Shiftwork, sleep, fatigue and time of day: studies of a change from 8-h to 12-h shifts and single vehicle accidents

Vitale Di Milia
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation
Di Milia, Vitale, Shiftwork, sleep, fatigue and time of day: studies of a change from 8-h to 12-h shifts and single vehicle accidents, Doctor of Philosophy thesis, Department of Psychology, University of Wollongong, 1999. https://ro.uow.edu.au/theses/1680

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
SHIFTWORK, SLEEP, FATIGUE
AND TIME OF DAY: STUDIES OF A CHANGE
FROM 8-H TO 12-H SHIFTS AND SINGLE VEHICLE ACCIDENTS

A thesis submitted in fulfilment of the
requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

VITALE DI MILIA
BA (Hons); M. Ed. Studies

DEPARTMENT OF PSYCHOLOGY

1999
I, Vitale Di Milia, declare that this body of work has not been submitted for a degree to any other university or institution, and that the work contained within is my own.

Signed:

Dated:
I dedicate this thesis to my parents: Rocco and Antonia Di Milia.

I cannot begin to understand the sacrifices that they endured in order to provide me with every opportunity for a better quality of life. I hope that this thesis is a small reward for their love and support.

My father was a shiftworker and I do not recall him much in my life.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>xvii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xviii</td>
</tr>
<tr>
<td>Chapter 1: Shiftwork, shift design and sleep</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Shiftwork: definition and estimates</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Shiftwork and health</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Shiftwork health models</td>
<td>11</td>
</tr>
<tr>
<td>1.4.1 General shiftwork models</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2 Sleep deprivation model</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Intervention strategies</td>
<td>19</td>
</tr>
<tr>
<td>1.5.1 Education and selection strategies</td>
<td>19</td>
</tr>
<tr>
<td>1.5.2 On-shift strategies</td>
<td>21</td>
</tr>
<tr>
<td>1.6 Shift design</td>
<td>21</td>
</tr>
<tr>
<td>1.6.1 The rotation debate</td>
<td>23</td>
</tr>
<tr>
<td>1.6.2 The effect of consecutive night shifts</td>
<td>26</td>
</tr>
<tr>
<td>1.7 The compressed workweek</td>
<td>29</td>
</tr>
<tr>
<td>1.7.1 Definition</td>
<td>29</td>
</tr>
<tr>
<td>1.7.2 Estimates</td>
<td>29</td>
</tr>
<tr>
<td>1.7.3 Drivers for the CWW</td>
<td>31</td>
</tr>
<tr>
<td>1.7.4 CWW and shift design</td>
<td>31</td>
</tr>
<tr>
<td>1.7.5 Advantages and disadvantages of the CWW</td>
<td>33</td>
</tr>
</tbody>
</table>
1.7.6 Fatigue on the CWW... 39
1.8 Shift duration as a marker for the adequacy of a shift schedule...... 50
 1.8.1 Introduction.. 50
 1.8.2 Impact of sleep loss... 52
 1.8.3 Approaches to assessing shift system adequacy....................... 57
1.9 Measuring sleep duration.. 58
 1.9.1 An approach for calculating sleep duration.............................. 61
1.10 Summary.. 63

Chapter 2: Sleep and the compressed workweek.................................. 66
 2.1 Introduction.. 67
 2.1.1 The background context for the Coal and Steel studies............. 69
 2.2 Method.. 71
 2.2.1 Design of study... 71
 2.2.2 Comparison of 8-h and 12-h shifts at Coal.............................. 72
 2.2.3 Comparison of 8-h and 12-h shifts at Steel............................ 73
 2.2.4 Comparison of shift systems between Coal and Steel............... 73
 2.3 Subjects.. 75
 2.4 Materials... 76
 2.5 Results.. 77
 2.5.1 Questionnaire survey results for repeated measures............ 77
 2.5.2 SSI results for repeated measures.. 81
 2.5.3 Conclusions from survey and SSI measures.......................... 81
 2.5.4 Sleep diaries.. 83
 2.5.4.1 Demographic and SSI scores for the sleep sample.... 86
2.6 Sleep results

