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Abstract

2018 2018. Hadamard matrices have many applications in several mathematical areas due to their
special form and the numerous properties that characterize them. Based on a recently developed relation
between minors of Hadamard matrices and using tools from calculus and elementary number theory, this
work highlights a direct way to investigate the conditions under which an Hadamard matrix of order n - k
can or cannot be embedded in an Hadamard matrix of order n. The results obtained also provide answers
to the problem of determining the values of the spectrum of the determinant function for specific orders
of minors of Hadamard matrices by introducing an analytic formula.
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Abstract: Hadamard matrices have many applications in several mathematical areas due to their special form
and the numerous properties that characterize them. Based on a recently developed relation between minors
of Hadamard matrices and using tools from calculus and elementary number theory, this work highlights a
direct way to investigate the conditions under which an Hadamard matrix of order n — k can or cannot be
embedded in an Hadamard matrix of order n. The results obtained also provide answers to the problem of
determining the values of the spectrum of the determinant function for specific orders of minors of Hadamard
matrices by introducing an analytic formula.
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1 Introduction and motivation

From their initial study in the late 19th century until today, Hadamard matrices, named after the French math-
ematician Jacques Hadamard (1865-1963), are proven to be very useful in several scientific areas, such as com-
putational mathematics and physics, coding theory and cryptography, statistics, informatics, and telecom-
munications with numerous applications [9].
An Hadamard matrix of order n, denoted by Hy, is an n x n matrix with elements +1 or -1 and mutually
orthogonal rows and columns, i.e.,
HnH, =Hy, Hy=nly )

where H,! denotes the transpose of H, and I, is the identity matrix of order n. Also, a Hadamard matrix is
said to be normalized if it has its first row and column all 1’s. Hadamard himself showed that the matrices of
this kind have the maximal determinant

| det Hp| = n"/? ®)

and he observed that such matrices could exist only if n was 1, 2 or a multiple of 4 [8]. Despite the efforts of
several mathematicians, Hadamard’s observation remains unproven and has formed the basis of one of the
great unsolved mathematical problems, referred to as the Hadamard conjecture. However, several methods
for the construction of Hadamard matrices have been developed with the oldest one given by the English
mathematician J.J. Sylvester in 1867 who proved that there are (+1)-matrices of order 2! for all positive integers
t which have the properties of Hadamard matrices. Such matrices are referred to as the Sylvester-Hadamard
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156 =—— D. Christouetal. DE GRUYTER

matrices. Since the construction of an Hadamard matrix of order 428 published by Kharaghani and Tayfeh-
Rezaie [10], the smallest order for which no Hadamard matrix is presently known is 668.

Frequently, in several applications it is useful to know if specific Hadamard matrices are embedded in
other Hadamard matrices of higher order, i.e. if an Hadamard matrix of order m is a submatrix of an Hadamard
matrix of order n, when m < n. We denote this by Hy, € Hy. Regarding the existing embedding properties of
the Hadamard matrices [4, 13], it is known that H is embedded in Hy, for any order n > 4 and Hy, is embedded
in H,, due to the doubling construction [15], which means that the matrix

H, Hp
H>, =
2n |: Hn —Hn :|

is always a Hadamard matrix of order 2n when H; is a Hadamard matrix of order n. These properties can be
expressed as
H, € Hy and Hy € Hap 3)

In 1965, Cohn [3] proved that H,, can have a Hadamard submatrix Hy, when m < 2. Using matrix algebra,

Vijayan [17] proved that (n-k)xn row-orthogonal matrices with +1 elements can be extended to nxn Hadamard
matrices when k < 4. More recently, Evangelaras et al. [5] used the distance distribution from coding theory
to search for normalized Hadamard matrices of order n embedded in normalized Hadamard matrices of order
m = 2n, and Brent [2] generalized Cohn’s result to maximal determinant submatrices of Hadamard matrices
showing that if H, has a maximal determinant submatrix M of order m, thenm < (§ +5Inn)orm = n - 2.
Several other researchers have dealt with this problem in the past employing mostly combinatorial methods
and the approaches that have been developed so far are either constructive [12] or employ the Hadamard
conjecture [7] providing partially inconclusive results.

