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The Effect of Sulfur Concentration in Liquid Iron on Mineral
Layer Formation During Coke Dissolution

MICHAEL W. CHAPMAN, BRIAN J. MONAGHAN, SHARON A. NIGHTINGALE,
JOHN G. MATHIESON, and ROBERT J. NIGHTINGALE

The effects of sulfur concentration in liquid iron on mineral layer development between coke
and iron as coke dissolves in a 2 mass pct carbon-iron liquid have been investigated at 1773 K
(1500 �C). The initial sulfur in iron concentrations used ranged from 0.006 to 0.049 mass pct.
Key findings include that the two-stage dissolution behavior exhibited in the carbon transfer
from coke to iron, as reported in a previous study by the authors, at low initial sulfur in iron
contents, was also apparent at the higher values used in this study. This two-stage behavior was
attributed to a change in the mineral layer density as a result of changes in mineral morphology
at the interface. In addition to confirming the two-stage behavior of the carbon-transfer kinetics
at the higher sulfur concentration in iron levels, after a period of time, a solid calcium sulfide
layer formed on the mineral layer. The sulfide layer formed after approximately 40 minutes, and
the proportion of sulfide in the mineral layer increased with increased experimental time and
initial sulfur concentration in iron. It was usually found at the iron side of the mineral layer
and was associated with calcium-enriched calcium aluminates. Thermodynamic analysis of this
layer confirmed that the sulfide is stabilized as the mineral layer is enriched by calcium.

DOI: 10.1007/s11663-011-9519-0
� The Minerals, Metals & Materials Society and ASM International 2011

I. INTRODUCTION

COKE is a key reagent in blast furnace iron
production. It is the primary reductant of the ore, the
fuel for the furnace smelting, used to control the gas
permeability required for high blast furnace iron pro-
duction rates, and the source of carbon in the liquid
iron.[1] This investigation is focused on the coke–iron
reactions occurring in the blast furnace hearth below the
slag layer where coke is immersed in liquid iron. Liquid
iron entering this region contains more than 2 mass pct
carbon and picks up its final carbon while percolating
though the coke-packed bed in the deadman and hearth
regions of the blast furnace.[1]

Metallurgical coke typically contains 8 to 12 mass pct
of inorganic mineral matter.[2] As coke dissolves into the
liquid iron, the insoluble components of this inorganic
mineral matter can potentially form a layer at the coke–
iron interface, inhibiting carbon dissolution.[3–14] Recent
studies by the current authors[4,5,7] have demonstrated a
link between coke dissolution kinetics and the morphol-
ogy of the mineral layer formed at the interface. Phase

morphology is partly a function of composition and it is
therefore expected that morphology effects of the
mineral layer at the interface will be a function of the
coke mineral composition. Details of sulfide formation
in the mineral layer were not discussed in the previous
articles but are elaborated on as the main subject of this
study.

A. Previous Work

Few data exist on the form, composition, and
morphology of the layer that forms during coke
dissolution in liquid iron. Recent studies by the current
authors[4,5,7] have related measurements and observa-
tions of the composition and morphology of the mineral
layer formed at the coke–liquid iron interface to the rate
of coke dissolution. The mineral layer formed was
primarily a calcium aluminate that progressively became
enriched in calcium as the dissolution reaction pro-
ceeded. The calcium enrichment led to a change in
morphology of the mineral layer that in turn slowed the
rate of coke dissolution[4] in a step change.
Information on what type of layer forms on the coke

as the dissolution reaction proceeds comes from an
excellent study by Gudenau et al.,[8] who present data
on the ash (mineral matter) found on the surface of coke
particles dipped in liquid iron and from sessile drop
studies.
In other liquid iron sessile drop studies, performed by

Sahajwalla et al.,[9–11,14] a drop of liquid iron was
reacted with a carbonaceous substrate, and an ash
(mineral) layer formed at the iron–carbonaceous mate-
rial interface. General observations of the droplet
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surface in these studies indicated that the ash (mineral)
layer at the interface was initially rich in Al2O3;
however, as the reaction time increased, the proportion
of CaO increased—in some cases, in excess of that
expected from coke ash composition alone.[9] Sulfur also
was concentrated at the interface as a complex iron
calcium sulfide.