2.6.1 Mean TST between shift types at Time 1

2.6.2 Mean TST between shift types at Time 2-5

2.6.3 Mean TST between 8-h and 12-h shifts

2.6.4 Specific sleep analyses

2.6.5 Conclusions from TST studies

2.6.6 Analysis of mean TST across the shift cycle

2.6.7 Conclusions from plotting mean TST across the shift cycle

2.7 Discussion

2.7.1 Fatigue between 8-h and 12-h shifts

2.7.2 Faster rotation and reduced cumulative sleep loss

2.7.3 Strengths and limitations

2.7.4 Conclusions

Chapter 3: An Interview study of shiftworkers

3.1 Introduction

3.2 Method

3.2.1 Subjects

3.2.2 Interview methodology

3.2.2.1 Part one - satisfaction with 12-h shifts

3.2.2.2 Part two - sleep diaries for hypothetical 12-h shifts

3.3 Results

3.3.1 Part one

3.3.2 Part two
3.4 Discussion
- **3.4.1 A note on method**
- **3.4.2 Sleep diaries as an educational tool**
- **3.4.3 Summary**

Chapter Four: A case study investigation of absence

4.1 Introduction

4.2 Methodological Difficulties
- **4.2.1 Recording error**
- **4.2.2 Classification systems**
- **4.2.3 Socio-economic and organizational factors**
- **4.2.4 Individual factors**
- **4.2.5 Shift designs**

4.3 Interpretation of absence behaviour
- **4.3.1 Shiftwork and absence - literature review**
- **4.3.2 Absence between 8-h and 12-h shifts**

4.4 A case study investigation of absence between 8-h and 12-h shifts

4.5 Results
- **4.5.1 Probe 1 - Change in absence frequency between 8-h and 12-h shifts**
- **4.5.2 Probe 2 - Changes to reported causes of absence**
- **4.5.3 Probe 3 - The timing of absence on 8-h and 12-h shifts**
- **4.5.4 Probe 4 - The timing of single and small periods of annual leave (SAL) during 12-h shifts**
6.4 Sleepiness in single vehicle accidents ... 248
 6.4.1 Estimates of sleepiness in single vehicle accidents 248
 6.4.2 Timing of sleepiness in single vehicle accidents 249
 6.4.3 Correcting accident frequency for variation in traffic density 250
6.4.4 Driver characteristics and accident risk ... 252
6.5 Shiftwork and driving risk ... 254
6.6 Objectives for this study .. 254
6.7 Method .. 255
 6.7.1 A description of the RTA archive ... 255
 6.7.2 Design of study ... 256
 6.7.3 Traffic density ... 257
 6.7.4 Data treatment .. 257
6.8 Results ... 260
 6.8.1 Descriptive statistics for single vehicle accidents 260
 6.8.2 Accident distribution and traffic density .. 260
 6.8.3 An examination of driver characteristics by time of day 265
 6.8.4 Statistical analyses of driver characteristics .. 265
 6.8.5 Within age group comparisons of driver characteristics 271
 6.8.6 Weighting accident frequency for driver characteristics 274
 6.8.7 The contribution of weighted driver characteristics to early morning and afternoon accident frequency .. 274
 6.8.8 The contribution of unweighted driver characteristics to early morning and afternoon accident frequency .. 280
 6.8.9 Accident frequency by road type .. 280
LIST OF TABLES

Table 1.1 Additional Features of Shift Systems .. 5
Table 1.2 The Total Number and Percentage of Shiftworkers by Employment Type, Industry and Trade Union Affiliation 6
Table 1.3 A Comparison of Sleep Loss Between a Slow and Fast Rotating Shift Schedule ... 18
Table 1.4 Potential Advantages of the Compressed Workweek 34
Table 1.5 Potential Disadvantages of the Compressed Workweek 36
Table 1.6 Longitudinal Field Studies from 8-h to Extended Hours Shifts 43
Table 1.7 Cross Sectional Field Studies from 8-h to Extended Hours Shifts 44
Table 1.8 A Summary of Rotation Speed and its Effects on Three Dependent Variables ... 64
Table 2.1 Mean Age and Shiftwork Experience for Coal and Steel Employees .. 75
Table 2.2 Mean Changes for Repeated Measures Shift Satisfaction Items 78
Table 2.3 Repeated Measures for Napping and Moonlighting 79
Table 2.4 Self Reported Sleep Need when Working 8-h and 12-h Shifts 79
Table 2.5 Mean Changes for the SSI Scales between Time 1 and Time 2 82
Table 2.6a Age, Shiftwork Experience and Self Rated Sleep Need of Shiftworkers in the Sleep Study ... 87
Table 2.6b Mean Age and Shiftwork Experience Between Shiftworkers Providing Complete and Incomplete Sleep Diary Records 88
Table 2.7 Mean Changes for the SSI Scales between Time 1 and Time 2 (Sleep study shiftworkers) ... 89
Table 2.8 Mean TST Between Shift Types at Time 1

Table 2.9 Significant Planned Contrasts for Shift Types at Time 1 (Steel).

