Reappraisal of uranium-series isotope data in Kamchatka lavas: implications for continental arc magma genesis

Anthony Dosseto
University of Wollongong, tonyd@uow.edu.au

Simon Turner
Macquarie University

Publication Details
Reappraisal of uranium-series isotope data in Kamchatka lavas: implications for continental arc magma genesis

Abstract
Uranium-series isotopes can be used to determine constraints on the timescale of slab dehydration and melt production at subduction zones. However, interpretations of U–Th–Ra data suggest very different timescales of slab dehydration. Here, we present new U–Th–Ra data from Kamchatka along with a number of alternative models for production of radioactive disequilibrium. Variations in (226Ra/230Th) and (231Pa/235U) activity ratios are best explained by crystal fractionation with host rock assimilation for a duration of less than c. 6000 years. The association of the largest 226Ra excesses with high Sr/Th in the most primitive lavas suggests that Ra–Th fractionation is controlled by slab dehydration less than 10 ka ago. We show that U–Th data can be explained by dynamic melting of a recently (<10 ka) metasomatized mantle wedge. Dynamic melting of an oxidized source metasomatized several hundreds of thousands of years ago cannot produce significant 231Pa excess. Because 238U–230Th disequilibrium is inferred to be controlled by partial melting, there is no requirement for multi-stage slab dehydration commencing ∼150 ka. We suggest that Ra–Th disequilibria constrain the timing of slab dehydration, whilst U–Th fractionation is dominated by partial melting, at least at the Kamchatka arc.

Keywords
magma, arc, continental, implications, lavas, genesis, kamchatka, reappraisal, data, isotope, series, uranium

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/1357
Reappraisal of uranium-series isotope data in Kamchatka lavas: implications for continental arc magma genesis

Anthony Dosseto1,* and Simon Turner2

1 Wollongong Isotope Geochronology Lab, GeoQuEST Research Centre, School of Earth and Environmental Sciences. University of Wollongong. Northfields Avenue, Wollongong NSW 2522 Australia

2 GEMOC Centre, Department of Earth and Planetary Sciences. Macquarie University. North Ryde NSW 2109 Australia

* corresponding author: tonyd@uow.edu.au

4120 words
62 references
2 tables
6 figures
Abstract

Uranium-series isotopes can be used to determine constraints on the timescale of slab dehydration and melt production at subduction zones. However, interpretations of U-Th-Ra data suggest very different timescales of slab dehydration. Here, we present new U-Th-Ra data from Kamchatka along with a number of alternative models for production of radioactive disequilibrium. Variations in \(^{226}\text{Ra}/^{230}\text{Th}\) and \(^{231}\text{Pa}/^{235}\text{U}\) activity ratios are best explained by crystal fractionation with host rock assimilation for a duration of less than \(\sim 6,000\) years. The association of the largest \(^{226}\text{Ra}\) excesses with high Sr/Th in the most primitive lavas suggests that Ra-Th fractionation is controlled by slab dehydration less than 10 ka ago. We show that U-Th data can be explained by dynamic melting of a recently (<10 ka) metasomatized mantle wedge. Dynamic melting of an oxidised source metasomatized several hundreds of thousands of years ago cannot produce significant \(^{231}\text{Pa}\) excess. Because \(^{238}\text{U}/^{230}\text{Th}\) disequilibrium is inferred to be controlled by partial melting, there is no requirement for multi-stage slab dehydration commencing \(\sim 150\) ka. We suggest that Ra-Th disequilibria constrain the timing of slab dehydration, whilst U-Th fractionation is dominated by partial melting, at least at the Kamchatka arc.
Over the past twenty years, uranium-series isotopes have been used to quantify the timescale of magmatic processes (e.g. Bourdon et al. 2003; Dosseto et al. 2010). This is because isotopes of the uranium decay chains fractionate during magma production and differentiation, and their abundance is time-dependent. Thus, radioactive disequilibrium in the ^{238}U-^{230}Th-^{226}Ra and ^{235}U-^{231}Pa systems measured in volcanic rocks that have undergone little differentiation (or for which differentiation can be accounted for) can be modelled to constrain conditions of partial melting (e.g. melting rate, porosity; McKenzie 1985; Rubin and Macdougall 1988; Spiegelman and Elliott 1993; Sims et al. 1995; Sims et al. 1999; Asmerom et al. 2000; Spiegelman 2000; Zou and Zindler 2000; Landwehr et al. 2001; Sims et al. 2002; Bourdon et al. 2003; Dosseto et al. 2003; Rubin et al. 2005; Turner et al. 2005; Stracke et al. 2006; Petford et al. 2008; Sims et al. 2008; Bourdon and Elliott 2010). Radioactive disequilibrium in co-genetic volcanic rocks can also be used to model rates of crystallisation, since disequilibrium generally decreases over timescales similar to that of magma differentiation. Previous studies have inferred crystallisation rates ranging from 10^{-5} to 6×10^{-4} yr$^{-1}$ (Sigmarsson 1996; Turner and Hawkesworth 1997; Turner et al. 1999; Cooper et al. 2001; Turner et al. 2001; Cooper and Reid 2003; Rogers et al. 2004; Blake and Rogers 2005; Peate 2005; Sigmarsson et al. 2005; Price et al. 2007; Touboul et al. 2007; Dosseto et al. 2008; Dosseto and Turner 2010). Moreover, in subduction zones, U-series isotope disequilibrium can be used to constrain the timing of slab dehydration under the volcanic arc (e.g. Elliott et al. 1997; Hawkesworth et al. 1997; Turner and Hawkesworth 1997; Turner et al. 1999; Turner et al. 2001; Thomas et al. 2002; Bourdon et al. 2003; Dosseto et al. 2003; Reagan et al. 2006; Tepley III et al. 2006; Huang et al. 2008; DuFrane et al. 2009): previous studies have argued that excess of uranium-238 (^{238}U) over thorium-230 (^{230}Th) in arc lavas requires that slab dehydration occurs over timescales of tens to hundreds of thousands of years (e.g. Turner and Hawkesworth 1997). However, the observation of radium-226 (^{226}Ra) excesses over thorium-230 (^{230}Th) suggests that slab-derived fluids have been added less than 10,000 years before eruption, implying fast melting rates and rapid magma transport towards the surface (10’s of m/yr; Turner et al. 2001). In one model, the apparent discrepancy in ages of slab dehydration from ^{230}Th-^{238}U and ^{226}Ra-^{230}Th disequilibria was resolved by multi-stage slab dehydration, where ^{226}Ra-^{230}Th disequilibrium reflect the last increments of fluid addition (Turner et al. 2000).