In this paper, we examine the conditions under which an Hadamard matrix of order n—k can be embedded
in an Hadamard matrix of order n, denoted by H,_; € Hy. The current approach is based on a relation between
the minors of Hadamard matrices presented in [16] and, by employing differential calculus and elementary
number theory, first, we show that H,,_, ¢ Hnand H,_g ¢ Hy. Then, for any positive integers n and k multiples
of 4, we proceed with the generalization

H,_ i ¢ Hyfork < g (4)

which is equivalent to Cohn’s result in [3]. The above relation (4) was also considered in [2] where it is proven
using Szollési’s result [16] about the minors of a Hadamard matrix and calculus techniques.

In Section 2, we analyze this approach in more depth providing an alternative proof of Szoll6si’s result
and an analytic description of the steps of the proof of (4), starting from H,_, ¢ Hn. Then, we provide a new
number theoretic proof for H,_g ¢ Hy. Finally, in Section 3, we study the problem whether H,_; can exist
embedded in H, when 4 < k < n, and the connection between the order of the matrix H,_; and the values
which form the spectrum of the determinant function for (+1)-matrices [4, 11].

2 Embedding properties via minors

The current study of the embedding and extension properties of Hadamard matrices is motivated by the re-
sults obtained from [16] which lead to a simple relation connecting the minors of a (+1)-matrix. The proof of
this result was based on the properties of the generalized matrix determinant. A simplified proof of the same
result has recently been presented by Banica et al. [1]. A more elegant, direct proof employing only the Jacobi
identity [6] is given next.

Proposition 1. Let H, an Hadamard matrix of order n = 4. If M; denotes the absolute value of a k x k minor of
Hp where k = d or n —d, then for any 1 < d < n it holds:

My q=n"""M, (5)
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Proof. An Hadamard matrix of order n can be considered as a block-matrix of the form

A B

H, =
4 C D

where Aisa (n—d) x(n-d) (+1)-matrixand Disa d x d (+1)-matrixfor 1 < d < n. If U = (\/ﬁ)_l Hy,, then U
is orthogonal, because

1 1 1 1
UUT=ﬁHnﬁH,T=HHanT=HnIn=In

Consequently, U is invertible and its inverse has the form:

AT T
BT DT

vl-ul - L

vn

Using Jacobi’s determinant identity [6] for U, it follows:

det (%A) = detU-det (%DT) | det -1
‘det (n‘%A)‘ = ‘det (n‘%DT)) &
n- detD " |=|det D
n'? |detA] = n'f detDT’ jdet <|i>| et
|detA| = n?%|detD|

Since the absolute determinant of a matrix remains invariant under row or column interchange, the last equa-
tion holds for any (n — d) x (n — d) and d x d minors of Hp. O

The next lemma specifies the values of the determinant of a square (+1)-matrix of order n < 6 and gives a
more general property for the determinant of order n > 6. These values will be useful in the following.

Lemma 1 ([4]). Let B be an n x n matrix with elements +1. It holds that

i) detBis an integer and 2! divides det B,
ii) when n < 6, the only possible values for det B are given in Table 1, and they do all occur.

According to Lemma 1-(i), if M) denotes the absolute value of a k x k minor of a (+1)-matrix of order n > k,
then
My =p2"? ©)

where p is either a positive integer, or zero.

Table 1: Possible absolute values of the determinant of n x n matrices with elements +1.

n 1 2 3 4 5 6
detB 1 0,2 0,4 0,8,16 0,16,32,48 0,32,64,96,128,160

Definition 1 ([11]). The spectrum of the determinant function for (+1)-matrices is defined to be the set of values
taken by p = 217%| det R, | as the matrix R, ranges over all k x k (+1)-matrices.

Orrick and Solomon give a list of values for p in [11]. They instance all values for k = 1, 2,..., 11, and 13.
Also, conjectures have been formulated for k = 12, 14, 15, 16, and 17.
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2.1 Embeddability of Hadamard matrices of ordern - 4

Considering the above results, we begin the study of the embedding of Hadamard matrices of order n-k when
n > 8 and k = 4. The following proposition can be established.

Proposition 2. An Hadamard matrix of order n — 4 cannot be embedded in an Hadamard matrix of order n for
any n = 4t with integer t > 2.
Hy 4 ¢ Hpy, n>8 @)

Proof. If t = 1, then n = 4 and H,,_4 = Ho which does not exist. If t = 2, thenn =8 and H, 4, = H, € Hg = Hy,
which is true according to (3). Therefore, an integer ¢t > 2 must be considered in the following.

