Targeting of N-Type Calcium Channels via GABAB-Receptor Activation by α-Conotoxin Vc1.1 Variants Displaying Improved Analgesic Activity

Fengtao Cai
Guangxi Medical University, Beijing Institute of Biotechnology

Ning Xu
Beijing Institute of Biotechnology

Zhuguo Liu
Beijing Institute of Biotechnology

Rong Ding
Beijing Institute of Biotechnology

Shuo Yu
Beijing Institute of Biotechnology

See next page for additional authors

Publication Details
Targeting of N-Type Calcium Channels via GABAB-Receptor Activation by α-Conotoxin Vc1.1 Variants Displaying Improved Analgesic Activity

Abstract

α-Conotoxins exhibiting analgesic activity, such as Vc1.1, have been shown to inhibit α9α10 nicotinic acetylcholine receptors (nAChRs) and GABA_B-receptor (GABA_BR) coupled N-type (CaV2.2) calcium channels. Here, we report two Vc1.1 variants, Vc1.1[N9R] and benzoyl-Vc1.1[N9R], that selectively inhibit CaV2.2 channels via GABA_BR activation but exhibit reduced inhibitory activity at α9α10 and other neuronal nAChR subtypes compared with Vc1.1. Surprisingly, the analgesic activity of Vc1.1[N9R] and benzoyl-Vc1.1[N9R] was more potent than that of Vc1.1 when tested in partial sciatic nerve ligation injury and chronic constriction injury models. Vc1.1[N9R] and benzoyl-Vc1.1[N9R] exhibited either similar or tenfold higher activity of GABA_BR-mediated CaV2.2 inhibition but no activity at CaV2.2 alone; however, the mechanism of increased analgesic activity is unknown. The effects on analgesic activity and α9α10 nAChR of other Vc1.1 variations at position 9 and the N-terminus were also determined. Our findings provide new insights for designing potent inhibitors for GABA_BR-coupled N-type (CaV2.2) calcium channels.

Disciplines

Medicine and Health Sciences

Publication Details

Authors

Fengtao Cai, Ning Xu, Zhuguo Liu, Rong Ding, Shuo Yu, Mingxin Dong, Shuo Wang, Jintao Shen, Han Shen Tae, David J. Adams, Xuerong Zhang, and Qiuyun Dai

This journal article is available at Research Online: https://ro.uow.edu.au/ihmri/1318
Targeting of N-type Calcium Channels via GABA_{B} Receptor activation by \(\alpha\)-Conotoxin Vc1.1 Variants Displaying Improved Analgesic Activity

Fengtao Cai,†‡ Ning Xu,† Zhuguo Liu,† Rong Ding,† Shuo Yu,† Mingxin Dong,† Shuo Wang,† Jintao Shen,† Han-Shen Tae,§ David J. Adams,§* Xuerong Zhang‡*, Qiuyun Dai*,†

† Beijing Institute of Biotechnology; Beijing 100071, China
‡ School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
§ Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia

Fengtao Cai, Ning Xu, and Zhuguo Liu contributed equally to this work.
ABSTRACT: α-Conotoxins exhibiting analgesic activity have been shown to inhibit α9α10 nicotinic acetylcholine receptors (nAChRs) and GABA_B receptor (GABA_B R)-coupled N-type (CaV2.2) calcium channels. Here, we report two Vc1.1 variants, Vc1.1[N9R] and benzoyl-Vc1.1[N9R], selectively inhibit CaV2.2 channels via GABA_B R activation but exhibit reduced inhibitory activity at α9α10 and other neuronal nAChR subtypes compared to Vc1.1. Surprisingly, the analgesic activity of Vc1.1[N9R] and benzoyl-Vc1.1[N9R] was more potent than Vc1.1 when tested in the partial sciatic nerve injury and chronic constriction injury models. Vc1.1[N9R] and benzoyl-Vc1.1[N9R] exhibited either similar or ten-fold higher activity of GABA_B R-mediated CaV2.2 inhibition but no activity at CaV2.2 alone, however, the mechanism of increased analgesic activity is unknown. The effects of other Vc1.1 variants at position 9 and the N-terminus were also determined on analgesic activity and α9α10 nAChR. Our findings provide new insights to design potent inhibitors for GABA_B R-coupled N-type (CaV2.2) calcium channels.

INTRODUCTION
Nicotinic acetylcholine receptors (nAChRs) are a diverse family of ligand-gated cation selective channels which are widely distributed in the central and peripheral nervous systems.1, 2 Some nervous system diseases are involved with nAChR dysfunctions,3,4 such as neuropathic pain,5–7 Parkinson’s disease,8, 9 and schizophrenia.10 Recently, several nAChR subtypes have been identified as potential targets for treatment of neuropathic pain with α-conotoxins.11–13 A number of α-conotoxins, such as Vc1.1,14 Rg1A,15 MII,16 and AuIB,17 which are composed of 11-20 amino acids and two disulfide bridges and target α9α10, α3β2
or α3β4 nAChRs, have been shown to possess analgesic activity.

Vc1.1 is the first α-conotoxin to exhibit potent analgesic activity and accelerate the functional recovery of injured neurons, and it entered phase II of clinical studies. Vc1.1 reversibly inhibits α9α10 nAChR and weakly inhibits α3β2 and α3β4 nAChRs. Vc1.1 also potently inhibits N-type (CaV2.2) Ca\(^{2+}\) channels via GABABR activation. The co-administration of a selective GABABR antagonist with Vc1.1 in rats completely abolishes its analgesic action, suggesting that the analgesic activity of Vc1.1 is mediated by GABABR activation. However, to date, α-conotoxins which exhibit potent analgesic activity are largely inhibitors of α9α10 nAChR and GABABR-coupled CaV2.2 channels.

