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 

Abstract— This article investigates the effect of two 
uncertain parameters on a recent new model of conjugated 
polymer actuators. These uncertain parameters are the 
diffusion coefficient (D) and the double-layer capacitance (Cdl), 
which are difficult to measure directly. The model sensitivity to 
these parameters is analysed and a parameter estimation study 
is performed using artificially generated data. The parameter 
estimation method used in this article is based on a Bayesian 
cost function, and gives us an insight on how much the 
estimation can be trusted, which is useful information for the 
design of controllers. Results indicate that for controllers to be 
designed effectively using this model, the double-layer 
capacitance is the best known parameter and should therefore 
be designed for with greater confidence in its value, while the 
controller should be much more robust with respect to the 
diffusion coefficient, which should be treated as a stochastic 
variable for a certain range of possible values.      

I. INTRODUCTION 

Recent research into polymeric materials has led to the 
requirement of reliable prediction models and robust control 
of Electro Active Polymers (EAP’s) as actuators. The credit 
for the discovery of EAP’s is given to Roentgen, who in 
1880, experimented with an electro-activating rubber-band to 
move a cantilever with a mass attached to the free-end [1]. 
Since the 1970s academic and industrial interest in EAP 
applications has sparked research and has increased the list 
of EAP materials available. The bulk of work focused on the 
prediction and control models were developed post 1990 [1-
3].  

Applications of EAP’s are contained in many different 
areas. Some applications include use as part of 
electrochromic “smart” glass, as one component in the 
photoreceptors of electrophotographic and xerographic 
devices and as thin flexible shaped batteries [4, 5]. Of 
particular interest is their potential use as an actuator or 
sensor in a biomimetic situation, commonly referred to as an 
artificial muscle. One particular group of EAP’s known as 
Conjugated electro active Polymers (CPs) have been 
attracting the attention of researchers in the past decade. This 
is mainly due to the features that make them attractive for 
application including low power consumption, light weight, 
simple construction and noiseless operation [6]. In particular 
CPs based on pyrrole, thiophene and aniline are the focus of 
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current research. Polypyrrole (PPy) and polyaniline are two 
of the most commonly used CPs for actuation [7-8].   

In order to utilize these EAPs in any application it is 
highly desirable to have predictive models available for 
feasibility studies, design optimisation, and precision control. 
Until recently the control and control-oriented modelling of 
CPs had been largely unexplored [9]. Original work by 
J.D.W. Madden [10] and later extended by Fang et al. [11] 
has led to a model for robust control of CP actuators. These 
both present a transfer function mathematical model for 
predicting the bending behaviour of EAPs. The latter work 
goes on to describe a self-tuning regulator which utilises a 
parameter projection (in the time domain) step for robust 
control; this is required because of the relatively short time 
frame in which the parameters stay constant. Without this 
parameter estimation step the prediction model becomes 
inaccurate and results in imprecise control due to the 
parameters’ value expiring. This remedies the previously 
reported problem of non-repeatability of experiments.     

Smith [12] investigated the effect of uncertain parameters 
for the model used in [11]. He showed that significant 
discrepancies between the model and its reduced form used 
for control purposes seemed to indicate that a better suited 
model would be needed to start developing stochastic 
controllers. Smith [12] was able to retrieve results with noise 
using artificial data [12] for the full and reduced models used 
in [11], but realized that these two models were not able to 
capture the high frequency phase behaviour, which led to 
discrepancies in the estimation of uncertainties. His 
conclusion was that it seemed probable that the biggest 
problem with the model used in [11] was the discrepancy 
between experimental data and the model at high 
frequencies.  

In this paper, the techniques used in [12] are applied to a 
model recently developed by Nguyen et al. [13] which is a 
variation of the model presented in [11] that proved to better 
match experimental data at high frequencies. Let’s note that 
this model uses the curvature of the actuator as an output 
rather than its displacement. However, there is a simple 
relationship between the two, and this model can therefore 
easily be compared with the model used in [11]. Parameter 
estimation is performed using artificially generated data, 
which yielded similar results between the full model and its 
reduced form, hinting at an efficient model for control 
purposes. This work will need to be validated using 
experimental data.    
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II. ELECTRO-CHEMO-MECHANICAL MODELLING OF A 

TRILAYER CP ACTUATOR  

A. The Infinite-Dimensional Model   

The work of Nguyen et al. [13] extends the work of Fang 
et al. [11] which extended the diffusive-elastic-metal model 
of Madden [10] for a trilayer conjugated polymer actuator. 
The model used in [13] combines both the electrochemical 
and the mechanical dynamics and is thus known as an 
electro-chemo-mechanical model. The model for the 
displacement of the actuator is presented in three modules; 
electrical admittance, electromechanical coupling and 
mechanical output. The admittance module relates the input 
voltage to a current flowing through the system. The 
electromechanical coupling then relates the current in the 
system to an electrically induced strain and charge density. 
The final mechanical output module relates the electrically 
induced curvature to the geometric curvature, thus giving the 
displacement, as shown in Fig. 1. The equivalent circuit of 
the trilayer conducting polymer actuator is shown in Fig. 2.     