In the Kamchatka arc, Dosseto et al. (2003) suggested that lava compositions are best explained by mixing between a melt derived from slab melting, that has a ^{230}Th excess, and a melt produced during partial melting of the metasomatized mantle, that has ^{238}U and ^{226}Ra excess. Based on the inferred end-member composition of the mantle-derived melt, they proposed that the mantle was hydrated during two episodes of slab dehydration at 150 ka and <10 ka. However, a subsequent study by Turner et al.
U-series isotopes in Kamchatka (2007) did not observe 230Th excesses in the same Kamchatka lavas. Although the potential absence of 230Th excess would not affect conclusions on the timing of slab dehydration and production of melts in the mantle, this could preclude the existence of a slab-derived melt and this has motivated us to re-visit the samples analysed by Dosseto et al. (2003). The new U-Th-Ra data are discussed from the perspective of the on-going debate on the apparent discrepancy between the slab dehydration timescales derived from 238U-230Th and 226Ra-230Th disequilibria (e.g. Turner et al. 2007; DuFrane et al. 2009; Avanzinelli et al. 2012).

Study area and geochemistry of samples

The Kamchatka Peninsula is located in the north-western corner of the Pacific Ocean, where the Pacific plate, with an age of 80-90 Ma, subducts under the Eurasian plate at rate of 9 cm/yr and with a dip angle of 49° (Fig. 1; DeMets et al. 1990). The Kamchatka arc is one of the most active volcanic arcs in the world, with the Kliuchevskoi volcano alone erupting ~55 x106 tons of magma per year (Melekestsev et al. 1991). Both tholeiitic and calc-alkaline lavas are produced, with lithologies varying from high-magnesian basalts to dacites and rhyolites. Radiogenic isotope compositions preclude any significant involvement of sediments in the source of the magmas (Kersting and Arculus 1995) but a significant contribution from a slab-derived fluid is inferred. This, along with the observation of enrichment in Large Ion Lithophile Elements (LILEs), suggests that the magmas are derived from partial melting of hydrated peridotite.

The samples analysed here are the same as those presented in Dosseto et al. (2003) and were collected within a 50-km diameter area from the Kliuchevskoi, Bezymianny and Tolbachik volcanoes (Fig. 1). These volcanoes are located in the Central Kamchatka Depression (CKD), one of the three volcanic regions of the peninsula. Samples analysed are two basalts from Kliuchevskoi, three from Tolbachik, one basic and two acid andesites from Bezymianny. Two of the basalts from Kliuchevskoi studied in Dosseto et al. (2003) were not available for analysis. The major, trace element and radiogenic isotope compositions were previously discussed in Dosseto et al. (2003). Sr and Nd isotope compositions suggest that studied rocks are derived from the same source (Dosseto et al. 2003). All samples are aphyric to subaphyric, except for sample PT30-4/1976 which is vesicular and has glomerocrysts of plagioclase and olivine (<1 cm). This sample also differs from the rest because it belongs to the high-K calc-alkaline series whereas other samples are calc-alkaline (following Miyashiro (1974) classification). It also has a different trace
element pattern shifted to higher incompatible element concentrations. Oxygen isotope data indicate the samples are devoid of any alteration by meteoric water (Pineau et al. 1999).

Analytical techniques

Analyses were performed on the same powders as in Dosseto et al. (2003) (samples were not re-crushed). About 100 mg of powder was spiked with 236U-229Th and 228Ra tracers. Samples were digested in a mixture of HClO_4, HCl, HNO_3 and HF. After driving off fluorides by evaporation at 100°C, residual HClO_4 was dried down by step heating at 150, 170 and 200°C. U, Th and Ra separation was performed using ionic chromatography techniques described in Dosseto et al. (2006) and Sims et al. (2008). U and Th concentrations and isotopic compositions were measured by multi-collector inductively-coupled plasma mass spectrometry (MC ICP-MS) on a Nu Instrument Nu Plasma at Macquarie University. Acquisition methods are described in Sims et al. (2008). MC ICP-MS yields beams of several volts for 232Th and >1,000 counts per second (cps) for 230Th, compared to only a few 10's of mV for 232Th and <100 cps for 230Th by TIMS using tungsten filaments in Dosseto et al. (2003)(Dosseto et al. 2003). Ra concentration was determined by thermal ionisation mass spectrometry (TIMS) on a Thermo Triton at Macquarie University. 226Ra and 228Ra were measured dynamically on a secondary electron multiplier. Accuracy and reproducibility of measurements were checked by analysis of the rock standard TML-3 and replicate analysis of two samples. For TML-3, $(^{234}\text{U}/^{238}\text{U}) = 1.003 \pm 0.003$ (2σ; n=10), $(^{230}\text{Th}/^{238}\text{U}) = 0.994 \pm 0.006$ (2σ; n=10), and the $^{230}\text{Th}/^{232}\text{Th}$ ratio deviates from the recommended value (5.816×10^{-6}; (Sims et al. 2008)) by 0.5% (n=10). Replicate analysis of two samples is given in Table 1.