Table 2.10 Mean TST Between Shift Types for Time 2-5

Table 2.11 F and p values for Mean TST Between Shift Types for Time 2-5

Table 2.12 Mean TST Between 8-h and 12-h Shifts for the Coal and Steel Studies

Table 2.13 Combined Mean TST for Early and Late Stages of the 12-h Shift System

Table 2.14 Mean TST on Days Off Following Two and Three Consecutive Day and Night Shifts

Table 2.15 Mean TST Following a Spell of 8-h and 12-h Shifts

Table 2.16 Changes to Mean TST, Percentage of Shifts Worked and Total Days with Sleep Below the Mean (Coal)

Table 2.17 Changes to Mean TST, Percentage of Shifts Worked and Total Days with Sleep Below the Mean (Steel)

Table 3.1 Sleep Strategies in Preparation For a First Night Shift

Table 3.2 Amount of Recovery Sleep Following Two and Three 12-h Night Shifts

Table 3.3 Sections of the 12-h Shift Associated with Fatigue

Table 3.4 Proposed Mean TST on Different Shift Schedules

Table 3.5 Mean TST Obtained From Sleep Diary and Interview Data for Three 12-h Night Shifts

Table 3.6 Mean TST Obtained From Sleep Diary and Interview Data for Seven 8-h Night Shifts
Table 3.7 Diary Mean TST for The First Three Nights From a Spell of 8-h and 12-h Shifts .. 147
Table 3.8 Proposed Mean TST for The First Three Nights From a Spell of 8-h and 12-h Shifts .. 148
Table 3.9 Sleep Strategies Before the First 12-h Night Shift .. 150
Table 3.10 Sleep Strategies for the First 8-h Night Shifts .. 151
Table 4.1 Absence Frequency and Hours Lost Between 8-h and 12-h Shifts .. 173
Table 4.2 Descriptive Statistics for Absence Duration, Absence Spells and Overtime Between 8-h and 12-h Shifts .. 180
Table 4.3 Absence Explanations During 8-h Shifts .. 183
Table 4.4 Absence Explanations During 12-h Shifts .. 184
Table 4.5 Absence Explanations Common to 8-h and 12-h Shifts .. 185
Table 5.1 Difficulties in Interpreting Safety Studies .. 202
Table 5.2 Accident Frequency for 8-h Shiftwork Studies .. 209
Table 5.3 Accident Frequency for Extended Hours Shiftwork Studies .. 215
Table 5.4 Accident Frequency by Shift Type and Shift Length .. 222
Table 5.5 Descriptive Statistics for 8-h and 12-h Accident Data .. 222
Table 5.6 Mean Accident Frequency per Shift between Inexperienced and Experienced Shiftworkers on 8-h Shifts .. 224
Table 5.7 Accident Distribution for Experienced Shiftworkers by Shift Type .. 227
Table 5.8 Accident distribution in four blocks by 8-h and 12-h shifts .. 229
Table 5.9 Nature of Injuries on 8-h Shifts by Shiftworker Experience .. 231
Table 5.10 Nature of Injuries for Experienced Shiftworkers on 8-h and 12-h Shifts .. 232
Table 5.11 Mean Time to Accident for 8-h and 12-h Shifts......................... 233
Table 6.1 Worked Example showing Accident Frequency weighted at 12.00... 259
Table 6.2 Descriptive Statistics for Single Vehicle Accidents......................... 261
Table 6.3 Descriptive Statistics for Driver Characteristics.......................... 269
Table 6.4 Wilcoxon Statistics Split by Driver Age for Mean Accident Rate by Gender and Day of Week Categories... 270
Table 6.5 The Contribution of Weighted Driver Characteristics to Accidents Between 02.00-05.00 and 14.00-17.00.............................. 279
Table 6.6a The Percentage of Accidents by Unweighted Driver Characteristics to Accidents Between 02.00 and 05.00....................... 281
Table 6.6b The Percentage of Accidents by Unweighted Driver Characteristics to Accidents Between 14.00 and 17.00......................... 282
Table 6.7 Accident Distribution Between 02.00 and 06.00 on Main and Unclassified Roads by Driver Characteristics.............................. 285
Table 7.1 Proportion of Errors and Accidents by Time of Day....................... 300
Table 7.2 Degree of Accident by Time of Day.. 302
Table 7.3 Percentage of Recording Error by Accident Severity..................... 303