Assuming that an Hadamard matrix of order n — 4 can be embedded in an Hadamard matrix of order n,
the relation (5) for d = 4 implies that

‘ det Hn_4| = n%_4M4 (8)
where M, is the absolute value of a 4 x 4 minor of H,. However, it is known that
| det Hy_s| = (n - 4)T )

and, according to Lemma 1-(ii), the possible non zero values that M, can take are 8 or 16. Considering both
cases, the value of M, will be denoted by m in the following.
Combining (8) and (9), it follows that:

n-07 = ni*m o
et in-4)  _ () | Ginm)
%4 In(n-4) = nT—S In(n) + In(m) "2
(4t-4)In(4t-4) = (4-8)n4)+2In(m) <
(t-DIn(E-1) = (t-2)In(0+ ln(zm)

(t-1)(In4+In(t-1)) = (t-2)(In4+In()) +In(vm) <

(t-DIns+(¢t-DIn(t-1) = (t-2)In4+(-2)In(®) +In(vVm) <

(t-DIn(t-1) - (t-2)Int =In (@) (10)

Since t > 2, every term in (10) can be divided by the non-zero algebraic expression (t — 1)(t — 2). Then, (10) is

transformed into
o
In(t-1) In() I (Tm)

t-2  t-1 (t-1)(t-2) ()
Using the function f(x) = %, the above equation (11) can be expressed in the form:
In (@)
— 1 — =
=D =10 = 563 (12

The real function f is well defined and differentiable in the interval (2, +o0). Moreover, for every x € (2, +oo)

it holds:

_1y_
0050 and 4 - (1-x)-In0)

dx (x-1)2
The latter shows that f is a strictly decreasing function in the interval (2, +oc). Hence, for any ¢ > 2 it holds:
t-1<t o ft-1)>ft) & ft-1)-f()>0 (13)

Consequently, the left part of the equation (12) is always positive whereas its right part is either negative (for
m = 8) or zero (for m = 16). Therefore, the assumption that was made in the derivation of the equation (8) is
invalid for any n = 4t with integer t > 2. Thus, H,_4 cannot be embedded in Hy. O
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2.2 Embeddability of Hadamard matrices of order n - 8

In the case of H,_; with k = 4 the possible non-zero values that M; can take on are only two. Conversely,
when k = 8 the determinant spectrum [11] includes more than two values which depend on a specific integer
p. Hence, a different approach must be followed for H,_;, when n > 16 and k = 8. The next proposition
illustrates this approach and its proof is based on elementary number theory.

Proposition 3. An Hadamard matrix of order n — 8 cannot be embedded in an Hadamard matrix of order n for
any n = 4t with integer t > 4.

H, s ¢ Hi, n>16 (14)

Proof. Fort =1, 2 nomatrix H,_g can be determined and an integer ¢ > 2 will be considered in the following.

Assuming that an Hadamard matrix of order n — 8 can be embedded in an Hadamard matrix of order n,

the relation (5) for d = 8 implies that

|det Hy_g| = n? Mg (15)

where Mg is the absolute value of a 8 x 8 minor of Hy,. Moreover, it is known that

|det Hyg| = (n-8)"F (16)

and, according to (6), Mg = p - 27, where p is a positive integer. For the 8 x 8 case it has been confirmed that
the possible existing values for the integer p are 1, 2, ..., 18, 20, 24, and 32 [11].

Combining (15) and (16), it follows that:

n-s n_g .7  n=4t,{>2 4(t-2 2At-2)
(n-8)2 =n2""p2 <= p=2t — a7

The above equation (17) is satisfied by the pairs of values (¢, p) = (3, 18) and (t, p) = (4, 32) which correspond
to the valid cases of H, € H1, and Hg € H¢, respectively. However, for integers t > 4 the term p in (17) cannot
be an integer. A proof of this statement based on elementary number theory is presented below.