Results

When compared with the original data (Dosseto et al. 2003), significant discrepancies are evident (Table 1). Note that reported relative 2 standard errors are calculated by taking the worst replicate analysis for each parameter (for instance PT33-1/82 for $(^{226}\text{Ra}/^{230}\text{Th})$ but AXO3/84 for $(^{234}\text{U}/^{238}\text{U})$). The new results generally show a similar range of variation in U, Th and 226Ra concentrations to those reported in Dosseto et al. (2003): between 0.333 and 1.035 ppm, 0.534 to 1.687 ppm and 188.6 to 676.8 fg/g, respectively. However, differences in U or Th concentrations up to 50% were observed for some samples. It is possible that in the initial study, the sample-spike homogenisation was not complete and/or samples were not thoroughly powdered. 231Pa concentrations were not determined in this study,
however \((^{231}\text{Pa}/^{235}\text{U})\) activity ratios were re-calculated using the new U concentrations and the natural
\(^{238}\text{U}/^{235}\text{U}\) ratio of 137.88. All samples are in secular equilibrium for \(^{234}\text{U}-^{238}\text{U}\), confirming that they have not undergone significant low-temperature alteration, except for AXO3/84 which shows a slight depletion of \(^{234}\text{U}\) relative to \(^{238}\text{U}\). \((^{226}\text{Ra}/^{230}\text{Th})\) activity ratios are also similar to those in Dosseto et al. (2003), with values between 0.98 and 3.17 (Fig. 2). Re-calculated \((^{231}\text{Pa}/^{235}\text{U})\) ratios based on new U concentrations but old \(^{231}\text{Pa}\) abundances also show significant \(^{231}\text{Pa}\) excess, as previously observed (Fig. 2). While we were not able to re-measure \(^{231}\text{Pa}\) concentrations, the quality of the \(^{231}\text{Pa}\) data is not a concern because the method employed to determine \(^{231}\text{Pa}\) concentrations is similar to that used for \(^{226}\text{Ra}\) concentrations, and old and new \(^{226}\text{Ra}\) concentrations show a relatively good agreement. Like \(^{226}\text{Ra}\) abundances, \(^{231}\text{Pa}\) is determined by isotope dilution with \(^{231}\text{Pa}\), and although beam sizes at masses 263 \((^{231}\text{PaO}_2)\) and 265 \((^{233}\text{PaO}_2)\) were small (a few 100’s cps), the measured 263/265 ratios were close to 1, ensuring good precision and accuracy. The most striking difference with the previous study is in the \((^{230}\text{Th}/^{238}\text{U})\) ratios, where the new data indicate only values less than 1 (i.e. \(^{238}\text{U}\) excess). Although sample heterogeneity could explain part of these discrepancies, this cannot explain the shift from \(^{230}\text{Th}\) to \(^{238}\text{U}\) excess. This difference could be derived from the difficulties encountered by Dosseto et al. in measuring \(^{230}\text{Th}/^{232}\text{Th}\) ratios by TIMS using tungsten filaments on a Finnigan MAT262: less than 100 cps of \(^{230}\text{Th}\) and only a few mV of \(^{232}\text{Th}\) were obtained during analysis, and satisfying precision and accuracy could be difficult to achieve considering the large \(^{232}\text{Th}/^{230}\text{Th}\) ratio measured (compared to isotopic dilution, e.g. \(^{228}\text{Ra}/^{226}\text{Ra}\) or \(^{233}\text{PaO}_2/^{231}\text{PaO}_2\), where ratios are close to unity).

Discussion

Reappraisal of the origin of CKD magmas

As shown above, although Ra-Th data do not show major discrepancies between the new and old measurements, U-Th data are significantly different and in this section we re-visit the interpretations of (Dosseto et al. 2003) in the light of the new data.

\(^{230}\text{Th}\) excesses were previously observed and this was interpreted as indicating the involvement of a slab-derived melt. The new data show no evidence for \(^{230}\text{Th}\) excess and hence there is no requirement for such a slab-derived melt. The range in observed U-Th-Ra-Pa compositions was previously explained by mixing between a slab-derived melt and a mantle-derived melt, based on correlations between daughter-parent activity ratios. Although the new measurements show no correlation between
U-series isotopes in Kamchatka

(230Th/238U) and other daughter-parent activity ratios, the positive correlation between \((226Ra/230Th)\) and
(231Pa/235U) is still observed (Fig. 2b; (231Pa/235U) ratios were re-calculated using new U concentrations,
but samples were not re-analysed for 231Pa). Accordingly, we suggest that these variations no longer
reflect mixing between two primitive magmas with different origins (slab and mantle), but instead
magma chamber processes whereby the most primitive magma is characterised by the largest
radioactive disequilibria (see discussion below). Thus, the end-member composition of the mantle-
derived melt in [Dosseto et al., 2003], named HMB for “high-magnesia basalt” and characterized by the
largest 226Ra excess, represents the composition of the \textit{primitive magma} (Fig. 2b) and still constrains the
origin of CKD magmas. Similarly to the conclusions in Dosseto et al. (2003), it is apparent on Fig. 2b that
flux melting cannot adequately explain the data as this will produce a decrease in \((231Pa/235U)\) with
increasing 226Ra excess, whereas the inferred primitive magma is characterised by high \((226Ra/230Th)\) and
(231Pa/235U) ratios.

\textbf{Rapid magma differentiation beneath the Central Kamchatka Depression}

226Ra-230Th and 231Pa-235U disequilibria shows significant variations with Th concentrations (Fig. 3), used
here as an index of magma differentiation. The broad negative correlations between the magnitude of
these disequilibria and Th concentrations is interpreted as reflecting decay of radionuclides during
differentiation along with fractionation and possible assimilation of host rock. This relationship can be
used to place time constraints on the rate of magma differentiation in the crust. We use the model of
assimilation and crystal fractionation presented in Dosseto et al. (2008). In this model, the change in
activity ratios during differentiation is mostly controlled by the rate of crystallisation (in g/g/yr), and the
assimilation/crystallisation ratio. Parameters used in the model are shown in Table 2. The maximum
residual magma fraction allowed is 0.4 as below this value, magma viscosity may become too high to
allow physical separation of newly formed crystals. The U, Th, Sr concentrations and \((226Ra/230Th)\) and
(231Pa/235U) activity ratios in the parental magma were chosen to best reproduce observed compositions.