In the primary screening of analgesic activity of Vc1.1 variants, the modifications at position 9 affected Vc1.1’s analgesic activity, and the substitution of Asn9 with Arg improved the analgesic activity of Vc1.1 in rat partial sciatic nerve injury (PNL). Therefore, in the present study, we investigated the effects of charge and hydrophobic features at N-terminal and position 11 on the analgesic activity of Vc1.1[N9R]. The structure-activity relationship of these variants on α9α10 nAChR and GABABR-coupled CaV2.2 channels were determined. The results showed that benzoyl-Vc1.1[N9R] apparently improved analgesic activities as Vc1.1[N9R] in rat PNL and chronic constriction injury model (CCI) compared to Vc1.1, whereas their inhibitory activity at α9α10 nAChR were 29- and 172-fold lower than that of Vc1.1. In contrast, the two Vc1.1 variants displayed similar or ten-fold higher inhibitory activity at CaV2.2 channels in HEK293T cells co-expressed with GABABR but not CaV2.2 alone. The results demonstrate that the target specificity of two Vc1.1 variants is significantly different from that of Vc1.1. However, the further replacement of Asp11 by Asn
or acetylation at the N-terminus of Vc1.1[N9R] significantly reduced the inhibitory activity at the rat α9α10 nAChR and GABABR-coupled CaV2.2. These findings provide new insights into designing potent inhibitors for GABABR-coupled CaV2.2 channels.

RESULTS

Chemical Synthesis and Characterization of Vc1.1 Variants. Linear Vc1.1 and its variants (Table 1) were folded individually in NH4HCO3 buffer and analyzed by HPLC. The typical folding results of Vc1.1[N9R] and benzoyl-Vc1.1[N9R] are shown in Figure 1, other Vc1.1 variants are shown in Figures S8-S16; all linear Vc1.1 and its variants folded to form a major product. The resulting peptides were further purified and assessed with analytical reversed-phase HPLC, and the purity of the peptides was determined as ≥ 95% (Figure S8-S16). The mass spectral analysis showed that Vc1.1 and variants were the correct folded products (Figure S17-S25). The circular dichroism (CD) spectra of Vc1.1 and its variants in 0.01 M phosphate buffer showed some ellipticities around 208 nm and 220 nm (Figure S26-S34). These results are consistent with previous reports that α4/7-conotoxins have a short helical structure if they have the disulfide bridges C1-C3, C2-C4 and a conserved proline residue exists in loop 2.12,19 Thus, this structural feature was used to confirm the disulfide bridges of Vc1.1 variants.

Effect of Residues at Position 9 and 11 on the Analgesic Activity of Vc1.1. The analgesic activity of Vc1.1 and its variants at position 9 and 11 was assessed using rat PNL and CCI models. In the PNL model, ipsilateral Vc1.1[N9R] injection (0.3, 1.5 and 15 nmol/kg) increased the pain threshold elevation percentages by 16.7 ± 10.0%, 47.2 ± 17.8% and 85.0 ± 30.0% (n = 8), respectively, in a dose-dependent manner (Figure 2A), and was
higher than Vc1.1 at the same dose, which increased the pain threshold elevation percentages by 12.2 ± 14.4%, 25.6 ± 19.4% and 51.1 ± 21.1% (n = 8), respectively. The same tendency was observed in rat CCI model (Figure 2B). Next, the analgesic effect of residues at position 11 on Vc1.1[N9R] was assessed. The replacement of Asp at position 11 with Arg, Ser or Asn led to decreased analgesic activity in Vc1.1[N9R, D11R], Vc1.1[N9R, D11S] and Vc1.1[N9R, D11N], in which the pain threshold elevation percentages were 35.3 ± 20.0%, 9.0 ± 22.5% and 40.8 ± 21.5% (n = 8), respectively (Figure S1), whereas the value for Vc1.1 and Vc1.1[N9R] was 58.8 ± 17.5% and 83.8 ± 29.5% (n = 8), respectively, in the same experiment. These results demonstrate that the residue at position 11 is also important for the analgesic properties of Vc1.1[N9R].

Effect of N-terminal Modification on Vc1.1[N9R] Analgesic Activity. The N-terminus of Vc1.1[N9R] was further modified with benzoyl, acetyl or other amino acids, and the analgesic activity was determined in PNL and CCI rats. When benzoyl was introduced to the N-terminal of Vc1.1[N9R], the analgesic activity remained higher than that of unmodified Vc1.1 (Figure 3). At a dose of 15 nmol/kg, benzoyl-Vc1.1[N9R] increased the pain threshold to 80.0 ± 17.3%, approximately 72% higher than Vc1.1 (46.4 ± 10.0%) (Figure 3A). A similar effect was observed in CCI model rats (Figure 3B). N-terminal acetyl (Ac) modification or Gly deletion (Des-Gly) from the N-terminus of Vc1.1[N9R] both negatively affected analgesic activity, although the activities of these modified peptides were comparable with Vc1.1 in PNL rats (Figure S2).

Potency of Vc1.1 Variants at nAChR Subtypes. Two-electrode voltage clamp was used to assess the effects of Vc1.1 variants on ACh-evoked currents of nAChR subunits
expressed in *Xenopus laevis* oocytes. The inhibitory activity of Vc1.1 and several variants at
rat and human α9α10 nAChRs is shown in Figure 4 and Figure S3, respectively. The IC₅₀
obtained for inhibition of rat α9α10 nAChR by Vc1.1, Vc1.1[N9R] and benzoyl-Vc1.1[N9R]
was 28.3 nM, 4901 nM, and 875 nM, respectively (Table 1). The replacement of Asn9 by Arg
and its further benzylation at N-terminus resulted in a 29- and 172-fold reduction,
respectively, in the inhibitory activity of the peptide at rat α9α10 nAChRs. The IC₅₀'s
obtained for inhibition of human α9α10 nAChR by Vc1.1[N9R], benzoyl-Vc1.1[N9R] and
benzoyl-Vc1.1 were 363 nM, 5.93 µM, and 12.50 µM, respectively (Table 1).

Furthermore, the inhibition of rat α3β2, α3β4, α2β4, α2β2, α4β2 and α7 by 10 µM
Vc1.1[N9R] and benzoyl-Vc1.1[N9R] was reduced by ≥ 50% (Figure S4-S5). These results
indicate that the analgesic activity of Vc1.1[N9R] and benzoyl-Vc1.1[N9R] is unlikely to be
due its inhibitory activity at α9α10 or other neuronal nAChR subtypes. Similarly, the
replacement of Asn9 with Asp, the acetylation of [N9R]Vc.1 at N-terminus and the
substitution of Asn9 and Asp11 with Arg and Asn, respectively, led to significant decrease in
the potency of Vc1.1 at rat α9α10 nAChR (Figure 4B). At human α9α10, Vc1.1[N9R] was ~3
times more potent than Vc1.1 (IC₅₀ = 1 µM)²⁴ (Table 1).