 

 

Fig.1.  Three distinct modules that form the actuator displacement 
mathematical model (figure adapted from various figures in [11] and [13])  

 

 

 

 

 
Fig.2.  Transmission line circuit of the trilayer conducting polymer actuator 
(adapted from [13])        

 

The transfer function between the input voltage and the 
curvature of the actuator for that model is given by,   
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and where (more details can be found in [13])   

κ(s) is the Laplace transformed curvature of the actuator  

V(s) is the Laplace transformed voltage function     

Cdl is the double-layer capacitance    

D is the diffusion coefficient for modelling the diffusion 
of ion concentration    

Re is one element of PPy layer   

Rp is the resistance of one element of polyvinylidene 
fluoride (PVDF) layer   

Rct is the charge transfer resistance     

L is the length of the PPy layer    

W is the width of the PPy layer   

h is the thickness of the polymer (PPy) layer   

hpvdf is the thickness of the PVDF layer   

Eppy is the modulus of elasticity for the PPy layer   

Epvdf is the modulus of elasticity for the PVDF layer   

 



  

B. Reduced Finite-Dimensional Model  

The work of Nguyen et al. [13] also presents a reduced 
form of the model. Due to the hyperbolic tangent term, the 
infinite-dimensional system is not suitable for real-time 
control purposes. The hyperbolic tangent term is therefore 
approximated by using the equality        
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and letting X = 1/Zi and Y = 1/ (8 Re L2), which yields a 
transfer function of the form [13]    

      










1

0

1

0)(
N

i
i

i

N

i
i

i

sa

sb
sG           (5) 

where the coefficients bi’s and ai,’s can be written in terms of 
the physical constants [13].  

For typical parameter values such as the values shown in 
Table 1, Nguyen et al. showed that N =9 is enough to yield 
very similar transfer functions than the ones observed 
experimentally. Note that the relationships between Re and Rp 
and to the conductivities e and p  are given by    
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TABLE I.  TYPICAL PARAMETER VALUES OF THE MODEL     

Parameter Value Parameter Value 
D 5.1344×10-13 m2.s-1 W 2.6×10-3 m 
Cdl 5.1189 F.m-1    h 30×10-6 m 
e 3×103  S.m-1 hp 55×10-6 m  
p 8 S.m-1        hpvdf 110×10-6 m 
Rct 10.6×103 Ω      Eppy 200 MPa  
L 14×10-3 m  Epvf 117 MPa 

 

 

 
Figure 3: Sensitivity of Bode plots to the number of coefficients used in the 
model       

 

Fig. 3 shows the sensitivity of Bode plots to the number of 
coefficients used in the model. Fig. 4 shows the sensitivity of 
Nyquist diagram to the model, which is relevant since the 
Bayesian cost function used later this study will be based on 
the graphical representation complex numbers associated to 
the transfer function.          

 

 
Figure 4: Sensitivity of the Nyquist diagram to the model             

 

III. SENSITIVITY OF THE MODEL TO PARAMETER 

VARIATION 

Two parameters are considered uncertain. The diffusion 
coefficient (D) and the double-layer capacitance (Cdl) are 
uncertain due to the fact that they depend on external 
conditions. D tends to vary more due to the fact that it 
decreases due to solvent evaporation which hinders the 
diffusion of ions. This is the main reason for the very large 
variability of D. The expected ranges of these three uncertain 
parameters are given in Table 2.    

 

TABLE II.  PHYSICALLY MEANINGFUL VALUES FOR THE UNCERTAIN 
PARAMETERS    

Parameter Minimum Value Maximum Value 
D 10-14 m2 s-1 10-10 m2 s-1

Cdl 3 F m-1    7 F m-1    

 

A sensitivity analysis is performed by plotting Bode plots 
for different values of the uncertain parameters for both 
models. The sensitivity of Bode plots to variation in the 
double-layer capacitance Cdl is shown in Fig. 5. The 
sensitivity of Bode plots to variation in the diffusion 
coefficient variation D is shown in Fig. 6. These results 
indicated that Cdl caused both of the models to vary the most.  

 

 

 



  

The sensitivity analysis results and implications are used 
as a means of “checking” the estimated parameter values, 
which is achieved by assessing the consistency of the 
parameter estimation results with the results observed when 
plotting the Bode plots for different values of the uncertain 
parameters.      