Table 7.4 The Percentage of Errors and Percentage of Accidents by Days of the Week... 305
Table 7.5 Proportion of Errors and Accidents by Time of Day and Day of Week Categories.. 306
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Stress and strain model of shiftwork and health</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Folkard's process model of shiftwork, health and safety</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>The sleep deprivation model of night shift work</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>8-h and 12-h shifts in the Coal study</td>
<td>72</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>8-h shifts in the Steel study</td>
<td>73</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>12-h shifts in the Steel study</td>
<td>74</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Mean distribution for TST across days off</td>
<td>85</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Comparison of mean TST on days off in Steel 12-h shifts</td>
<td>95</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Deviation from mean TST and cumulative sleep gain/loss on 8- and 12-h shifts for Subject C1 (Coal)</td>
<td>99</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Deviation from mean TST and cumulative sleep gain/loss on 8- and 12-h shifts for Subject C6 (Coal)</td>
<td>100</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Deviation from mean TST and cumulative sleep gain/loss on 8- and 12-h shifts for Subject C17 (Coal)</td>
<td>101</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Deviation from mean TST and cumulative sleep gain/loss on 8- and 12-h shifts for Subject S30 (Steel)</td>
<td>104</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Deviation from mean TST and cumulative sleep gain/loss on 8- and 12-h shifts for Subject S32 (Steel)</td>
<td>105</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Deviation from mean TST and cumulative sleep gain/loss on 8- and 12-h shifts for Subject S33 (Steel)</td>
<td>106</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Deviation from mean TST and cumulative sleep gain/loss on 8- and 12-h shifts for Subject S39 (Steel)</td>
<td>107</td>
</tr>
</tbody>
</table>
Figure 2.13 Deviation from mean TST and cumulative sleep gain/loss on 8-h and 12-h shifts for Subject S18 (Steel) .. 108

Figure 2.14 Deviation from mean TST and cumulative sleep gain/loss on 8-h and 12-h shifts for Subject S14 (Steel) .. 109

Figure 2.15 Deviation from mean TST and cumulative sleep gain/loss on 8-h and 12-h shifts for Subject S45 (Steel) .. 110

Figure 2.16 Mean TST for consecutive (8-h) and non-consecutive (12-h) night shifts (n=3) ... 116

Figure 2.17 Mean TST for consecutive (8-h) and non-consecutive (12-h) night shifts (n=7) ... 117

Figure 4.1 Duration of absence spells for 8-h and 12-h shifts 182

Figure 4.2 Duration of absence days by shift type and day of the week on 8-h shifts ... 186

Figure 4.3 Distribution of absence days during 12-h shifts 188

Figure 4.4 The occurrence of single days of annual leave across the 12-h shift cycle ... 191

Figure 4.5 Distribution of SPAL across the 12-h shift cycle 193

Figure 4.6 Distribution of absence, single days of annual leave and SPAL during 12-h shifts ... 194

Figure 5.1 Accident distribution for all accidents on 8-h and 12-h shifts 223

Figure 5.2 Time of day accident distribution for experienced and inexperienced 8-h shiftworkers ... 225

Figure 5.3 Accident frequency on 8-h night shift by experienced and inexperienced shiftworkers ... 226
Figure 5.4 Time of day accident distribution for experienced 8-h and 12-h
shiftworkers... 228

Figure 6.1 The relationship between sleepiness accidents and traffic
density by time of day.. 263

Figure 6.2 Comparative probabilities of sleepiness accidents between the
present study and those from Horne and Reyner................. 264