Potency of Vc1.1 Variants at GABA₉R-coupled Caᵥ2.2 Channels. The inhibitory
activity of Vc1.1 variants on Caᵥ2.2 channels in HEK293T cells co-expressed with GABA₉R
was also investigated. Vc1.1[N9R] and benzoyl-Vc1.1[N9R] inhibited Caᵥ2.2 channels via
GABA₉R activation to similar degree or greater with an IC₅₀s of 4.9 nM and 0.2 nM,
respectively, compared to 2.4 nM for Vc1.1 (Figure 5F). The effects of the three peptides
were antagonized in the presence of 1 µM CGP55845 (n = 4), a selective GABA₉R
antagonist, and a representative effect of benzoyl-Vc1.1[N9R] on HEK293T cells coexpressing GABA_{B}R and Ca_{V}2.2 is shown in Figure 5E. In addition, benzoyl-Vc1.1[N9R] was inactive in HEK293T cells expressing Ca_{V}2.2 alone (Figure 5E). However, further substitutions of Asp with Asn, Ser and Arg or acetylation or deletion of first amino acid at N-terminal resulted in a decrease in inhibitory activity (Figure 5H-5G). Similar to benzoyl-Vc1.1[N9R], single modifications of benzoylation at the N-terminal led to an increase in potency (Figure 5H). Furthermore, the three peptides, Vc1.1, Vc1.1[N9R] and benzoyl-Vc1.1[N9R], tested at a concentration of 10 \mu M had no significant effect on either TTX-resistant (TTX-R; Figure S6) or TTX-sensitive sodium channels (TTX-S; Figure S7) in rat DRG neurons. These results suggest that Vc1.1[N9R] and benzoyl-Vc1.1[N9R] specifically inhibit GABA_{B}R-coupled Ca_{V}2.2 channels.

\section*{DISCUSSION}

According to the residue numbers of the inter cysteine loops (-CC-(loop1)-C-(loop2)-C-), \alpha-conotoxins are divided into several subfamilies (\alpha3/5, \alpha4/3, \alpha4/4, \alpha4/6, \alpha4/7 and \alpha5/5).12 ImI and Rg1A belong to the \alpha4/3 subfamily, whereas PnIA, PnIB and Vc1.1 belong to the \alpha4/7 subfamily. Mutagenesis studies of \alpha-conotoxins ImI, Rg1A, PnIA, PnIB and Vc1.1 have shown that loop 1 of \alpha-conotoxin plays a key role in recognizing nAChR subtypes and that loop 2 is important to both activity and selectivity.25-32 Mutations of Asp5-Arg7 and Asp11-Ile15 in Vc1.1 resulted in loss of activity at rat \alpha9\alpha10 nAChR.33 However, replacing the polar residue Asn9 with a hydrophobic residue such as Leu, Ile, Phe or Trp significantly increased the potency of Vc1.1 at both the rat \alpha9\alpha10 and the human/rat \alpha9\alpha10 hybrid nAChRs.32-35 In the present study, substitution of Asn9 with Arg in Vc1.1, the further
replacement of Asp11 by Asn or acetylation at the N-terminus of Vc1.1[N9R] significantly reduced the inhibitory activity at the rat α9α10 nAChR, which is consistent with a previous report that substitution of Asn9 with Lys reduced Vc1.1 activity.34

Surprisingly, the substitution of Asn9 with Arg in Vc1.1 and further benzoylation at the N-terminus apparently increased analgesic activity (Figure 2-3). These results suggest that the analgesic activity of Vc1.1[N9R], benzoyl-Vc1.1[N9R] is not due to their reduced inhibitory activity at α9α10 nAChR. Similar examples are found in Vc1.1 post-translationally modified analogues, such as Vc1a, Vc1.1[P6O] and Vc1.1[E14γ],32 which are equipotent at inhibiting α9α10 nAChR but lack analgesic activity in vivo.

It has been reported that α-contoxins Vc1.1,21 Rg1A,15,36 PeIα,37 AuIB17 and Vc1.238 also inhibit GABA_BR-coupled N-type (CaV2.2) calcium channels. The discrepancy between the inhibitory activity of Vc1.1[N9R] and benzoyl-Vc1.1[N9R] at α9α10 nAChR and analgesic activity led to the demonstration of their potent inhibition of GABA_BR-coupled CaV2.2 channels in HEK293T cells. Our results showed that Vc1.1[N9R] exhibited similar inhibitory activity at GABA_BR-coupled CaV2.2 channels as Vc1.1 whereas benzoyl-Vc1.1 and benzoyl-Vc1.1[N9R] are 1- and 10-fold more potent than Vc1.1 (Figure 5). To our knowledge, benzoyl-Vc1.1[N9R] is the most potent inhibitor of GABA_BR-coupled CaV2.2 channels. In addition, Vc1.1 and the two variants (10 μM) exhibited no significant effect on CaV2.2 expressed alone in HEK293T cells, nor TTX-R (Figure S6) and TTX-S Na⁺ channels (Figure S7) in rat DRG neurons. The effect of benzoyl-Vc1.1[N9R] was antagonized in the presence of the selective GABA_B receptor antagonist, CGP55845. However, the analgesic activity of Vc1.1 and Vc1.1[N9R] is not strictly coupled to its potency at GABA_BR/CaV2.2
channels. The *in vitro* degradation of two peptides (data not shown) appears to exclude the possible effects of pharmacokinetics *in vivo*, but the mechanism of increased analgesic activity is unknown.

In conclusion, the substitution of Asn9 with Arg, or the further modification of the N-terminus with a benzoyl group improves Vc1.1 analgesic activity. Our findings will be valuable for designing new potent inhibitors for GABA_BR-coupled Ca_V2.2 channels.

EXPERIMENTAL SECTION

Animals. Adult male Sprague-Dawley rats (SD, 200-220 g, 6-7 week old) (Beijing Animal Center, China) were housed in groups of eight on a 12 h light-dark cycle (light cycle from 8 AM – 8 PM) at a temperature of 23 ± 2 °C and a relative humidity of 50%. Food pellets and water were available *ad libitum*. All experiments were conducted in accordance with the guidelines of the Beijing Institutes for Biological Sciences Animal Research Advisory Committee and conformed to the European Community directives for the care and use of laboratory animals.