Note that the model is relatively insensitive to the values taken for U, Th, Pa and Ra bulk partition
coefficients (assuming realistic values), even in the case of crystallisation of mineral phases such as
amphibole, which is known to preferentially incorporate Ra over Th.

In the case where no assimilation occurs, it is not possible to produce Th concentrations higher than
1ppm. Hence, we consider the scenario where the host rock is partially melted and assimilated into the
differentiating magma. We assume that the assimilant (crustal melt) has the following composition: Th,
U and Sr concentrations are 100, 60 and 100 ppm, respectively, and \(\frac{^{226}\text{Ra}}{^{230}\text{Th}} = \frac{^{231}\text{Pa}}{^{235}\text{U}} = 1 \). High U and Th concentrations in the assimilant are required such that both Sr/Th and \(\frac{^{231}\text{Pa}}{^{235}\text{U}} \) data can be reproduced simultaneously. In order to keep the residual magma fraction at realistic values (≥0.4), a minimum assimilation/crystallisation ratio, \(r \), of 0.1 is required to produce observed Th concentrations. The maximum \(r \) value considered is 0.3 (Tegner et al. 2005). Modelled curves calculated with \(r \) values between 0.1 and 0.3 yield similar fits to the data. Because the model is under-constrained, only a minimum crystallisation rate of \(5 \times 10^{-6} \text{ g/g/yr} \) can be determined. If the crystallisation rate was lower than this value, \(\frac{^{226}\text{Ra}}{^{230}\text{Th}} \) ratios would decrease much faster than observed. This is used to infer a maximum differentiation timescale of 6,000 years to evolve from the most primitive to the most evolved compositions observed. Figure 3 shows an example of differentiation model curves where the crystallisation rate is set to \(5 \times 10^{-6} \text{ g/g/yr} \) and \(r = 0 \) or 0.3. In this case, the differentiation timescale is less than 6,000 years (PT30-4/1976 is ruled out of the modelling as it is shown above that this sample is an outlier and is probably not genetically related to the other samples). Note that andesites deviate from the relationship formed by basalts in \(\frac{^{231}\text{Pa}}{^{235}\text{U}} \) versus Th concentration, while both andesites and basalts form a unique correlation in other diagrams. This deviation is not well understood and could indicate that andesites and basalts are not genetically related, where the source of the former would be characterised by a higher \(\frac{^{231}\text{Pa}}{^{235}\text{U}} \) (possibly reflecting a lower melting rate).

It is shown here that crustal assimilation is required to account for the geochemical characteristics of Kamchatka lavas. Crustal assimilation has not been previously considered because of the lack of variation between Sr isotopes and indices of differentiation. However, because the crust assimilated is young its Sr isotopic composition may be similar to that of the newly emplaced magmas and the lack of Sr isotope variation does not justify ruling out crustal assimilation.

Note that the \(^{230}\text{Th}-^{238}\text{U} \) disequilibrium does not show any systematic variations with indices of differentiation. A correlation is expected since this radioactive system operates on the same timescales as the \(^{231}\text{Pa}-^{235}\text{U} \) system and is equally sensitive to crystal fractionation and assimilation. This could be the result of (i) smaller variations in \(\frac{^{230}\text{Th}}{^{238}\text{U}} \) compared to \(\frac{^{226}\text{Ra}}{^{230}\text{Th}} \) and \(\frac{^{231}\text{Pa}}{^{235}\text{U}} \), such that the effect of assimilation is less clear than for the other radioactive systems; and (ii) conditions of partial melting of the host rock are such that the \(\frac{^{226}\text{Ra}}{^{230}\text{Th}} \) and \(\frac{^{231}\text{Pa}}{^{235}\text{U}} \) ratios of the crustal melt are significantly different than those of the primary magma (i.e. in secular equilibrium), whilst this would not be the case for \(\frac{^{230}\text{Th}}{^{238}\text{U}} \) ratios. This could be possible for instance if the porosity during partial melting of the crust was significant (e.g. >1%) such that no or little \(^{226}\text{Ra}-^{230}\text{Th} \) and \(^{231}\text{Pa}-^{235}\text{U} \) disequilibria could be produced, while generating \(^{230}\text{Th}-^{238}\text{U} \) disequilibrium.
Fluid origin of the $^{226}\text{Ra} - ^{230}\text{Th}$ disequilibrium