Assuming that p is an integer for any integer t > 4, the equation (17) is written equivalently in the form

of an equality between two integers:

p 2t =265t - 2)22 (18)

The next two cases are considered:

i)

ii)

t = 2™ for integer m > 3
The prime factorization of the left-hand side of (18) shows that the least power of two is 2™, whereas the

prime factorization of the right-hand side of (18) shows that the least power of two is exactly 21+8m+2t-4,
Therefore, considering that p might also be a power of two, it follows that:

5
2mt<8 2t-3 t<b4+ —
mt < 8m + & <4+ =D
The above inequality implies that ¢ < 5 which contradicts the hypothesis for the integer ¢ in this case, i.e.
t>23=8.

t is divisible by a prime integer r = 3
If m > 1 is an integer such that r™ is the maximum power of r that divides ¢, then the prime factorization
of the left-hand side of (18) shows that the least power of r is r>™, whereas the prime factorization of the
right-hand side of (18) shows that the least power of r is exactly r®™. Considering again that p might also
be a power of r, it follows that:

2mt<8m <& ts<4

The above inequality contradicts the general hypothesis for the integer ¢, i.e. t > 4.
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Consequently, there is no integer t > 4 which can give a valid p for the minor Mg. Therefore, the assumption
that was made in the derivation of the equation (15) is invalid for any n = 4t with integer t > 4 and as a result
H,,_g cannot be embedded in Hy. O

Remark 1. The problem of the non-existence of integers p satisfying (17) can also be investigated using tools
from calculus. Specifically, if p in (17) is regarded as a real function of ¢, then p(t) is differentiable in the
interval (4, +oo) with first derivative:

dp 4t [t-2\*' t-2
" @-2n (T) (““(T)*‘*)

It can easily be proven that % > 0 for every t > 4, which implies that p(t) is a strictly increasing function in
the interval (4, +o0). As a result, for every t > 4, it holds

p()>p4) < p>32

which contradicts the fact that p < 32 [11].

3 Embeddability of Hadamard matrices

In the proof of Proposition 3, the parameter p plays a key role in the study of the embedding properties of
Hadamard matrices. Given a positive integer k, by the Hadamard conjecture the absolute value of the maximal
determinant of a (+1)-matrix of order k is always less than or equal to k2 [8]. Therefore, for any minor M, it

holds: 1
Mk =p2 B 2
. o p2Flckt & p<2 (k) (19)
Mk <k2

If p is used to denote the maximum value of p, then (19) implies that

k
2 -
p = max(p) = 2 (%) Eop=ar (20)
The relation (19) forms a necessary condition for the embeddability of Hadamard matrices. Hence, by
studying the range of values that p can take, the results obtained from Propositions 2 and 3 can be generalized

for an Hadamard matrix of order n - k.

3.1 Embeddability of Hadamard matrices of order n - k

Letn = 4tand k = 4r where ¢, r are positive integers. Generally, O < k < n and thus, O < r < t. The cases of
{t>2,r=1}and {t > 4, r = 2} have been examined in Propositions 2 and 3. The case of {t > 2,r>2; t > r}
will be considered in the following.
Assuming that an Hadamard matrix of order n — k can be embedded in an Hadamard matrix of order n,
the relation (5) for d = k implies that
|det Hy_i| = n? %M, 1)

Furthermore, it holds: .
|det Hy | = (n- k)7 (22)

If we combine (6), (21) and (22), we get the next important algebraic relation which connects p, and conse-
quently the spectrum of the determinant function, with the order of the matrix H,,_j :

_ 2(t-r)
p=2t" (—t . r) 23)
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If t = 2r, or equivalently n = 2k, the integer p attains its maximum value p, thus p = p. Then, H,_; =
Hy € H,; = Hy which holds as mentioned in (3). Therefore, in the following, we shall examine the existence
of positive integers t, r satisfying the inequalities:

p<p , t>r (24)

Let 0 = % Since t > r, it follows that0 < 6 < 1and 0 < 1 — 6 < 1. Then,
a 2r _ r Zt(l_%) 2r
p<p & 2t (1 ?) <2r
(1-0)In(1-6)-60n6<0 (25)
Now, for every 0 < (0, 1) we consider the real function:

h(®)=(1-6)In(1-6)-61nb (26)

Using calculus, it can be proven that h(6) > 0, if 6 € (0, 3], and h(6) < 0, if 6 € (3, 1). The graph of the
function h(0) is illustrated in Figure 1.

Figure 1: Graph of the function h(6) = (1 - 6)In(1-6) - 01In 6

h(&)

0.10 7

0.05+

-0.05 1

=010

Studying the sign of the function h(6), where 6 = § = % € (0, 1), provides important information about
the behavior of p for the various values of the integers n and k when n > k.