 

 
Figure 5: Sensitivity of Bode plot to variation in the double-layer 
capacitance Cdl using the reduced model (N = 9)    

 

 

 

Figure 6: Sensitivity of Bode plot to variation in the diffusion coefficient D 
using the reduced model (N = 9)        

 

 

 

IV. PARAMETER ESTIMATION USING FREQUENCY 

RESPONSE DATA  

A.  Choice of Parameter Estimation Method    

A Bayesian approach to parameter estimation is used.  
The simulation involves the formation of a multi-
dimensional grid, calculating the value of the cost function at 
every point considered, and finding the minimum of those 
calculated values. The main advantage of this parameter 
estimation is that the quality of the maximum likelihood 
estimate is related to the shape of the Bayesian cost function, 
with a sharp minimum indicating an accurate estimate [13]. 
This will be useful in order to design better controllers for 
artificial muscles. Adaptive controllers are typically designed 
based on estimates for the uncertain parameter without 
information on how reliable these estimates are. This is 
especially a problem when dealing with non-identifiability 
issues, i.e. when several combinations of values for the 
uncertain parameters basically yield the same responses. In 
these cases, stochastic controllers should be designed instead, 
using a range of possible values for these uncertain 
parameters and trying to obtain the best average answer since 
the actual values of these parameters cannot be known. Some 
parameters might still have estimates which can be trusted 
while others cannot. This can be visualized when looking at 
the shape of the Bayesian cost function. The cost function 
can yield very similar values when a first parameter varies 
(this parameter is unidentifiable) while it yields very 
different values when another (identifiable) parameter varies, 
as explained in [13]. In that case, the stochastic controller 
would only need to take the parameters that cannot be 
estimated into account.    

For greater precision, MATLAB’s constrained 
minimisation function (“fmincon”) was used. This involves 
providing an initial estimate and bounds to constrain the 
problem. The results from the grid simulation are used as the 
initial estimate, and bounds proportional to these results were 
used as the bounds. This parameter estimation method had 
already been tested successfully with a number of sets of 
artificially generated data obtained by introducing white 
noise into a previous model [12].     

B. Choice of Cost Function   

A traditional choice of cost function is the sum of square 
residuals in the ordinates only (7), that is the sum of the 
square of the differences between the observed and predicted 
“y-values”. This choice is unsuited to this particular inverse 
problem because a method of combining the cost function 
for both the magnitude and phase results is needed. This 
disregards that the two plots are linked as the two plots are a 
graphical representation of one complex number.       
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where  

ωn is the n-th discrete frequency at which the magnitude 
and phase measurements were taken   

M(jωn; R; D; δ) is the simulated magnitude data  using 
particular parameter values for R, D and δ. Either of the 
full or reduced model can be used here.   



  

Mn is the n-th magnitude measurement    

wM is the weight for the  magnitude residuals. This needs 
to be chosen so that its units are the reciprocal of the units 
of M and so that equal priority is given to both M and ϕ    

ϕ (jωn; R; D; δ) is the simulated magnitude data using 
particular parameter values for R; D and δ. Either of the 
full or reduced model can be used here.   

ϕn is the n-th phase measurement    

wϕ  is the weight for the phase residuals. This needs to be 
chosen so that its units are the reciprocal of the units of ϕ 
and so that equal priority is given to both M and ϕ.   

For this reason alone it is far more mathematically 
rigorous to choose a cost function that represents the 
difference between the observed complex number and the 
predicted complex number. In effect this would mean that 
the process would be “curve-fitting” the Nyquist plot of the 
measured experimental data with either or both of the full 
and reduced models. That is, the cost function is defined as   
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where G(jωn; R; D; δ) is the simulated data  using particular 
parameter values for R, D and δ. Either of the full model or 
reduced model can be used here.  

C. Results    

Artificial data were created based on the full model, and 
by adding artificially generated noise of 2.5% on the values 
of magnitudes and phases to simulate noisy measurements. 
The sample frequencies used as “measurements” in order to 
generate the Bayesian cost functions were the following:  
0.001 Hz, 0.002 Hz, 0.005 Hz, 0.01 Hz, 0.02 Hz, 0.05 Hz, 
0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz.  

Results for both the reduced model and the full model are 
displayed in Table 3, which shows that in the absence of 
noise, the full model retrieves the exact values of D and Cdl, 
i.e. D = 5.1344×10-13 m2.s-1 and Cdl = 5.1189 F.m-1, while the 
reduced model has a significant error for the estimation of D.  
With artificially generated noise of 2.5% on the values of 
magnitudes and phases, the difference between the estimates 
for each of the two models is not very significant. It indicates 
that the reduced model is suitable, as it is not different from 
the full model, and due to the fact that errors for the 
estimation of D are expected given the shape of the cost 
functions. This can be explained by looking at Fig. 7, which 
shows the cost function plot results using the full model and 
Fig. 8, which shows the cost function plot results using the 
reduced model. The figures reveal that non-identifiability 
issues exist for both the full and reduced models as 
evidenced by the long troughs that appear in the plots of the 
cost function (as explained earlier in this paper, and detailed 
in [13]). Both figures clearly show that D is non-identifiable, 
and should therefore be treated as a stochastic parameter for 
control purposes. A control algorithm should only attempt to 
estimate Cdl.  

