, and 35% of the respective total drug loading. Compared to the microfibers, microspheres, and microspheres–fibers, microfibers exhibit significantly less initial burst release.

It is also noted that there is no significant mass loss in the microcapsules after the long-time incubation in aCSF (104 days), other than that arising from the drug elution. This suggests minimal polymer degradation of the electrojetted microcapsules taking place within this period, which also indicates that the drug release from these microcapsules is predominantly diffusion controlled. The morphology and dimension of the PLGA microcapsules had a
significant influence in the lacosamide release characteristics. For the microcapsules dominant by a sphere/particulate shape, including microflakes, microspheres, microspheres–fibers, the release rate decreased with increasing the microcapsule dimension (Fig. 3b and 4). With an increase in the sizes of the microcapsules, the surface area to volume ratios of the microcapsules decrease, and this leads to slower water penetration rates into the microcapsules and thus slower drug release profiles.

These microcapsules can serve as an injectable microparticulate systems or polymer implants, for local pharmaceutical intervention of epilepsy, as well as treatments in other neurological disorders, such as Parkinson’s disease, Huntington’s disease and Alzheimer’s disease. Compared to systemic administration that requires high dosages, local implantation or injection using our drug-eluting microcapsules can significantly reduce the dosage and side effects. Moreover, our drug release study demonstrated that the daily release dosage of our systems can be readily tailored by varying the shape and size of the microcapsules.

Conclusions

In summary, a variety of core–shell structured PLGA microcapsules containing an anti-epilepsy drug, lacosamide, have
been fabricated by a novel electrojetting technique. These microcapsules, including microflakes, flattened microspheres, microspheres, microspheres–fibers, beaded microfibers, and microfibers, all demonstrated narrow size distribution and uniform morphology, high efficiency of drug encapsulation and sustained drug release characteristics. The release profile of lacosamide varies with the morphologies and shape of the core–shell microcapsules, and thus can be readily controlled over long periods of time.

Acknowledgements

Funding from the Australian Research Council Centre of Excellence Scheme (Project Number CE 140100012) is gratefully acknowledged. GGW is grateful to the ARC for support under the Australian Laureate Fellowship scheme (FL110100196). The authors are grateful to UCB Pharma for continued support. The authors gratefully acknowledge Mr Tony Romeo and Mr Mitchell Nancarrow from Electron Microscope Centre (EMC) for technical assistance of SEM images statistical analysis. The authors also gratefully acknowledge the use of facilities within the Australian National Fabrication Facility (ANFF).

References