In the coke dissolution literature, general agreement
persists that sulfur has a retarding effect on the rate of
carbon dissolution in liquid iron. However, the mech-
anism has not been conclusively determined. Possible
mechanisms suggested in the literature fit into the
following broad groups:

(a) Sulfur influences the physical properties of the liquid
iron—specifically the kinematic viscosity, carbon
diffusivity, and carbon saturation, the effect of
which is manifested in a reduced carbon dissolution
rate.[13,15,16]

(b) A reduction in the available surface area is caused
by the adsorption of surface-active sulfur atoms at
the reaction interface physically limiting the sites
available for carbon dissolution.[17–22]

(c) Other interfacial effects as demonstrated by the
presence of sulfur in the liquid iron decrease
the wettability of the iron on the carbonaceous
surface.[23]

Determining how the sulfur affects coke dissolution in
iron is beyond the scope of this study. The focus of this
study was to characterize and explain the sulfur con-
centration in iron effects on mineral layer formation at
the coke–iron interface.

B. Experimental

1. Experimental procedure
A series of coke (carbon) dissolution experiments

were conducted in which 35 g of crushed coke
(–2 mm+0.5 mm) was added directly to the top surface
of 572 g of liquid iron 2 mass pct carbon alloy. The
liquid iron was frequently sampled with a 1-mm inner
diameter quartz tube over a period of 3 hours. The
experiment was carried out in a dry argon atmosphere
with a flow rate of 0.72 L/min. These experiments were
conducted at 1773 K (1500 �C) using iron with three
different initial sulfur concentrations. The temperature
and sulfur levels were chosen to replicate what might be
expected in the lower zone deadman area of a blast
furnace.

A complementary series of quenched coke (carbon)
dissolution experiments was performed in which 10 g of
crushed coke (–2 mm+0.5 mm) were added directly to
the top surface of 164 g of liquid iron 2 mass pct carbon
alloy. The liquid iron plus coke were held at temperature
for a period of time ranging from 5 to 150 minutes.
Afterward, the crucible containing the liquid iron and
coke was quenched by lowering it into a water-cooled
stainless steel quenching chamber fitted to the bottom of
the furnace. The experiment, including the quenching,
was carried out in a dry argon atmosphere. The argon
gas flow rate during the experiment was 0.94 L/min and
was increased to 9.4 L/min during quenching. After

quenching, the samples were sectioned and prepared for
electro-optical examination. As with the dissolution
experiments, the quenched experiments were conducted
at 1773 K (1500 �C) with liquid iron containing different
initial sulfur concentrations. A schematic of the furnace
and sample configuration is given in Figure 1. A
schematic comparison of the samples used in both series
of experiments is given in Figure 2. Additional details of
the experimental method, raw materials, and sample
preparation are available elsewhere.[4,5]

Carbon and sulfur analysis was performed using a
LECO CS-444 analyzer (LECO Corporation; Saint
Joseph, MI), whereas other elemental analysis of the
iron was performed by atomic emission spectroscopic
methods in the metallurgical laboratories of BlueScope
Steel Ltd. (Port Kembla, Australia, and Spectrolab M8;
Spectro Analytical Instruments, Kleve, Germany).

2. Raw materials
The iron carbon alloy was prepared in situ before the

carburizer was added by melting appropriate amounts
of electrolytic iron and coarsely crushed spectrographic-
grade graphite rod and iron(II) sulfide powder to
achieve a 2 pct carbon-iron alloy with a nominal sulfur
level of 0.006 pct (no FeS), 0.03 pct, and 0.05 pct prior
to the addition of the coke. The iron alloy compositions
used in this study are given in Table I. Melting was
achieved by heating the iron and graphite to 1813 K
(1540 �C) for 10 minutes before cooling to the experi-
mental temperature of 1773 K (1500 �C).

Fig. 1—Schematic of furnace configuration used in the quenched
coke dissolution experiments.
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The coke samples used were provided by BlueScope
Steel and contained approximately 0.4 to 0.45 mass pct
sulfur, 1.5 pct volatile matter, and 11.6 mass pct inor-
ganic mineral matter. The inorganic mineral matter
principally consisted of oxides that could be considered
refractory in nature. A detailed oxide composition,
measured by X-ray fluorescence, of the residue after
combustion in air at 1088 K (815 �C) is given in
Table II.