Reagents. N-Fmoc-amino acids, HOBt, HBTU, DIEA and TFA were purchased from GL Biochem Ltd. (Shanghai, China). Wang resin and Rink resin were obtained from Tianjin Nankai Hecheng S&T Co. (China). DTT was obtained from Promega. Baclofen and GABA were purchased from Aladdin Reagent (Shanghai, China). All other reagents were of analytical grade. Human GABA_{B1}R and GABA_{B2}R subunit cDNA clones were obtained from OriGene Technologies, Inc. (Rockville, MD, USA). The rat Ca_V2.2 channel α_{1B} splice variant e37a, and auxiliary subunits β3 and α_{2δ1} were obtained from Addgene (Cambridge, MA,
Peptide Synthesis and Folding. Vc1.1 and its variants (Table 1) were synthesized using the solid-phase method on an ABI 433A peptide synthesizer (Thermo Fisher Scientific) using standard Fmoc chemistry and side-chain protection as described previously.39,40 The lyophilized crude linear peptide was folded in 0.1M NH\textsubscript{4}HCO\textsubscript{3} buffer (pH 8.2–8.4) at concentration of 0.3 mg/mL in an open flask for 38 h.

Following oxidation of the peptide, the reaction mixture was acidified (pH < 4.5) with acetic acid and loaded on a Nucleosil 25×250 mm preparative C18 column using a preparative HPLC pump (Waters Delta Prep 4000). The column was washed with 95% acetonitrile containing 0.1% TFA at a flow rate of 5.0 mL/min. The resulting peptide was further purified by semi-preparative reversed-phase HPLC using a 10×250 mm Kromasil C18 column. The purity of the peptide was assessed by analytical reversed-phase HPLC using a Calesil C\textsubscript{18} column (5 µm, 100 Å, 4.6×250 mm) with a 25 min linear gradient of 8-40% buffer B (0.1% TFA in acetonitrile) at a flow rate of 1 mL/min. The purity of all final products was of ≥ 95%. Confirmation that the product was of the correct molecular mass was obtained by mass spectrometry on a ProFLEXTM-III MALDI-TOF spectrometer.

Circular Dichroism (CD) Spectra. CD spectra of Vc1.1 and its variants were measured between 190 and 340 nm on Chirascan-plus CD (Applied Photophysics ltd., Leatherhead, UK). The peptide was dissolved in 0.01 M phosphate buffer (pH 7.2) to a final concentration of 35 µM. A 1-mm path length quartz cell was employed. Each spectrum represented the accumulation of three individual scans collected at 1.0 nm intervals at a bandwidth of 1.0 nm.

Analgesic Activity Test. Under pentobarbital (48 mg/kg) anesthesia, partial sciatic
nerve injury (PNL) was established according to the method of Seltzer41,42 and chronic constriction injury model (CCI) was achieved using the CCI model of Bennett and Xie.43,44 All behavioral testing was performed seven days after surgery. A successful PNL model was defined by a 30-50% decrease in mechanical paw withdrawal thresholds (PWT) for the ipsilateral hind paw. Mechanical paw withdrawal thresholds were assessed using an Ugo Basile Analgesy-Meter (Ugo Basile, Italy).

For pharmacological testing, all drugs were dissolved in sterile 0.9% saline. The qualified PNL rats and CCI rats (a 30-50% decrease in PWT) were randomly divided into peptide groups and a saline group with 8 animals in each group. Saline or Vc1.1 (0.3, 1.5 and 15 nmol/kg or single dose) or Vc1.1 variants (0.3, 1.5 and 15 nmol/kg or single dose) was administered ipsilaterally close to the injury site at a mid-thigh region of mice in a volume of 200 μL. The number of groups including a saline and Vc1.1 control group in each experiment was no more than 7. Paw withdrawal thresholds were measured at 2-2.5 h following intramuscular administration. Data are expressed as mean pain threshold elevation percentages (PTEPs) ± SD (\%PTEP = (Post-drug PWT-Pre-drug PWT)/ Pre-drug PWT×100). The unpaired t test was performed, and a \(p \) value of < 0.05 was considered statistically significant.

Two-electrode Voltage Clamp. cRNA preparation, oocyte harvesting and expression of nAChR subunits and oocyte electrophysiology were performed as described previously.38,39 Briefly, the *Xenopus laevis* oocytes were incubated in ND96 solution (96.0 mM NaCl, 2.0 mM KCl, 1.8 mM CaCl\textsubscript{2}, 1.0 mM MgCl\textsubscript{2} and 5 mM HEPES, pH \~ 7.3) containing 2.5 mM pyruvic acid sodium (Sigma, St. Louis, MO, USA) and antibiotics (100 U/mL penicillin,
100 mg/mL streptomycin, Sigma) at 18°C. Oocyte recordings were performed 2-4 days post-injection at room temperature (~ 22°C). The oocyte was perfused with peptide solution until equilibrated (5-10 min). At high concentrations (1 µM or greater), 5.5 µL of a 10-fold concentrated peptide solution was directly pipetted into static bath 5 min prior to the exposure of ACh pulses. The concentration-response relationships were fit to the equation: % response $= 100/[1 + ([\text{toxin}]/\text{IC}_{50})^n]$, where n is the Hill coefficient and IC$_{50}$ is the antagonist concentration giving half-maximal response, by non-linear regression analysis using GraphPad Prism (GraphPad Software, San Diego, CA, USA).

HEK293T Cell Electrophysiology. HEK293T cells were seeded into 12 well plates and transiently cotransfected with human GABA$_{B1}$ and GABA$_{B2}$ subunits (2 µg each) and 0.2 µg mCherry fluorescent protein using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. After 24 hours, the cells were then transiently cotransfected with rat Cav2.2 channels (α_{1B}, $\beta3$, and $\alpha_{2\delta1}$ subunits with 1 µg each) and 0.2 µg of the enhanced green fluorescent protein using Lipofectamine 2000 as well.