High Ba/Th ratios are commonly used as an indicator of slab fluid addition. However, a positive correlation between $^{226}\text{Ra}/^{230}\text{Th}$ and Ba/Th does not unequivocally require a fluid origin for ^{226}Ra excesses because Ba is more incompatible than Th and, under certain conditions, decreasing degrees of partial melting could also lead to increases in Ba/Th ratios. Contrastingly, because Sr is less compatible but more fluid mobile than Th, an increase in Sr/Th ratios can only be explained by fluid addition and a positive correlation with $^{226}\text{Ra}/^{230}\text{Th}$ would imply that (i) ^{226}Ra excesses are fluid-derived and (ii) less than 10 ka elapsed between slab dehydration and eruption. Such a correlation was observed by (Dosseto et al. 2003) and used to argue for a fluid origin of the $^{226}\text{Ra} - ^{230}\text{Th}$ disequilibrium. Our new measurements confirm the positive correlation (Fig. 3b). However, as shown in the previous section, the range of $^{226}\text{Ra}/^{230}\text{Th}$ and Sr/Th values is explained by magma differentiation. It is important to note that whilst the positive correlation in Fig. 3b is accounted for by differentiation (cf. Huang et al. 2008), metasomatisation of the magma source is still required to produce the high $^{226}\text{Ra}/^{230}\text{Th}$ and Sr/Th ratios in the most primitive magmas. Huang et al. (2011) invoked partial melting to account for $^{226}\text{Ra} - ^{230}\text{Th}$ disequilibrium in Kick’Em Jenny lavas (Lesser Antilles). However, if high $^{226}\text{Ra}/^{230}\text{Th}$ ratios were produced during partial melting, they should be associated with low Sr/Th ratios (because the incompatibility order of these different elements is Ra >> Th > Sr). Thus, the primary $^{226}\text{Ra} - ^{230}\text{Th}$ disequilibrium at the Kamchatka arc, and in arc lavas in general, is most likely derived from magma source metasomatism due to slab dehydration. The preservation of this $^{226}\text{Ra} - ^{230}\text{Th}$ disequilibrium implies rapid magma generation and fast transport to the surface (Turner et al. 2001).

Magma genesis at subduction zones: an alternative hypothesis to multi-stage fluid addition

It is widely accepted that $^{238}\text{U}/^{230}\text{Th} > 1$ in arc lavas reflects metasomatism of the mantle wedge by slab-derived fluids (e.g. Turner et al. 2003). This contrasts with $^{238}\text{U}/^{230}\text{Th}$ ratios < 1 produced during decompression melting (e.g. MORB and OIB) due to the greater incompatibility of Th relative to U. The timescales of fluid addition derived from $^{238}\text{U}/^{230}\text{Th} > 1$ are typically of the order of several tens of thousands of years (150 ka in the case of Kamchatka; Turner et al. 1998). However, $^{226}\text{Ra} - ^{230}\text{Th}$ disequilibrium is also observed in most arc lavas. Because any $^{226}\text{Ra} - ^{230}\text{Th}$ disequilibrium would decay
after 10 ka, and this disequilibrium is attributed to slab dehydration, the combined observations from
\(^{226}\text{Ra}-^{230}\text{Th}\) and \(^{238}\text{U}-^{230}\text{Th}\) systems have been interpreted in some models to reflect different stages of
slab dehydration. Although it is anticipated that there might be more than one episode of slab
dehydration (because of the numerous hydrous phases being subducted) it has proved harder to
identify which hydrous phases are linked to specific disequilibria.

Several models have been developed to explain how magmas are produced in the mantle wedge (see
Bourdon et al. 2003 for a review). For instance, Thomas et al. (2002) have proposed a flux melting model
where melts are continuously produced while slab-derived fluids are added to the mantle wedge.

However, as shown above and in Dosseto et al. (2003), this model cannot account for observed \(^{226}\text{Ra-}^{230}\text{Th}\) and \(^{231}\text{Pa-}^{235}\text{U}\) disequilibria (Fig. 2b). In this section, we investigate whether dynamic melting
following recent fluid addition to the mantle wedge (<10 ka ago) could account for the observed \(^{238}\text{U-}^{230}\text{Th}\) isotope compositions in Kamchatka. Dynamic melting involves a non-static source where matrix
upwelling occurs (McKenzie 1985). In the case of subduction zones, we can consider that the source is
advecting either as a result of fluid addition to the mantle wedge, creating a source that is more buoyant
than the surrounding dry mantle, or as a result of downward convection along the slab (Dosseto et al.
2003). In our model, slab dehydration supplies U to magma sources shortly before melting (<10 ka ago),
yielding a range in U/Th ratios at a constant \((^{230}\text{Th}/^{232}\text{Th})\). Assuming an upwelling or downwelling rate of
3 cm/yr, a porosity of 1‰ and a final degree of partial melting of 20% (see Fig. 4 caption for other
parameters), it is possible to reproduce the positive array observed on the \((^{230}\text{Th}/^{232}\text{Th})\) vs. \((^{238}\text{U}/^{232}\text{Th})\)
diagram (Fig. 4a). In this model, there is no demand for a multi-stage fluid addition to account for the
different timescales of fluid addition inferred from \(^{238}\text{U-}^{230}\text{Th}\) and \(^{226}\text{Ra-}^{230}\text{Th}\). Melts produced have
\((^{231}\text{Pa}/^{235}\text{U})\) activity ratio between 1.49 and 1.58 (Fig. 4b), which is comparable to (but somewhat lower
than) the composition of the most primitive sample. To reproduce the highest \((^{231}\text{Pa}/^{235}\text{U})\) observed, one
could consider that the source starts with a higher \((^{231}\text{Pa}/^{235}\text{U})\) as a result of the presence of Pa in the
fluid (Avanzinelli et al. 2012). However, this would require the source to have \((^{231}\text{Pa}/^{235}\text{U})\) ratios between
1.24 and 1.44. This would suggest that more Pa than U is carried in the fluid, which is unrealistic (e.g.
Bourdon et al. 2003). Assuming that the metasomatized source has a \((^{226}\text{Ra}/^{230}\text{Th})\) of 3 (similar to the
highest value observed in our samples), melting has little effect on this activity ratio, resulting in a slight
increase to value of 3.2.