The lump coke was coarsely crushed to –20 mm in a
jaw crusher, and then was crushed again in a roll crusher
to obtain the desired –2-mm+0.5-mm size fraction
used. The 2-mm maximum size was selected to minimize
any effects on coke dissolution caused by the presence of
large cracks and fissures present in coke, whereas the
0.5-mm minimum size prevents the coke from being
entrained in the furnace exhaust gas stream when added.

Immediately prior to use, the coke was dried by
heating it to 383 K (110 �C) for 60 minutes. After

drying, the coke was subjected to a roughing vacuum
and purged with argon to minimize the amount of
entrained air entering the furnace with the coke.

3. Quenched sample preparation
The crucibles containing the iron alloy and coke from

the quenched experiments were impregnated with a
liquid resin under vacuum to preserve the coke–metal
interface during sectioning. The bottom section of the
crucible was removed and iron samples were machined
from the iron block for analysis. A vertical cut was made
across the center of the sample exposing the coke–metal
interface. The sample was mounted in epoxy resin and
prepared for scanning electron microscopy (SEM)
analysis.

4. Assessment of interfacial mineral layer
SEM analysis, involving electro-optical imaging,

X-ray mapping, and energy-dispersive spectroscopy
(EDS) analysis performed over large areas of the
coke–iron interface from the quenched series of exper-
iments. It was assumed that the condition of the
solidified interfacial region was representative of the
high-temperature phenomena occurring at the coke–
iron interface immediately prior to quenching. The
reported mineral matter compositions are derived from
EDS analysis of the quenched samples.

II. RESULTS/DISCUSSION

A. Mineral Layer Formation and Its Effect
on Dissolution Kinetics

The carbon dissolution kinetics and the mineral layer
formation in the system studied have been discussed in
detail elsewhere.[4,5] What follows is a brief summary of
the mineral layer formation as presented in these articles
and new data relating to sulfur in the liquid iron as well

Fig. 2—Schematic showing experimental samples used for (a) quenched coke dissolution experiments and (b) coke dissolution experiments.

Table I. Initial Iron Alloy Compositions in Mass Pct
and Carbon Saturation Value at 1773 K (1500 �C)

[C] [S] [Si] [Ti] [Mn] [C]sat 1500
[24]

2.01 0.006 5.17
2.03 0.032 0.04 0.029 0.03 5.13
2.04 0.049 5.12

Table II. Composition of the Oxide Components
of the Mineral Matter Present in the Coke in Mass Pct

SiO2 Al2O3 Fe2O3 CaO P2O5

54.8 32.3 4.9 2.9 1.42

MgO K2O TiO2 Na2O Mn3O4

1.0 0.51 1.4 0.38 0.05
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as its influence on the kinetics of carbon dissolution and
sulfide formation not previously presented.

For the system being studied, it has been established
that, as the coke dissolution reaction proceeds, a mineral
layer was formed at the coke–iron interface. This
mineral layer primarily consisted of alumina and the
calcium aluminates CA6, CA2, and CA, where C
represents CaO and A represents Al2O3.

Furthermore, it has been established that the pre-
dominant structure of this layer changes from a loose
agglomerate of mostly alumina particles to an open
porous network of acicular particles (needles). The
needles remain alumina rich but now contain calcium
oxide in the form of CA6. Continued dissolution of the
coke increases the calcium enrichment of the layer.
During this calcium enrichment, the layer retains a
relatively open structure as the fine CA6 needles are
progressively replaced by a coarser CA2 structure.
However, additional calcium enrichment of the layer,
and the appearance of the CA phase is accompanied by
densification of the mineral layer.

It also was observed that the change from an open to
a dense layer coincides with significant slowing of the
rate of coke dissolution in iron. It was argued[4] that
formation of the dense layer inhibits carbon transfer to
the liquid iron by reducing the contact area between the
coke and the iron.