The full model is not suitable for real-time control 
purposes, but the reduced model is suitable. Significant 
discrepancies between the two models would have shown 

that the estimates of the uncertain parameters might not 
necessarily result in good controllers even if the Bayesian 
cost functions have sharp minima indicating accurate 
estimates. Controller gains would be calculated based on 
these estimates, but the fact that the reduced model would 
yield different estimates would mean that the controller 
(which is based on a reduced model) would have an effect on 
the system somewhat different than what we might expect. 
Such a case occurred with models previously studied and 
their reduced versions [12].  With this latest model, the 
reduced model seems to be very suitable for control 
applications. Therefore, this parameter estimation study 
shows us that using the model developed by Nguyen et al. 
[13] might improve the control performance obtained in [11].    

   

TABLE III.  ESTIMATES FOR THE UNCERTAIN PARAMETERS FOR THE 
LABORATORY RECORDED DATA    

Model  Estimate for Cdl  Estimate for D 

Full model –  
 no  noise   

5.1189 F.m-1  
(error: 0%)   

5.1344×10-13 m2.s-1   
(error: 0%)   

Reduced model –  
 no  noise   

5.2238 F.m-1  
(error: 2.0%)   

5.7693×10-13 m2.s-1   
(error: 12.3%)     

Full model –  
with 2.5% noise  

5.6257 F.m-1  
(error: 9.9%)  

8.3023×10-13  m2.s-1    
(error: 61.7%)    

Reduced model -   
with 2.5 % noise    

5.7229 F.m-1   
(error: 11.8%)  

8.5180×10-13  m2.s-1     
(error: 65.9%)   

 

 

 

Figure 7: Cost function plot results using the full model       

 
 

 
 

Figure 8: Cost function plot results using the reduced model     

 



  

From the sensitivity analysis it was concluded that Cdl 

affects the behaviour of both of the models more than D. In 
contrast the diffusion coefficient D shows signs of non-
identifiability, which is coherent with the implications from 
the sensitivity analysis that Cdl is the most influential 
parameter on the shape of the Bode plots.   

The implications from the results obtained in the analysis 
of the parameter estimation results are that in a conservative 
design of controllers the value of Cdl is the only parameter 
that can be designed for confidently. The results also show 
that D would need further study to estimate confidence 
intervals around the estimated value so that designs can be 
adequately conservative. A study in to achieving confidence 
intervals for the parameters estimated would require more 
sophisticated parameter estimation techniques.    

V. CONCLUSIONS     

The objective of this study was to find non-identifiability 
issues using the tri-layered conjugated polymer actuator 
displacement model used in [13] in order to treat estimates 
that can be trusted as deterministic and use stochastic 
formulations when dealing with estimates that cannot be 
trusted (when the Bayesian cost function has an entire region 
of minima, e.g., a line or a valley). The two uncertain 
parameters are the diffusion coefficient (D), and the double-
layer capacitance (Cdl), which are difficult to measure 
directly. The parameter estimation method used in this study 
was a Bayesian approach similar to the one developed by 
Blanchard et al. [14, 15] which has been proven to identify 
zones of non-identifiability [14]. Since the full model used in 
[13] is not suitable for real-time control purposes and is 
approximated by a reduced form of the model [13]. The 
similar results obtained with both models indicates that the 
model developed by Nguyen et a. [13] might be an efficient 
model for control purposes with the potential of improving 
results obtained in [11].  

Results indicate that for controllers to be designed 
effectively using this model, the double-layer capacitance is 
the best known parameter and should therefore be designed 
for with greater confidence in its value, while the controller 
should be much more robust with respect to the diffusion 
coefficient, which should be treated as a stochastic variable 
for a certain range of possible values.      

The results presented in his paper will need to be validated 
using experimental data. Future work will also include the 
use of the polynomial chaos theory coupled with the 
Bayesian approach. Typical runtimes for the resolutions 
shown in Figs. 7-8 (grids of 200x200x200) were between 15 
and 30 minutes (13 sample frequencies were used). With the 
polynomial chaos theory, results for a similar resolution 
would probably easily be obtained within a few seconds or 
even less [14, 15], which would also enable the use of higher 
sample frequencies if needed.    
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