The model proposed above can explain U-series isotope compositions at other continental arcs. For
instance, U-Th data of low-Ti lavas from Nicaragua (Reagan et al. 1994) can be reproduced using an
up/downwelling rate of 6-7 cm/yr, a range of \((^{238}\text{U}/^{232}\text{Th})\) values for the source prior to melting between
1.8 and 2.7, a final degree of partial melting of 8% and a source mineralogy composed of 52% olivine,
20% orthopyroxene, 20% clinopyroxene and 8% garnet (Fig. 5a). This model also yields \(\frac{^{231}P_{a}}{^{235}U} \) values between 1.48 and 1.70, which is comparable to the range measured by Thomas et al. (2002) for Nicaraguan lavas (1.29-1.74). Similarly, U-series data from the Parinacota volcano (Bourdon et al. 2000) can be re-interpreted with this model: in Fig. 5b, \(\frac{^{230}Th}{^{232}Th} \) and \(\frac{^{238}U}{^{232}Th} \) ratios can be explained by dynamic melting of a recently metasomatized source to which sediments have been previously added in order to lower the source \(\frac{^{230}Th}{^{232}Th} \) ratio to 0.3. Melting parameters are similar to those used for the Nicaragua data, except for the up/downwelling rate (5 cm/yr). Note that in all cases the up/downwelling rates inferred are lower than plate convergence rates. If these up/downwelling rates reflect convection in the mantle wedge, this implies an incomplete coupling between the subducting slab and the overlying mantle.

It has recently been proposed that high-Mg basalts and andesites can be produced by partial melting of subarc peridotite and pyroxenite veins (Straub et al. 2011). Thus, an alternative model would be to consider a pyroxenite source. In this scenario, considering a source with 15% olivine, 80% orthopyroxene and 5% clinopyroxene (England and Davies 1973), it is possible to reproduce the \(\frac{^{238}U}{^{232}Th} \)-\(\frac{^{230}Th}{^{232}Th} \) composition of Kamchatka rocks by simply considering a faster up/downwelling rate (4.5 cm/yr, which is still realistic considering the upwelling rate is 9 cm/yr).

Another alternative model has been recently proposed where partial melting occurs under high oxygen fugacity (Beier et al. 2010). In this case, uranium becomes more incompatible than thorium (Lundstrom et al. 1994). Thus, the U-series isotope composition of lavas from the Manus basin were explained by dynamic melting in the back-arc of a mantle previously metasomatized and oxidised by slab-derived fluids. In principle, this model can be used to reproduce the U-Th isotope composition of Kamchatka lavas. Because fluid addition occurs >350ka ago, the metasomatized source has a high and variable \(\frac{^{230}Th}{^{232}Th} \) prior to melting (Fig. 6a). However, although significant \(^{226}Ra-^{230}Th \) disequilibrium can be produced in this model (\(\frac{^{226}Ra}{^{230}Th} \sim 3 \)), no \(^{231}Pa-^{235}U \) disequilibrium is produced (because \(D_{U}/D_{Pa} \) is only \(\sim 4 \), versus \(\sim 100 \) in other models) (Fig. 6b). This is at odds with the observation of significant \(^{231}Pa \) excesses in the most primitive Kamchatka lavas (note that there are at present no \(^{231}Pa \) data with which to test this model for the Manus Basin).

Conclusions

In the light of recent results by Turner et al. (2007), the U-Th-Ra isotope composition of volcanic rocks from the Central Kamchatka Depression was re-visited. We conclude that:
(i) New measurements show no 230Th excess relative to 238U, suggesting that there is no longer any evidence for a slab-derived melt.

(ii) Variations in U-Pa and Th-Ra isotope compositions are best explained by magma differentiation with crustal assimilation, rather than mixing between slab- and mantle-derived melts as initially suggested (Dosseto et al. 2003). A maximum duration of magma differentiation of \sim6,000 years can be inferred, with a minimum crystallization rate of 5×10^{-6} g/g/yr. Although not suggested by long-lived radiogenic isotopes (because the assimilant may have the same isotopic composition as the magma differentiating), assimilation is required and occurs at a minimum rate of 0.5×10^{-6} g/g/yr.

(iii) High (226Ra/230Th) and Sr/Th ratios in the most primitive lavas emphasize that 226Ra-230Th disequilibrium in arc lavas is derived from dehydration of the subducted slab.

(iv) Multiple fluid additions to the mantle wedge are no longer required to account for U-Th-Pa-Ra isotope data. Ra-Th suggests recent fluid addition (<10 ka ago) whereas U-Th data can be reproduced by dynamic melting of a metasomatized source, enriched in U over Th prior to melting. This is in agreement with the conclusions of Dosseto et al. (2003) who proposed that the primitive melt is produced by equilibrium porous flow or dynamic melting of a recently metasomatized mantle. Thus, U-Th-Pa-Ra data at the Kamchatka arc can be explained by a simple model where a single episode of fluid addition occurs shortly (< few thousand years) before dynamic melting of the upwelling or downwelling source. This model can also account for U-series isotope data at other continental arcs (Andes, Nicaragua). In addition, the observation of high (226Ra/230Th) associated with high (231Pa/235U) ratios confirm that flux melting is not adequate to model magma genesis beneath the Kamchatka arc.

(v) An alternative model of arc magma production where the source is metasomatized more than 300,000 years ago and melting occurs under high oxygen fugacity cannot account for the observed 231Pa-235U disequilibrium in primitive magmas.

Acknowledgements

We would like to thank the editors for putting this Special Publication together, Georg Zellmer for editorial handling and Riccardo Avanzinelli and Ian Smith for their insightful reviews. We would also like to thank Tracy Rushmer, Hugh O’Neill, Gerhard Wörner, Bernard Bourdon and Bruce Schaefer for helpful
discussions. The work was funded by an Australian Research Council Discovery Grant DP0988658. Dosseto acknowledges an Australian Research Council Future Fellowship FT0990447. Turner acknowledges an Australian Research Council Professorial Fellowship.
Figure captions

Figure 1. Map of the Kamchatka peninsula with the three main volcanic regions: the Central Kamchatka Depression (CKD), the Sredinny Ridge (SR) and the Eastern Volcanic Front (EVF). Triangles show the location of the main active volcanoes. Dashed curves show the depth of the subducting plate surface. Modified from (Dosseto et al. 2003).