Two to three days after transfection, cells were seeded on glass coverslips pretreated with poly-L-lysine and incubated at 37°C in 5% CO$_2$ for at least 6 hours before recording. Whole-cell patch clamp recording from transfected HEK293T cells was performed as described previously.$^{23, 37}$ Briefly, HEK293T cells were superfused with a solution containing (in mM): 90 NaCl, 10 BaCl$_2$, 5 CsCl, 30 TEA-Cl, 1 MgCl$_2$, 10 d-glucose, and 10 HEPES, pH 7.4 with TEA-OH. Fire-polished borosilicate patch pipettes (2–3 MΩ tip resistance) were filled with a solution containing (in mM): 120 K-gluconate, 5 NaCl, 2 MgCl$_2$, 5 EGTA, 2 MgATP, 0.6 Na$_2$GTP, and 10 HEPES, pH 7.2 with CsOH. Whole-cell patch clamp recordings
were performed at room temperature (23–25°C) using a MultiClamp 700B amplifier (Molecular Devices) controlled by Clampex 10.3/DigiData 1440A acquisition systems. Membrane currents were filtered at 2 kHz and sampled at 10 kHz. Leak and capacitive currents were subtracted using a −P/4 pulse protocol. Peak current amplitude in response to the depolarizing pulse was measured once a steady state was achieved (3–5 minutes). All drugs were diluted to the appropriate final concentration and applied via perfusion. Baclofen was used as a positive control for functional expression of GABA_{δ}R with Ca_{V}2.2 channels and cells responding to baclofen with ≥ 50% peak current inhibition were included in our analysis. The concentration-response data were fit to the equation: \(Y = Y_{\text{min}} + \frac{(Y_{\text{min}} - Y_{\text{max}})}{1+10^{(\text{Log IC}_{50}-X)\times h}} \), where \(Y \) is \(I/I_0 \), \(h \) is the Hill coefficient (slope), \(\text{IC}_{50} \) is the half-maximal inhibitory concentration. The non-linear regression analysis was performed using GraphPad Prism (GraphPad Software, San Diego, CA, USA).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.

Additional information about the analgesic and electrophysiological activities of Vc1.1 variants as well as HPLC analyses and mass spectroscopy of peptides (PDF)

AUTHOR INFORMATION

Corresponding Author
Author Contributions
F.C., Z.L., R.D., X.Z., J.S., S.W. and H-S.T. synthesized peptides and performed electrophysiological experiments. N.X., M.D. and S.Y. ran analgesic tests. D.J.A. guided electrophysiological experiments and edited the manuscript. Q.D. designed the project and wrote the manuscript.

Notes
The authors declare no conflicts of interests.

ACKNOWLEDGMENTS
We are grateful to Prof. Zhonghua Liu (Hunan Normal University) and Dr. Yunxiao Zhang who tested the activities of the peptides on voltage-gated sodium channels in rat DRG neurons. This work was supported by the China Natural Science foundation (No. 90713028) and Grant 2010CB529802 from the Basic Research program of China and a National Health & Medical Research Council of Australia Program Grant to D.J.A. (APP1072113)
ABBREVIATIONS USED
nAChR, nicotinic acetylcholine receptor; GABA_B, G protein-coupled GABA_B receptor; IC_{50}, half-maximal inhibitory concentration; TFA, trifluoroacetic acid; RP-HPLC, reversed-phase high-performance liquid chromatography; ESI-MS, electrospray-mass spectroscopy; HOBt, 1-hydroxybenzotriazole; DIEA, diisopropylethylamine; HBTU, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; Fmoc, N-(9-fluorenyl)methyloxy-carbonyl

REFERENCES
(8) Quik, M.; Zhang, D.; McGregor, M.; Bordia, T. Alpha7 nicotinic receptors as therapeutic

(15) Callaghan, B.; Haythornthwaite, A.; Berecki, G.; Clark, R. J.; Craik, D. J.; Adams, D. J. Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABA\(_B\) receptor activation. *J. Neurosci.* **2008**, *28*, 10943–10951.

(24) Yu, R., Tae, H-S., Tabassum, N., Shi, J., Jiang. T., Adams. D. J. Molecular determinants conferring the stoichiometric-dependent activity of α-conotoxins at the human α9α10

(29) Halai, R.; Callaghan, B.; Daly, N. L.; Clark, R. J.; Adams, D. J.; Craik, D. J. Effects of cyclization on stability, structure, and activity of α-conotoxin Rg1A at the α9α10 nicotinic acetylcholine receptor and GABA_B receptor. *J. Med. Chem.* **2011**, 54, 6984-6992.

(33) Yu, R.; Kompella, S. N.; Adams, D. J.; Craik, D. J.; Kaas, Q. Determination of the

(40) Seltzer, Z.; Dubner, R.; Shir, Y. A novel behavioral model of neuropathic pain disorders

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
<th>IC50 (nM, α9α10)</th>
<th>IC50 (nM, GABABR-coupled CaV2.2)</th>
<th>Ratio of IC50's in α9α10 vs CaV2.2</th>
<th>Rat PNL model pain threshold elevation (%) at 15 nmol/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vc1.1</td>
<td>GCCSDPRCNYDHPEIC*</td>
<td>28.3 (20.8~38.5) (r)</td>
<td>2.4 (0.8~7.0)</td>
<td>11.8 (r)</td>
<td>51.1±21.1</td>
</tr>
<tr>
<td>Vc1.1[N9R]</td>
<td>GCCSDPRCVRDHPEIC*</td>
<td>4901 (1729~13891) (r)</td>
<td>4.9 (2.6~9.1)</td>
<td>1000 (r)</td>
<td>85.0±30.0</td>
</tr>
<tr>
<td>Vc1.1[N9R,D11N]</td>
<td>GCCSDPRCYNHPEIC*</td>
<td>13946 (8204~23707) (r)</td>
<td>>1000</td>
<td><13.9 (r)</td>
<td>40.8±21.5</td>
</tr>
<tr>
<td>Vc1.1[N9R,D11S]</td>
<td>GCCSDPRCYSHPEIC*</td>
<td>ND</td>
<td>18.6 (6.3~55.1)</td>
<td>9.0</td>
<td>35.3±20.0</td>
</tr>
<tr>
<td>Vc1.1[N9R,D11R]</td>
<td>GCCSDPRCVRHPEIC*</td>
<td>ND</td>
<td>>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoyl-Vc1.1[N9R]</td>
<td>Benzoyl-GCCSDPRCVRDHPEIC*</td>
<td>875 (511~1500) (r)</td>
<td>0.2 (0.1~0.3)</td>
<td>4375 (r)</td>
<td>80.0±17.3</td>
</tr>
<tr>
<td>Ac-Vc1.1[N9R]</td>
<td>Ac-GCCSDPRCVRDHPEIC*</td>
<td>2416 (1462~3993) (r)</td>
<td>18.9 (7.9~45.5)</td>
<td>127.8 (r)</td>
<td>24.8±10.0</td>
</tr>
<tr>
<td>∆-Gly-Vc1.1[N9R]</td>
<td>CCSDPRCVRDHPEIC*</td>
<td>ND</td>
<td>23.2 (11.1~48.6)</td>
<td>32.5</td>
<td>32.5±10.6</td>
</tr>
<tr>
<td>Benzoyl-Vc1.1</td>
<td>Benzoyl-GCCSDPRCNYDHPEIC*</td>
<td>12503 (8417~28510) (h)</td>
<td>1.2 (0.2~5.6)</td>
<td>>10000 (h)</td>
<td></td>
</tr>
</tbody>
</table>