It should be noted, however, that, as coke dissolves in
iron, mineral phases present within the coke are being
exposed and interact with the existing mineral layer and
the liquid iron. This exposure results in a phase and
concentration gradient in the layer at all experimental
times. Therefore, although, for example, a CA2/CA
layer might be predominant, it is expected that the layer
will contain some quantity of calcium aluminates that
are lower in calcium (e.g., CA6) and alumina as well as a

potentially small quantity of calcium aluminates that are
higher in calcium (e.g., C12A7), although no evidence of
any liquid phase being present at the iron–coke interface
was observed in quenched samples. The concept of layer
development is well illustrated in Figure 3.
Although the predominant phases present in the

mineral matter layers shown in Figures 3 through 6
are alumina and calcium based, evidence also was found
of sulfide formation contributing to the interfacial
mineral layer. The sulfide layer formed exclusively on
the iron side of the interface. It is assumed that the
observed sulfide phase is primarily calcium sulfide CaS.
The basis for this assumption is that sulfur, where
evident in Figures 4 through 6, is associated with the
calcium in the X-ray maps, not the aluminum or iron.
As indicated in Table III, the appearance of the

sulfide phase that contributes to the mineral layer is
delayed until approximately 40 minutes after the coke is
added to the liquid iron. Before this time, although
discrete sulfide particles are sometimes found in the
mineral layer, the mineral layer is essentially free of
sulfur. The observed discrete particles are not necessar-
ily on the iron side of the interface and are typically
associated with aluminum and silicon as well as calcium.
Discrete sulfide mineral particles are present in the
unreacted coke. Their initial presence at the interface is
explained most readily by their exposure as a result of
dissolution of the coke’s carbonaceous matrix rather
than a reaction leading to the development of a sulfide
layer at the interface.
As indicated in Table III, once the sulfide layer had

formed after approximately 40 minutes, the proportion
of sulfide in the mineral layer increased with increased
experimental time and the initial sulfur concentration of
the liquid iron. Typical images of the coke–iron interface
depicting the increasing proportion of sulfide in the

Fig. 3—Mineral layer at 1773 K (1500 �C) and 10 min showing composition and phase gradient through a section of the mineral layer. The scale
bar is 30 lm and [S]o = 0.006 mass pct.
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mineral layer and the progression from a fine layer of
sulfide, to a continuous thicker sulfide layer, to a sulfide
layer that has significantly replaced the original calcium
aluminate layer are shown in Figures 4 through 6.

B. Carbon Transfer

Carbon pick-up from coke in the liquid iron under the
three different initial sulfur levels is shown in Figure 7
for both the dissolution series and the quenched series of
experiments. Good agreement is noted in the level of
carbon pick-up with time between the two experimental
methods employed in this study. This agreement indi-
cates that the same factors affecting the carbon transfer
from coke to iron are active in both sets of experiments.

It is apparent from the data presented in Figure 7 that
the increased initial sulfur level in the liquid iron
decreased the carbon transfer from the coke to the iron.
This finding is consistent with most other studies on
coke dissolution into iron.[13,15–23]

C. Coke Dissolution Kinetics

Coke dissolution into iron is generally described as
being limited by liquid-phase mass transfer of carbon in
iron. The mass-transfer coefficient km for such a process
can be found from the slope of a plot of the left-hand
side of Eq. [1] against time. Plots for the coke dissolu-
tion data with the initial sulfur levels of 0.006, 0.03, and
0.05 mass pct are given in Figure 8. The straight lines in

Fig. 4—SEM and X-ray maps of mineral layer showing a ‘‘fine sulfide layer’’ at 1773 K (1500 �C) Quenched after 60 min for
[S]o = 0.006 mass pct. The scale bar is 30 lm.

Fig. 5—SEM and X-ray maps of mineral layer showing a ‘‘thick sulfide layer’’ at 1773 K (1500 �C) Quenched after 90 min for
[S]o = 0.03 mass pct. The scale bar is 20 lm.
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Figure 8 represent linear regions of the plot, the slopes
of which are graphical representations of the rate
constant km (m/s). Equation [1] is expressed as follows:

V

A
ln
½C�sat � ½C�o
½C�sat � ½C�bulk

� �
¼ kmt ½1�

where V (m3) is the liquid iron volume, A (m2) is the
contact area between the iron and the coke, and [C]sat
is the carbon saturation level in iron in mass pct—
calculated using the initial iron alloy compositions and
the thermochemical software package MTDATA[24] and
reported in Table I. [C]o is the initial carbon level in iron
in mass pct, [C]bulk is the bulk carbon level in liquid iron
in mass pct, and t is time.