Figure 6.3 Accident frequency distribution by driver age categories...... 266

Figure 6.4 Accident frequency distribution by gender categories........ 267

Figure 6.5 Accident frequency distribution by day of week categories..... 268

Figure 6.6 Accident frequency distribution for drivers aged <30yo during
W-END by gender.. 272

Figure 6.7 Accident frequency distribution for drivers aged <30yo during
W-DAY by gender.. 273

Figure 6.8 Accident frequency distribution for drivers aged 30+yo during
W-END by gender.. 275

Figure 6.9 Accident frequency distribution for drivers aged 30+yo during
W-DAY by gender.. 276

Figure 6.10 Accident frequency distribution by time of day when weighted
for driver characteristics... 277

Figure 6.11 Comparative probability of a sleepiness accident when
adjusted for driver characteristics.................................... 278

Figure 6.12 Accident frequency distribution by road type................ 283

Figure 7.1 Error frequency distribution by time of day.................... 301
Figure 7.2 Error frequency distribution for tow-away accidents by time of
day... 304

Figure 7.3 Error frequency distribution by day of the week categories...... 307
ACKNOWLEDGMENTS

A number of people deserve special mention. Their support ranged from critical insight, to reminding me to take time to smell the roses. To each of them I give my deepest thanks and sincerest appreciation.

1. Dr. Peter Smith. Saying thank you seems insufficient. A man of great intellect and kindness. He always made the time to smooth out my anxieties with his insight and encouragement. We have worked together for over a decade now and I hope to continue learning from him.

2. Thanks to Les Gregory and Alan Gageler at BHP for their foresight, support and encouragement, to start and complete this work.

3. Denise Hallet and the past and present staff at the BHP library. Their assistance in sourcing many literature requests was invaluable.

4. Vicki King. She warned me many years ago, to get my head out of those books. I should have listened. I am forever humble in her presence.

5. Stuart Thomson. On most Friday afternoons we sit down with a couple of beers and solve the world's most complex problems. In the process, we enjoy a most useful form of therapy - laughter. I hope we continue solving the mysteries of life.

6. Mark Gorodecki (an ex-member of the laughter therapy group). Mark always made time to listen to my theoretical (and just plain) ramblings - sometimes, he had no choice. My thanks also for all the computer support and reproducing the figures in chapter one.

7. Of course, many thanks to the shiftworkers in the studies for their support and cooperation. I know some gained insights into their sleep behaviour as a result of their participation.
ABSTRACT

The thesis presents the findings from three separate studies. The first two studies (chapter two) are concerned with the impact of the compressed workweek (CWW) on the well-being of shiftworkers. One study was based in a Coal mine and the other, in a Steelworks. The Steel study also included an interview of the shiftworkers (Chapter three), an analysis of absenteeism (Chapter four) and safety (Chapter five). The third study (Chapter six) made use of a road accident database to demonstrate the effect of time of day on the distribution of single vehicle accidents (SVA). In addition this database also allowed an investigation of the omission recording errors by shiftworking policeman as a function of time of day (Chapter seven).

The Coal and Steel studies used a longitudinal repeated measures design to examine the impact of a change from a continuous weekly 8-h shift to a continuous fast rotating 12-h shift. In both these studies, survey and sleep data served as dependent measures. The survey material was primarily based on scales from the Standard Shiftwork Index (Barton et al. 1995). Sleep data was obtained across complete shift cycles using sleep diaries. The sleep data were examined in terms of the expectations from the Sleep Deprivation Model (Tepas & Mahan, 1989). The quantitative analysis of these data were supported by some qualitative analysis of changes in sleep pattern. Specifically, changes in the daily deviation from mean sleep and cumulative sleep gain/loss across the shift cycle, between 8-h and 12-h shifts were examined.

In the Steel study, the effect of the change to 12-h shifts was further supported by additional studies. The interview study (chapter three) had two primary aims. The first was to gain a more comprehensive understanding of the change in rotation speed and shift length by interviewing the shiftworkers. The second was to explore the changes in sleep strategies as a result of the change to a faster rotation. Shiftworkers
completed 'estimated' sleep durations based on a number of hypothetical shift patterns and provided a rationale for these choices.

Consistent with many studies, strong support was found for 12-h shifts and this was attributed to the increased time away from work and the reduced number of consecutive night shifts. In general, a number of SSI measures showed improvements but few were significant.