3.2 Main results on the embeddability — extendability of Hadamard matrices

The preceding analysis provides conclusive results on the embedding problem of Hadamard matrices H,,_
which form the next theorem.

Theorem 1. An Hadamard matrix of order n — k cannot be embedded in an Hadamard matrix of order n for any

positive integers n and k multiples of 4 when k < §. That is

Hy_y ¢ Hn, 4sk<g @7)

Proof. If n > 2k, thent > 2r and 6 < % Consequently, it is h(6) > 0, which implies that the inequality

(25) cannot be satisfied by the specific values of 6. Therefore, for n > 2k there are no integers p satisfying
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the conditions (24) and the equation (21), which supports the embedding property of the matrix H,_y, is not
valid. O

However, the sign analysis of the function h(6) also reveals that for n < 2k < 2n there are positive integers p
which satisfy p < p.

If n = 2k, then h(6) =0 < p = p. This s the case of H; € H,; which is true according to (3). Conversely,
ifn < 2k < 2n, there are values of p such that p < p. Considering (23) fort = 2 and r = %, the discrete function

‘ nk
n\z fn-k\ 2 n n=38,12,16,...
‘.P(n,k)—z(z) ( - ) forisk<n and{k:l‘,&lz““ (28)

provides values for the parameter p which satisfy (21), expressed as

n_g
|detH, ;| = 201 (%) *"p (29)

The above results form the basis to pose the following conjecture.

Conjecture 1. Consider a Hadamard matrix Hy. If Hg‘) is a k x k submatrix of H,, where n > 8 and k = 4 are
integers multiples of 4 such that 4 < k < n, and | det H, Slk)\ = p 21 with p = P(n, k), then an Hadamard matrix
of order n — k may exist embedded in the Hadamard matrix of order n, i.e.,

H, i € Hn, 4sgsk<n (30)

3.3 Connection of p with the available determinant spectrum and verification of the
results

Both results (27) and (30) reveal a characteristic embedding and extension pattern for Hadamard matrices and
their proof is based on the properties of the minors of Hadamard matrices. The key element in this study is
the range of the values of the parameter p. Theorem 1 provides conclusive results for every p > p. Conversely,
(30) holds for specific values of p which can be obtained from (28).

For a fixed order n = 8, the relation (30) holds for every k = § and k = n - 4, since they are linked to
the already known cases H, € H,, and H, € Hp, respectively. Furthermore, for 4 < k < 16 the computed
values of p = P(n, k) are already included in the available and confirmed spectrum for k = 4, 8, and in the
conjectured spectrum for k = 12, 16 given by Orrick and Solomon in [11].

We also examined some cases where k > § using the Hadamard matrices of order 20, 24, and 28 (Paley-
type) given by Sloane in [14]. The following results, obtained by using Matlab and a quad-core AMD-A10/8Gb-
Ram machine, verify Conjecture 1 for n = 20, 24,28 and k = 12, 16, 20.

i) n=20,k=12,andp = P(20, 12) = 800

There exists a 12 x 12 submatrix H(z%z) = [aj;] of Hyo where

i€{1,2,3,4,5,6,7,8,9,11, 14, 20},
je{1,2,3,4,7,8,13,14,17,18,19, 20}

such that
|det H(L?| = 800 - 2! = 1638400

The above result implies that Hg may exist embedded in H,y. We can confirm that there is an 8 x 8 sub-
matrix A = [a;;] of Hyo where

i€{1,2,3,4,5,6,9,12},

1 had.20.pal, had.24.pal, had.28.pal2
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je{1,2,3,4,8,14,15,18}
which satisfies (1) and (29). That is
AAT =AT A=8I and

2-12
2
| det A] = 220-12-1, (Zf) - 800 = 4096 = | det Hs|

ii) n=24,k=16,and p = P(24,16) = 41472

There exists a 16 x 16 submatrix H'® = [a;;] of Hy4 where

ie{1,2,3,4,5,6,7,8,9,10,11,12, 15,18, 22, 23},
je{1,3,6,7,9,10,12,13, 14, 15,16, 18, 19, 21, 23, 24}

such that
|det HS'Y| = 41472 - 2 = 1358954496

The above result implies that Hg may exist embedded in H;,4. We can confirm that there is an 8 x 8 sub-
matrix A = [a;;] of Hy4 where