Figure 8, shows that a significant change occurs in km,
the rate constant, after a period of time for all initial

sulfur levels. The change in km, a decrease in the slope,
represents a decrease in the rate of coke (carbon)
dissolution into the iron. The change in km has been
interpreted as a change in the kinetic regime controlling
the dissolution of carbon from the coke.
Previously published results for the low initial sulfur

concentrations in iron ([S]o = 0.006 pct)[4,5] indicated
that the dissolution reaction had effectively stopped
after the densification of the mineral layer at 1773 K
(1500 �C), indicated by a flattening of the second stage
of the plot. This change in km was explained in terms of
changes in the available contact area between the coke
and the iron as the mineral layer developed and its
morphology changed,[4] However, Figure 8 represents
significantly more data, (aggregated data for two runs)
and longer timescales than previously presented. Reeval-
uation of the carbon dissolution rates for the low initial

Fig. 6—SEM and X-ray maps of mineral layer showing a ‘‘thick sulfide layer replacing the original calcium aluminate layer’’ at 1773 K
(1500 �C). Quenched after 90 min for [S]o = 0.05 mass pct. The scale bar is 20 lm.

Table III. Observations of the Mineral Layer Formed at the Coke-Iron

Dissolution
Time (min)

[S]o* = 0.006 Mass Pct [S]o = 0.03 Mass Pct [S]o = 0.05 Mass Pct

Predominant
CAx Phases
Observed

Observations
of Sulfide
Layer

Predominant
CAx Phases
Observed

Observations
of Sulfide
Layer

Predominant
CAx Phases
Observed

Observations
of Sulfide Layer

5 A+CA6 No� —� — — —
10 CA6+CA2 DP§ CA6+CA2 No CA6+CA2 No
30 CA6+CA2 DP CA6+CA2 DP CA6+CA2 DP
40 CA2+CA FL– CA2+CA FL CA2+CA6 FL
60 CA2+CA FL CA2+CA FL CA2+CA TL**
90 CA2+CA FL CA2+CA TL CA2+CA VTL��

120 CA2+CA TL CA2+CA — — —
150 CA2+CA TL CA2+CA VTL — —

*[S]o is initial liquid iron sulfur concentration.
�— is no sample obtained.
�No is no sulfide observed.
§DP is discrete sulfide particles observed.
–FL is a fine sulfide layer observed on iron side of the coke–iron interface.
**TL is a thick continuous sulfide layer observed on iron side of the coke–iron interface.
��VTL is a thick continuous sulfide layer observed at the coke – iron interface and that the calcium aluminate layer has been significantly replaced

by the sulfide layer.
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sulfur concentration experiments at 1773 K (1500 �C)
with this new data indicated that, although the reaction
slowed, it did not stop.
The time at which the change in the rate constant km

occurs increased with an increased initial sulfur level.
The change in kinetic regimes occurred at approximately
40 to 45 minutes for the low sulfur alloy, increasing to
approximately 50 and 60 minutes for the 0.03 and
0.05 mass pct S alloys, respectively. However, the car-
bon levels at which the change occurs was relatively
constant, at 3.13, 3.15, and 3.10 mass pct, respectively.
Thus, the amounts of carbon dissolved from the coke
are similar for each iron alloy. Therefore, the amount of
mineral matter exposed to the coke–metal interface is
expected to be similar at the point of change, and thus,
the mineral layer should be similar both in terms of
composition and structure. This similarity was observed
in the SEM analysis of the mineral layer at the three
different sulfur levels as presented in Table III.