Self report and interview data both recorded shiftworker awareness of trading sleep loss for social gain. The intent to leave shiftwork was reduced but nonetheless present on 12-h shifts. This suggested that 12-h shifts do not solve, but reduce the problems associated with shiftwork. In the Coal study, shiftworkers reported a willingness to 'slow' their 12-h shifts to provide more rest days between work periods. Other indicants of fatigue were self reported increases in sleep need and changes in napping behaviour.

No main effects for total sleep time (TST) were found between 8-h and 12-h shifts. Mean TST was achieved by a marked redistribution of sleep on 12-h shifts. In particular, 12-h shifts were associated with significant reductions in sleep for night shifts and increased sleep on day shift and days off. These findings need to consider the high probability of a type II error due to the low power findings associated with the small sample size, expected effect size and choice of alpha.

While the changes in mean TST were of interest, the sample size also allowed for an extensive analysis of complete sleep records as a function of the change in shift schedules. In particular, it was suggested that changes in mean distribution of TST may be a more important indicant of fatigue than simply using the mean as the marker.

The effect of the faster rotation on cumulative sleep gain/loss across the shift cycle provided mixed results. In the Coal study, the number of shifts worked and the total number of days in the cycle when mean daily sleep was below the cycle mean
sleep average, decreased on 12-h shifts. In the Steel study, the number of shifts worked increased when mean TST was below the mean for the cycle but an improvement was found for the total number of days. These differences may be attributed to the different forms of the 12-h shifts in the two studies.

Absence (chapter four) in the Steel study was significantly less on 12-h shifts but this was best explained by a remuneration policy that no longer provided overtime payment. A case study analysis of absence suggested that absence was used in combination with other factors to redesign the shift schedules.

During 8-h shifts absence was used to 'compress' the workweek and overtime was used to increase mean earnings. On 12-h shifts, absence was augmented by examining when single days of annual leave and small periods of annual leave, were taken across the shift cycle (non-attendance). This analysis suggested non-attendance was used to reduce exposure to three consecutive shifts, especially night shifts. This strategy also served to increase the number of days off from two to three days. The interview data also reported three night shifts were problematic and that two days off were insufficient.

The change to 12-h shifts in the Steel study had no effect on safety (chapter five). This is most likely due to the fact that accidents are rare events and that too short a time period for comparison had elapsed. Nonetheless, some indication of increased accident frequency was found for the same time of day on 12-h shifts.

The methodological and practical difficulties of examining performance in the Coal and Steel studies, led to the use of a road accident database to demonstrate the performance implications by time of day. This database was used to conduct two studies. Chapter six examined the time of day distribution in single vehicle accidents by driver age, gender and day of the week. Chapter seven examined the time of day variability in omission errors by shiftworking police officers.
The time of day accident distribution for SVA was in line with international findings (Horne & Reyner, 1995a, 1995b). Correcting the accident rate for traffic density suggested the greatest accident risk was at 03.00, with a secondary peak at 14.00. The effect of age, gender and day of the week on accident frequency was also demonstrated. These data were also used to develop an alternative method to using traffic density to adjust accident frequency. The Driver Characteristics Model may provide a better measure for examining the effects of sleepiness. The timing of these single vehicle accidents suggested the influence of the sleepiness rhythm on performance, after a number of other accident causation factors were removed from the analysis.

This database also reflected the accuracy in accident form completion of shiftworking policemen. Performance was lowest at 02.00 but a clear afternoon peak was not obtained. The error rate was found not to be related to accident severity or workload. This analysis also suggested that night time performance is sensitive to task differences.

The final chapter seeks a synthesis of the studies presented in this research. In particular, it makes some additional comments concerning methodology and some recommendations for designing 12-h shifts. Key limitations to these results and suggestions for future study are also made.

While 12-h shifts are clearly supported by employees, it is reasonable to suggest they are superior in comparison to poorly designed 8-h shifts (Lowden et al. 1998). Therefore, innovative shiftwork solutions need to be developed and tested, in order to provide flexibility and a safe working environment. A key message is that 12-h shifts may reduce chronic exposure but not the total exposure to night work. Therefore, innovative shift systems need to reduce the number of night shifts and not repackage the same number of night shifts into smaller blocks.