Figure 2. U-series isotope compositions of Kamchatka lavas. Data from this study (diamonds) and (Dosseto et al. 2003) (triangles) were obtained on the same samples. Crosses: (Turner et al. 2007). In (a), significant differences are observed in a (230Th/232Th) vs. (238U/232Th) equiline diagram between this study and (Dosseto et al. 2003). This illustrates that this discrepancy is mostly the result of the poor quality of the Th data previously published. (b) The positive correlation between (226Ra/230Th) and (231Pa/235U) is still observed with the new measurements. Unlike in Dosseto et al. (2003) where the correlation is believed to represent mixing between melts derived from slab melting on the one hand, and mantle melting on the other hand, here it is proposed that magma differentiation produces this correlation, with a decrease in radioactive disequilibrium as differentiation takes place (see text for details). Compositions with the largest (226Ra/230Th) and (231Pa/235U) disequilibria are believed to represent those of a primitive melt produced from a metasomatised mantle: termed HMB in (Dosseto et al. 2003) (dark grey dot) or primitive magma (light grey area). The curve shows calculated compositions using a continuous flux melting model as in Dosseto et al. (2003). It is clear that following this model, the production of 226Ra excess requires a decrease in the (231Pa/235U) which is not observed here. Errors are not shown for (Dosseto et al. 2003; Turner et al. 2007) data.

Figure 3. Differentiation model. It is possible to account for observed compositions using an assimilation/crystallisation model. However, only minimum crystallisation rates and maximum durations of differentiation can be inferred. Compositions can be explained by continuous crystallization at a minimum rate of 5x10^-6 g/g/yr over a maximum duration of ~6,000 years. To account for high Th concentrations, assimilation is required and the ratio of assimilation to crystallisation rates needs to be between 0.1 and 0.3. Moreover, high U and Th concentrations in the assimilant are required in order to reproduce Sr/Th and (231Pa/235U) compositions simultaneously. In these diagrams, the dashed model curve is shown as a possible solution where the most evolved compositions are produced after up to 6,000 years of differentiation. The model curves are calculated with the following parameters: crystallisation rate = 5x10^-6 g/g/yr, assimilation/crystallisation rate ratio = 0 (plain curve) and 0.3 (dashed curve); parental magma composition: U = 0.1ppm, Th = 0.5ppm, Sr = 400ppm, (226Ra/230Th) = 3.5 and (231Pa/235U) = 1.7; assimilant composition: U = 60ppm, Th = 100ppm, Sr = 100ppm, (226Ra/230Th) = (231Pa/235U) = 1. Bulk partition coefficients are: Dth = 0.01, D_u = 0.05, D_{Ra} = 0.1, D_{Pa} = 0.0001 and D_{Sr} = 0.8 (a high coefficient is taken for Ra in order to maximize the effect of crystal fractionation, however it has no effect on the calculated curves). Tick marks every 10,000 (plain curve) and 2,000 years (dashed curve). Dark grey diamonds: high-magnesia and high-alumina basalts; light grey diamonds: andesites. Errors are not shown for (Turner et al. 2007) data.

Figure 4. Dynamic melting of a source that has undergone recent gain of U and Ra (<10 ka ago) via slab-derived fluid addition. Prior to melting, the metasomatized source has a (230Th/232Th) ratio of 1.3 (Turner et al. 1998) and (238U/232Th) ratios range between 1.8 and 2.1, reflecting the variable addition of fluids carrying U and Ra but no Th or Pa. This range of values is chosen such that the best fit to the data is produced. Bulk partition coefficients considered are: D_{Th} = 0.00207, D_{U} = 0.00465, D_{Pa} = 0.000048 and
$D_{Ra} = 0.000001$ (based on a source with 52% olivine, 20% orthopyroxene, 20% clinopyroxene and 8% garnet). Final degree of partial melting: $F=0.2$. Porosity: $\phi=0.001$. Melting rate = 2.83×10^{-4} g/g/yr and up/downwelling rate = 3 cm/yr. In (a), squares: this study, crosses: data from (Turner et al. 2007). In (b), diamonds: this study. Errors are not shown for (Turner et al. 2007) data.

Figure 5. Dynamic melting of a recently metasomatized source used to account for (a) Nicaragua and (b) Parinacota U-Th data. In (a), $^{230}\text{Th}/^{232}\text{Th}$ of the source = 1.5 and $^{238}\text{U}/^{232}\text{Th}$ ranges between 1.5 and 2.7. $D_{Th} = 0.00207$, $D_{U} = 0.00465$ (based on 52% ol, 20% opx, 20% cpx and 8% gt), $F=0.08$, $\phi=0.001$, melting rate = 2.64×10^{-4} g/g/yr and up/downwelling rate = 7 cm/yr. In (b), $^{230}\text{Th}/^{232}\text{Th}$ of the source = 0.3, following sediment addition, and $^{238}\text{U}/^{232}\text{Th}$ ranges between 0.3 and 0.9. $D_{Th} = 0.002069$, $D_{U} = 0.004651$ (based on 52% ol, 20% opx, 20% cpx and 8% gt), $F=0.08$, $\phi=0.001$, melting rate = 1.89×10^{-4} g/g/yr and up/downwelling rate = 5 cm/yr. Errors are not shown. Data are from (Reagan et al. 1994) for Nicaragua and (Bourdon et al. 2000) for Parinacota.