D. Sulfur Transfer

Sulfur transfer to the liquid iron as a function of time
can be inferred from Figure 9. The sulfur transferred to
the iron is derived solely from the coke. Work done by
Cham et al.[3] found that under these conditions the rate
of sulfur transfer is related to the amount of coke
dissolved and thus to carbon transfer. If this is true, then
it can be expected that sulfur pick-up could be expressed
as the following mass pct ratio:

Mass pct ratio ¼ D ðpct SÞ
D ðpctCÞ ½2�

From the coke used in this study, the ratio would be
in the range of 0.0045 to 0.0051. However, at least two
distinct carbon-transfer (kinetic) regimes are present in
the system being studied, and these regimes have a
significant effect on the carbon dissolution from the
coke. The early fast carbon-transfer kinetic regime with
an open mineral layer structure is referred to as stage I.
The later and slow carbon-transfer kinetic regime with a
dense mineral layer is referred to as stage II. In the
[S]o = 0.05 pct iron, a drop occurs in the sulfur
concentration at times greater than approximately
120 minutes. This finding also will be examined in the
context of the mineral layer formation. The sulfur pick-
up in the iron per mass pct carbon pick-up, for stage I
and II, has been calculated and is given in Table IV. The
values for sulfur pick-up at the change in kinetic regimes
is an average of three samples (from the dissolution
series of experiments), using the iron composition at the

Fig. 7—Carbon pick-up vs time for quenched and nonquenched coke
dissolution at 1773 K (1500 �C).

Fig. 8—Mass-transfer control plots for coke dissolution at 1773 K
(1500 �C) and various initial sulfur in iron levels.

Fig. 9—Sulfur concentration in the metal as a function of dissolu-
tion time at 1773 K (1500 �C).

Table IV. The Liquid Iron Sulfur Pick-Up and Mass Pct Ratio (Eq. [2]) Values for Stage I and Stage II

(Pct S)o

Stage I Stage II

D (Pct C) D (Pct S) Mass Pct Ratio D (Pct C) D (Pct S) Mass Pct Ratio

0.006 1.12 0.005 0.0045 0.77 0.002 0.0026
0.03 1.12 0.005 0.0045 0.58 0.000 0.0000
0.05 1.06 0.006 0.0057 0.42 �0.001 �0.0023
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time closest to the change in kinetic regimes and that of
the samples before and after. The values for the final
iron carbon and sulfur are those of the average values
for the last three samples taken at 150, 165, and
180 minutes.

It is apparent from the mass pct ratio (Eq. [2]) that,
during the initial stage of coke dissolution (stage I),
sulfur transfer to the iron closely matches the expected
pick-up based on a simple mass balance based on
carbon transfer. However, as the mineral layer develops
(stage II) and becomes richer in calcium, the simple mass
balance based on carbon transfer breaks down as the
expected sulfur in the iron is not observed. This
‘‘missing’’ sulfur is observed in the mineral layer and
generally only at the iron side of the mineral layer. It is
not clear whether the sulfide formed at the iron side of
the mineral layer formed directly or after dissolution
followed by desulfurization. The dropping off of [S] in
Figure 9 for the high [S]o iron late in the experiment is
supportive of the desulfurization mechanism, but not
definitive. Regardless of the sulfide formation layer
mechanism, it is clear from Table III and the micro-
graphs that the conditions at the mineral layer–
iron interface, when higher calcium aluminates are
present—particularly the CA phase—promote calcium
sulfide formation.

E. Thermodynamic Considerations

Employing relevant thermodynamic data on the
activity of calcium oxide ahCaOi to represent changes in
the mineral layer as it develops through the range of
calcium aluminates observed, sulfide layer formation,
(assumed to be hCaSi formation) can be represented as
follows:

CaOh i þ S½ � ¼ CaSh i þ O½ � ½3�

where h i and [ ] represent solid and in solution in the
liquid iron, respectively. The Gibbs free energy for
Eq. [3], under the prevailing experimental conditions
found at the mineral layer–iron interface, can be ana-
lyzed with the following equation:

DG ¼ DG� þRT ln
ahCaSih½O�
ahCaOih½S�

� �
½4�

where DG� is the standard Gibbs free energy, T is the
temperature in K, R is the gas constant, and a and h are
activities of the species based on a pure reference and
Henrian 1 weight pct reference states, respectively.