*C-terminus is amidated. The mutated residues are shown by bold and italic typeface. #Numbers in parentheses indicate 95% confidence intervals, n = 4-6. ##Data are expressed as mean ± SD.
Figure Legends

Figure 1. HPLC analysis of the folding of typical Vc1.1 variants. (a) Vc1.1[N9R] linear peptide and (b) Vc1.1[N9R] folded products, (c) Benzoyl-Vc1.1[N9R] linear peptide and (d) Benzoyl-Vc1.1[N9R] folded products. Samples were applied to a Calesil ODS-100 C\textsubscript{18} column (4.6 × 250 mm) and eluted with a 25 min linear gradient of 5-60% acetonitrile (0.1% TFA) at flow rate of 1 mL/min.
Figure 2. Analgesic activity of Vc1.1[N9R] in PNL and CCI rats. PNL rats (A) and CCI rats (B) (n = 8) were treated intramuscularly (i.m.) with saline, Vc1.1 (0.3, 1.5 and 15 nmol/kg) or Vc1.1[N9R] (0.3, 1.5 and 15 nmol/kg). The bar graph shows the mean pain threshold elevation percentage 2-2.5 h following i.m. injection. Data are expressed as mean ± SD.* p < 0.05 compared with Vc1.1 group.

Figure 3. Analgesic activity of benzoyl-Vc1.1[N9R] in PNL and CCI rats. PNL rats (A) and CCI rats (B) (n=8) were treated intramuscularly with saline, Vc1.1 (0.3, 1.5 and 15 nmol/kg) or benzoyl-Vc1.1[N9R] (0.3, 1.5 and 15 nmol/kg).
nmol/kg) or benzoyl-Vc1.1[N9R] (0.3, 1.5 and 15 nmol/kg). The bar graph shows the mean pain threshold elevation percentage 2-2.5 h following i.m. injection. Data are expressed as mean ± SD. * p < 0.05 compared with Vc1.1 group.

Figure 4. Effects of the key residues on the potency of Vc.1 at rat α9α10 nAChR. (A) The concentration-response relationship for inhibition of α9α10 nAChR by Vc1.1, Vc1.1[N9R] and benzoyl-Vc1.1[N9R] (n = 4-6); (B) The concentration-response relationship for inhibition of α9α10 by other Vc1.1 variants (n = 4-6). Peptides were applied by perfusion to oocytes expressing nAChRs as described in Materials and Methods. The error bars denote the SEM of the mean determined from four to six oocytes for each determination. The IC₅₀ values obtained at the α3β2 nAChR subtype are summarized in Table 1.
Figure 5. α-Conotoxin Vc1.1 variants, Vc1.1[N9R] and benzoyl-Vc1.1[N9R], inhibit CaV2.2 channels by activating GABA_BRs in HEK293T cells. (A) Representative superimposed current traces from HEK293T cells co-expressing human GABA_BR and CaV2.2 channels in the absence and presence of benzoyl-Vc1.1[N9R] (1 nM) and baclofen (10 μM). (B) GABA_BRs-coupled CaV2.2 inhibition of peak current amplitude by benzoyl-Vc1.1[N9R] (1 nM) and baclofen (10 μM) plotted as a function of time. (C) Representative time course of inhibition of peak current amplitude in the presence of benzoyl-Vc1.1[N9R] (1 nM), followed by application of the selective GABA_B receptor antagonist, CGP55845 (1 μM). (D) Benzoyl-Vc1.1[N9R] exhibits no effect in the presence
of 1 μM CGP55845. (E) Bar graph of inhibition of peak Ba$^{2+}$ current amplitude by 1 nM Vc1.1 (18.8 ± 4.1%), 1 nM Vc1.1[N9R] (19.6 ± 10.8%), 1 nM benzoyl-Vc1.1[N9R] (39.7 ± 9.4%), 10 μM baclofen (64.9 ± 5.1%), 10 μM GABA (75.3 ± 6.7%) in HEK203T cells co-expressing GABA$_B$R and CaV2.2, 1 nM benzoyl-Vc1.1[N9R] plus 10 μM baclofen (67.4 ± 5.9%), and the effect of 10 μM benzoyl-Vc1.1[N9R] on CaV2.2 expressed alone (2.2 ± 2.1%). Data represent mean ± SEM (n = 4-6). *p < 0.05, **p < 0.01 versus Vc1.1, one-way analysis of variance. (F), (G) and (H) Concentration-response relationship for peptide inhibition of peak Ba$^{2+}$ current in HEK293T cells co-expressing GABA$_B$R and CaV2.2 channels. Data points represent averaged peak I$_{Ba}$ amplitudes (I/Icontrol ± SEM); IC$_{50}$ values obtained for Vc1.1 = 2.4 (0.8–7.0) nM, Vc1.1[N9R] = 4.9 (2.6–9.1) nM, and benzoyl-Vc1.1[N9R] = 0.2 (0.1–0.3) nM (n = 6–7 cells per data point). Numbers in parentheses indicate 95% confidence intervals, n = 4–6.
SUPPORTING INFORMATION

α-Conotoxin Vc1.1 variants target N-type Calcium channels via GABA_B receptor activation and display improved analgesic activity

Fengtao Cai,†‡ Ning Xu,† Zhuguo Liu,† Rong Ding,† Shuo Yu,† Mingxin Dong,† Shuo Wang,† Jintao Shen,† Han-Shen Tae,§ David J. Adams,§,* Xuerong Zhang‡,* Qiuyun Dai*,†

† Beijing Institute of Biotechnology; Beijing 100071, China
‡ School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
§ Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia

Corresponding Author

*Phone: 86-10-66948897. Fax: 86-10-63833521. E-mail: qy_dai@yahoo.com; Xuerong Zhang, E-mail: zxrsv@126.com; David J. Adams, Email: djadams@uow.edu.au
Contents

<table>
<thead>
<tr>
<th>Methods</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1. Analgesic activity of Vc1.1 variants at position 9 and 11 in PNL rats</td>
<td>S6</td>
</tr>
<tr>
<td>Figure S2. Analgesic activity of N-terminal modified Vc1.1[N9R] variants in PNL rats</td>
<td>S7</td>
</tr>
<tr>
<td>Figure S3. Concentration-response relationship for inhibition of human $\alpha_9\alpha_{10}$ nAChR by Vc1.1[N9R], benzoyl-Vc1.1 and benzoyl-Vc1.1[N9R]</td>
<td>S8</td>
</tr>
<tr>
<td>Figure S4. Vc1.1[N9R] inhibition of rat nAChR subtypes</td>
<td>S8</td>
</tr>
<tr>
<td>Figure S5. Benzoyl-Vc1.1[N9R] inhibition of rat nAChR subtypes</td>
<td>S9</td>
</tr>
<tr>
<td>Figure S6. Effect of Vc1.1, Vc1.1[N9R] and benzoyl-Vc1.1[N9R] (10 μM) on TTX-R Na$^+$ currents in rat DRG neurons</td>
<td>S9</td>
</tr>
<tr>
<td>Figure S7. Effect of Vc1.1, Vc1.1[N9R] and benzoyl-Vc1.1[N9R] (10 μM) on TTX-S Na$^+$ currents in rat DRG neurons</td>
<td>S10</td>
</tr>
<tr>
<td>Figure S8. HPLC analysis of linear, folded and purified products of Vc1.1</td>
<td>S11</td>
</tr>
<tr>
<td>Figure S9. HPLC analysis of linear, folded and purified products of Vc1.1[N9R]</td>
<td>S11</td>
</tr>
<tr>
<td>Figure S10. HPLC analysis of linear, folded and purified products of Vc1.1[N9R,D11N]</td>
<td>S12</td>
</tr>
<tr>
<td>Figure S11. HPLC analysis of linear, folded and purified products of Vc1.1[N9R,D11R]</td>
<td>S12</td>
</tr>
<tr>
<td>Figure S12. HPLC analysis of linear, folded and purified products of Vc1.1[N9R,D11S]</td>
<td>S13</td>
</tr>
<tr>
<td>Figure S13. HPLC analysis of linear, folded and purified products of desG-Vc1.1[N9R]</td>
<td>S13</td>
</tr>
<tr>
<td>Figure S14. HPLC analysis of linear, folding and purified products of Ac-Vc1.1[N9R]</td>
<td>S14</td>
</tr>
<tr>
<td>Figure S15. HPLC analysis of linear, folded and purified products of Benzoyl-Vc1.1[N9R]</td>
<td>S14</td>
</tr>
</tbody>
</table>
Figure S16. HPLC analysis of linear, folded and purified products of Benzoyl-Vc1.1………..S15

Figure S17. Mass spectrometry of Vc1.1…………………………………………………………...S15

Figure S18. Mass spectrometry of Vc1.1[N9R]…………………………………………………….S16

Figure S19. Mass spectrometry of Vc1.1[N9R,D11N]……………………………………………...S16

Figure S20. Mass spectrometry of Vc1.1[N9R,D11R]……………………………………………..S17

Figure S21. Mass spectrometry of Vc1.1[N9R,D11S]……………………………………………..S17

Figure S22. Mass spectrometry of desG-Vc1.1[N9R]………………………………………S18

Figure S23. Mass spectrometry of Ac-Vc1.1[N9R]……………………………………………….S18

Figure S24. Mass spectrometry of Benzoyl-Vc1.1[N9R]…………………………………………S19

Figure S25. Mass spectrometry of benzoyl-Vc1.1………………………………………………..S19

Figure S26. CD spectrum of Vc1.1…………………………………………………………………S20

Figure S27. CD spectrum of Vc1.1[N9R]…………………………………………………………...S20

Figure S28. CD spectrum of Vc1.1[N9R,D11N]……………………………………………………S21

Figure S29. CD spectrum of Vc1.1[N9R,D11R]……………………………………………………S21

Figure S30. CD spectrum of Vc1.1[N9R,D11S]……………………………………………………S22

Figure S31. CD spectrum of desG-Vc1.1[N9R]……………………………………………………S22

Figure S32. CD spectrum of Ac-Vc1.1[N9R]………………………………………………………..S23

Figure S33. CD spectrum of benzoyl-Vc1.1[N9R]………………………………………………...S23

Figure S34. CD spectrum of benzoyl-Vc1.1…………………………………………………………S24
Methods

Electrophysiological recording of TTX-S and TTX-R Na$^+$ currents in rat DRG neurons. Whole-cell voltage clamp recordings of voltage-gated sodium currents were made in rat DRG neurons which were acutely dissociated from 30-day old Sprague–Dawley rats and maintained in short-term primary culture according to the method described previously1. All methods and experimental protocols were approved and carried out in accordance with the guidelines and regulations of the Beijing Institutes for Biological Sciences Animal Research Advisory Committee. DRG neurons of large diameter (>35 µm) and those of relatively small diameter (<20 µm) were chosen for recording tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na$^+$ currents, respectively. TTX (final concentration at 200 nM) was used to isolate TTX-R Na$^+$ currents from TTX-S Na$^+$ currents. Electrophysiological patch clamp recording was performed as described previously2. TTX-S and TTX-R Na$^+$ currents were evoked by a 50 ms depolarizing step to −10 mV and +10 mV, respectively, from a holding potential of −80 mV.

Oocyte two-electrode voltage clamp recording and data analysis of human α9α10 subtype. cRNA preparation, oocyte preparation and microinjection of human α9α10 nAChR were performed as described previously.3 All procedures were approved by the University of Sydney Animal Ethics Committee.
Electrophysiological recordings were carried out 2–5 days post cRNA microinjection. Two-electrode voltage clamp recordings of *Xenopus. laevis* oocytes expressing human nAChRs were performed at room temperature (21–24 °C) using a GeneClamp 500B amplifier and pClamp9 software interface (Molecular Devices, Sunnyvale, CA, USA) at a holding potential −80 mV. Voltage-recording and current-injecting electrodes were pulled from GC150T-7.5 borosilicate glass (Harvard Apparatus, Holliston, MA) and filled with 3 M KCl, giving resistances of 0.3–1 MΩ.