i€{1,2,3,4,5,6,12,21},
je{2,5,7,10,11,17,18,19}

which satisfies (1) and (29). That is
AAT =AT A=81 and

Z-16
2
|det A| = 20247101, <%) - 41472 = 4096 = | det Hg|

iii) n =28, k=20, and p = P(28,20) = 3764768

There exists a 20 x 20 submatrix H2) = [a;;] of Hyg where

ie{1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 16,17, 19, 23, 27},
je{1,2,3,4,5,7,9,11,13, 14,15,16,17, 19, 20, 22, 23, 24, 26, 27}

such that
|det HZY| = 3764768 - 212 = 1973822685184

The above result implies that Hg may exist embedded in H,g. We can confirm that there is an 8 x 8 sub-
matrix A = [a;;] of Hyg where

i€{1,2,3,4,5,6,16,17},
j€{4,6,9,14,15,19,21,26}

which satisfies (1) and (29). That is
AAT =AT A=81 and

8-20
|det A| = 2028201, (24—8) -3764768 = 4096 = | det Hg|
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iv) n=28,k=16,and p = P(28,16) = 71442

There exists a 16 x 16 submatrix H®) = [a;;] of Hyg where

iec{1,2,3,4,6,8,9,11,15,16, 17, 18, 20, 22, 23, 25},
je{1,2,3,4,6,8,9,11,15, 16, 17, 18, 20, 22, 23, 25}

such that
|det HSLY)| = 71442 - 2'° = 2341011456

The above result implies that H,, may exist embedded in H,g. We can confirm that there isa 12 x 12
submatrix A = [a;] of Hyg where

ie€{1,2,3,4,8,11,15,16,17, 18,22, 25},
je{1,2,3,4,8,11,15,16, 17, 18,22, 25}

which satisfies (1) and (29). That is
AAT =AT A=121 and

2-16
2
|det A| = 20287101, <2478> - 71442 = 2985984 = | det Hy,|

The aforementioned submatrices are not unique. There are several different row and column arrange-
ments (i, j) which also satisfy the conditions for (30) to hold. In Table 2, we summarize the confirmed results
obtained from (27) and (30) forn = 8,12,...,28and k= 4,8, ..., 24.

Table 2: Embeddability of Hadamard matrices H,,_j for 4 < k < 24 and 8 < n < 28.

]
U=y
N
=~

1
=)
(@)Y
~

]
N
o
~

]
N
)

Order k=4 k=8 k

n= H, € Hg

n=12 Hgd¢ Hyp H, € Hy)

n=16 Hipy ¢ Hig HsecHig Hy€Hig

n=20 Hyg¢ Hy Hiyp¢Hyy HgeHyy HyeHy

n=24 Hy ¢ Hy, Hig¢Hy Hiye€Hy, HgeHy,, HyeHy

n=28 Hy, ¢ Hys Hy ¢ Hys Hig ¢ Hys Hiao € Hys Hg€ Hys Hy€ Hog

4 Conclusions

In this paper, we investigated the conditions under which Hadamard matrices of order n - k can exist em-
bedded in other Hadamard matrices of order n. The same problem can be seen as an extension problem from
order n to order n + k. We considered the problem when k < % and k = Z. In our study, we analyzed the
embedding properties of Hadamard matrices via their minors and revisited the method of proving H,_; ¢ Hy
when k < %, which was originally presented in [3]. A systematic approach was followed to this problem, first
by looking at the cases H,_4 ¢ Hn and H,_g ¢ Hpy, and then considering the general case H,,_; ¢ Hn which
is presented in Theorem 1. For their proof, we used tools from elementary number theory and calculus which
also allowed us to study the problem further when k = J. The results obtained may reveal a characteristic
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embedding pattern for all Hadamard matrices. In particular, for k = J it is known that H, € H,,andfork > §
it is inferred that if a Hadamard matrix of order n has a k x k submatrix with minor p 2¥-! and the value of p is
specifically given by (28), then a Hadamard matrix of order n - k may exist embedded in the Hadamard matrix
of order n. For orders n < 28 and k < 16 multiples of 4, we noticed that the values of p obtained from (28) also
appear in the spectrum of the determinant function given in [11] and this partially verifies the conditions of
Conjecture 1.

Acknowledgement: The authors would like to thank Prof. Emeritus A. Tsarpalias of the Dept. of Mathematics
at the National and Kapodistrian University of Athens for his contribution in the proof of Proposition 3.
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