Figure 6. Dynamic melting under high f_{O_2}. The source has undergone addition of U during an old (>350 ka ago) fluid addition event (Conçeicão and Bonotto 2003), resulting in a range of $^{230}\text{Th}/^{232}\text{Th}$ values prior to melting between 2.1 and 2.4. During melting, as a consequence of high oxygen fugacity, uranium is more incompatible than thorium ($D_{U} = D_{Th}/10$; see text for details). Other parameters are similar to previous models: $D_{Th} = 0.00207$ and $D_{Pa} = 0.000048$ (based on 52% ol, 20% opx, 20% cpx and 8% gt), $F=0.15$, $\phi=0.001$, melting rate = 3.54×10^{-4} g/g/yr and up/downwelling rate = 5 cm/yr. Shaded area in (a): data from (Turner et al. 2007). Errors are not shown for (Turner et al. 2007) data.
References

Figure 1
Figure 2

$\left(\frac{^{226}\text{Ra}}{^{230}\text{Th}}\right)$ vs. Th (ppm)

$\left(\frac{^{231}\text{Pa}}{^{235}\text{U}}\right)$ vs. Th (ppm)
Figure 4

\[
\left(\frac{^{230}\text{Th}}{^{232}\text{Th}} \right)
\]

\[
\left(\frac{^{238}\text{U}}{^{232}\text{Th}} \right)
\]

\[
\left(\frac{^{226}\text{Ra}}{^{230}\text{Th}} \right)
\]

\[
\left(\frac{^{231}\text{Pa}}{^{235}\text{U}} \right)
\]

Dynamic melting

Recent source metasomatism

Source

Melt
Figure 6

(\frac{^{230}Th}{^{232}Th})

(\frac{^{238}U}{^{232}Th})

(\frac{^{231}Pa}{^{235}U})

(\frac{^{230}Th}{^{238}U})
<table>
<thead>
<tr>
<th>Sample name</th>
<th>Eruption date</th>
<th>Th (ppm)</th>
<th>U (ppm)</th>
<th>226Ra (fg/g)</th>
<th>234U/238U</th>
<th>230Th/238U</th>
<th>226Ra/230Th</th>
<th>231Pa/235U</th>
<th>238U/232Th</th>
<th>230Th/232Th</th>
<th>Sr/Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolbachik</td>
<td></td>
</tr>
<tr>
<td>PT30-4/1976</td>
<td>August 1976</td>
<td>1.687</td>
<td>1.035</td>
<td>676.8</td>
<td>358</td>
<td>0.992</td>
<td>0.982</td>
<td>1.97</td>
<td>1.69</td>
<td>1.861</td>
<td>1.829</td>
</tr>
<tr>
<td>PT33-1/82</td>
<td>Holocene</td>
<td>0.884</td>
<td>0.557</td>
<td>188.6</td>
<td>285</td>
<td>0.996</td>
<td>0.986</td>
<td>1.02</td>
<td>1.13</td>
<td>1.914</td>
<td>1.887</td>
</tr>
<tr>
<td>PT33-1/82-R</td>
<td></td>
<td>0.834</td>
<td>0.524</td>
<td>190.1</td>
<td>461</td>
<td>0.998</td>
<td>0.989</td>
<td>1.09</td>
<td>1.20</td>
<td>1.908</td>
<td>1.887</td>
</tr>
<tr>
<td>T1475/1975</td>
<td>30 July 1975</td>
<td>0.534</td>
<td>0.333</td>
<td>346.0</td>
<td>358</td>
<td>0.995</td>
<td>0.970</td>
<td>3.17</td>
<td>1.69</td>
<td>1.892</td>
<td>1.835</td>
</tr>
<tr>
<td>Bezymianny</td>
<td></td>
</tr>
<tr>
<td>M-1564-1</td>
<td>post-1956 cycle</td>
<td>1.298</td>
<td>0.917</td>
<td>285.7</td>
<td>323</td>
<td>0.993</td>
<td>0.939</td>
<td>0.98</td>
<td>1.00</td>
<td>2.143</td>
<td>2.013</td>
</tr>
<tr>
<td>B82</td>
<td>1982</td>
<td>1.126</td>
<td>0.794</td>
<td>342.9</td>
<td>353</td>
<td>0.998</td>
<td>0.935</td>
<td>1.37</td>
<td>1.42</td>
<td>2.141</td>
<td>2.003</td>
</tr>
<tr>
<td>B8/4</td>
<td>1986</td>
<td>0.735</td>
<td>0.517</td>
<td>326.1</td>
<td>323</td>
<td>0.990</td>
<td>0.938</td>
<td>1.99</td>
<td>2.08</td>
<td>2.136</td>
<td>2.003</td>
</tr>
<tr>
<td>Kluchevskoi</td>
<td></td>
</tr>
<tr>
<td>AXO3/84</td>
<td>1984</td>
<td>0.736</td>
<td>0.481</td>
<td>261.5</td>
<td>376</td>
<td>0.982</td>
<td>0.940</td>
<td>1.71</td>
<td>1.26</td>
<td>1.983</td>
<td>1.864</td>
</tr>
<tr>
<td>AXO3/84-R</td>
<td></td>
<td>0.725</td>
<td>0.477</td>
<td>254.1</td>
<td>254.1</td>
<td>0.975</td>
<td>0.937</td>
<td>1.68</td>
<td>1.27</td>
<td>1.997</td>
<td>1.871</td>
</tr>
<tr>
<td>K56P66</td>
<td>1966</td>
<td>0.722</td>
<td>0.473</td>
<td>264.5</td>
<td>362</td>
<td>0.999</td>
<td>0.962</td>
<td>1.72</td>
<td>1.37</td>
<td>1.991</td>
<td>1.916</td>
</tr>
<tr>
<td>Gravimetric standards</td>
<td></td>
</tr>
<tr>
<td>BCR-2 (n=4)</td>
<td></td>
<td>5.628</td>
<td>1.612</td>
<td>0.991</td>
<td>0.999</td>
<td>1.001</td>
<td>0.868</td>
<td>1.006</td>
<td>1.067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TML-3 (n=11 for U-Th; n=1 for Ra)</td>
<td>29.69</td>
<td>10.59</td>
<td>3550</td>
<td>1.003</td>
<td>0.994</td>
<td>0.996</td>
<td>1.006</td>
<td>1.067</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Relative 2 standard errors are calculated using the worst sample replicate analysis (PT33-1/82 or AXO3/84)