The following equation is used to calculate the DG�

and was obtained using the Gibbs free energy relations
in Table V:

DG� ¼ 371; 510� 199:36T J=mol ½5�

The ahCaOi in Eq. [4] for the calcium aluminates was
obtained from MTDATA,[24] using hCaOi as a reference
state, and is given in Figure 10.

The DG in Eq. [4] has been calculated for three
experimental conditions (compositions) for each [S]o
studied. The first condition is the initial iron alloy

composition. The second condition is the iron alloy
composition after 30 minutes. This condition corre-
sponds to a period when the mineral layer is predom-
inately the CA2 calcium aluminate. The third condition
is based on the iron alloy composition at the onset of
stage II, when the carbon dissolution starts to slow. This
period is also when the formation of the calcium
aluminate CA is observed. The iron alloy compositions
used are given in Table VI. The DG values calculated
from Eq. [4] are given in Figure 11. Negative DG values
indicate that hCaSi formation is thermodynamically
favored, whereas a positive value indicates its formation
of is not thermodynamically favored under the exper-
imental conditions.
The calculations presented in Figure 11 were made

assuming that the hCaSi was pure and therefore had an
activity of 1 and that the [S] showed an ideal Henrian
behavior. The value of h[O] was calculated from the
Gibbs free energy of reaction for the following equation,
assuming pco = 1 atm and the carbon activity calcu-
lated from the liquid iron composition[26]:

C½ � þ O½ � ¼ COð Þ ½6�

In Figure 11, the shading represents the calcium
aluminates that are observed experimentally at the
coke–iron interface for the three conditions (composi-
tions) considered. Figure 11 shows that, under the
prevailing experimental conditions for all [S]o, that
sulfide formation is favored when CA is present in the
mineral layer. This analysis of the DG for Eq. [4] is

Table V. Tabulated Thermodynamic Data[25]

Reaction Gibbs Free Energy (J mol–1)

½(O2) = [O]* DG� = –115,750 – 4.63T
½(S2) = [S] DG� = –135,060+23.43T
hCigraphite = [C] DG� = 22,594 – 42.26T
{Ca}+½(O2) = hCaOi DG� = –900,300+275.1T
{Ca}+½(S2) = hCaSi DG� = –548,100+103.8T
hCigraphite+½(O2) = (CO) DG� = –114,400 – 85.8T
[C]+ [O] = (CO) DG� = –21,244 – 38.91T

*() and { } represent gas and liquid state.

Fig. 10—The activity of hCaOi as calculated using MTDATA.[24]
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consistent with the experimental observations as pre-
sented in Table III. For calculations of the 0.05 pct [S]o
liquid iron in the third condition 3, hCaSi formation is
also possible when CA2 is present. This finding is also
consistent with the experimental observations given in
Table III where a fine layer of sulfide was identified at
40 minutes in the presence of CA2 and CA6.

In other experimental works, such as the liquid iron
on coke sessile drop measurements,[9–11,14] a sulfide layer
also was reported. This type of measurement necessi-
tates a low iron-to-coke mass ratio that can cause large
changes in the liquid-iron composition for short reaction
times and little carbon and sulfur transfer. Because
Figure 11 also shows that the liquid iron composition
for all three conditions affects the sulfide stability, care
must be taken when comparing sessile drop measure-
ments with coke dissolution investigations such as those
reported in this study.

III. CONCLUSIONS

In an experimental study on the effects of initial sulfur
concentrations in liquid iron on mineral layer formation
at the coke–iron interface during coke dissolution, a
two-stage dissolution behavior was exhibited in the
carbon transfer from coke to iron at low initial sulfur in

iron levels as reported by the authors in a previous
study.[4] The mineral layer that formed at the interface
was predominately a calcium aluminate that became
progressively enriched with calcium. Furthermore, at
times greater than approximately 40 minutes, and after
the establishment of an enriched calcium aluminate
layer formation, a sulfide layer formed at the iron side of
this mineral layer. The composition of this sulfide layer
indicates that it is principally a calcium sulfide layer.
Thermodynamic analysis of the experimental results

confirmed that the calcium-enriched calcium aluminates
formation was necessary to stabilize the calcium sulfide
layer for the coke composition studied.
Furthermore, the addition of sulfur to the iron

reduced the coke dissolution rate.
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