Oocytes were incubated in 100 µM BAPTA-AM ~3 h before recording and perfused with ND115 solution containing (in mM): 115 NaCl, 2.5 KCl, 1.8 CaCl₂, and 10 HEPES at pH 7.4 using a continuous Legato 270 push/pull syringe pump perfusion system (KD Scientific, Holliston, MA, USA) at a rate of 2 mL/min in an OPC-1 perfusion chamber of < 20 µL volume (Automate Scientific, Berkeley, CA, USA). Due to the Ca²⁺ permeability of hα9α10 nAChRs, BAPTA-AM incubation was carried out to prevent the activation of *X. laevis* oocyte endogenous Ca²⁺-activated chloride channels.

Initially, oocytes were briefly washed with ND115 solution followed by 3 applications of acetylcholine (ACh) at half-maximal effective concentration (EC₅₀) of ACh (6 µM) for human α9α10 nAChRs. Washout with bath solution was done for 3 min between ACh applications. Oocytes were incubated with peptides for 5 min with the perfusion system turned off, followed by co-application of ACh and peptide with flowing bath solution. All peptide solutions were prepared in ND115 + 0.1 % bovine serum albumin. Peak current amplitudes before (ACh alone) and after (ACh + peptide) peptide incubation were
measured using Clampfit version 10.7.0.3 software (Molecular Devices, Sunnyvale, CA, USA), where the ratio of ACh + peptide-evoked current amplitude to ACh alone-evoked current amplitude was used to assess the activity of the peptides at human α9α10 nAChRs. All electrophysiological data were pooled (n = 5-10) and represent means ± standard error of the mean (SEM). Data analysis was performed using GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA). The IC\textsubscript{50} was determined from concentration-response relationships fitted to a non-linear regression function and reported with 95% confidence intervals.

Figure S1. Analgesic activity of Vc1.1 variants at position 9 and 11 in PNL rats. PNL rats (n = 8/group) were treated intramuscularly (i.m.) with saline, Vc1.1, Vc1.1[N9R,D11R], Vc1.1[N9R], Vc1.1[N9R,D11N] or Vc1.1[N9R,D11S]. The dose of peptide was 15 nmol/kg for all treatments. The bar graph shows the mean (SD) pain
threshold elevation percentage 2-2.5 h following i.m. injection. *$p < 0.05$ compared with Vc1.1 group.

Figure S2. Analgesic activity of N-terminal modified Vc1.1[N9R] variants in PNL rats.

PNL rats were treated intramuscularly with saline, Vc1.1, Ac-Vc1.1[N9R], or Des-Gly-Vc1.1[N9R] at 15 nmol/kg. The bar graph shows the mean ± SD pain threshold elevation percentage 2-2.5 h following i.m. injection of saline, Vc1.1, Ac-Vc1.1[N9R], and Des-Gly-Vc1.1[N9R]. $p > 0.05$ compared with Vc1.1 group.
Figure S3. Concentration–response relationship for inhibition of human α9α10 nAChR by Vc1.1[N9R], benzoyl-Vc1.1 and benzoyl-Vc1.1[N9R]. The error bars denote the SEM of the mean determined from five to ten oocytes. The IC\(_{50}\) values obtained at the human α9α10 subtype are summarized in Table 1.
Figure S4. Vc1.1[N9R] inhibition of rat neuronal nAChR subtypes. Vc1.1[N9R] (10 µM) was applied by perfusion to oocytes expressing nAChRs as described in *Experimental section*. The error bars denote the SEM of the data from four to seven oocytes for each determination (n = 3-5).

![Graph showing Vc1.1[N9R] inhibition of rat neuronal nAChR subtypes.](image)

Figure S5. Benzoyl-Vc1.1[N9R] inhibition of rat nAChR subtypes. Benzoyl-Vc1.1[N9R] (10 µM) was applied by perfusion to oocytes expressing nAChRs as described in *Experimental section*. The error bars denote the SEM of the data from four to seven oocytes for each determination (n = 3-5).
Figure S6. Effect of Vc1.1, Vc1.1[N9R] and benzoyl-Vc1.1[N9R] (10 μM) on TTX-R Na⁺ currents in rat DRG neurons (n = 4-6 for each). Superimposed TTX-R Na⁺ currents were evoked by step depolarization (50 ms) to +10 mV from a holding potential of −80 mV in the absence (control) and presence of 10 μM Vc1.1 (A), 10 μM Vc1.1[N9R] (B), or 10 μM benzoyl-Vc1.1[N9R] (C).

Figure S7. Effect of Vc1.1, Vc1.1[N9R] and benzoyl-Vc1.1[N9R] (10 μM) on TTX-S Na⁺ currents in rat DRG neurons (n = 4-6 for each). Superimposed TTX-S Na⁺ currents
were evoked by step depolarization (50 ms) to −10 mV from a holding potential of −80 mV in the absence (control) and presence of 10 μM Vc1.1[N9R], 10 μM benzoyl-Vc1.1[N9R] (A) or 10 μM Vc1.1 (B).

Figure S8. HPLC analysis of (a) linear, (b) folded, and (c) purified products of Vc1.1 (Purity: 99.8%). Samples were applied to a Agilent Eclipse Plus C18 (5 μm, 4.6 mm×250 mm) and eluted with a linear gradient of 5-10% B for 0-1 min; 10~50% B (B is acetonitrile containing 0.1% TFA) for 1-25 min. Absorbance was monitored at 214 nm. Flow rate was 1.0 ml/min. a. linear Vc1.1; b. Vc1.1 folding products; c. Purified Vc1.1.
Figure S9. HPLC analysis of (a) linear, (b) folded, and (c) purified products of Vc1.1[N9R] (Purity: 98.0%). Analytical conditions were the same as those described in Figure S8.

Figure S10. HPLC analysis of (a) linear, (b) folded, and (c) purified products of Vc1.1[N9R,D11N] (Purity: 96.9%). Analytical conditions were the same as those described in Figure S8.
Figure S11. HPLC analysis of (a) linear, (b) folded, and (c) purified products of Vc1.1[N9R,D11R] (Purity: 95.0%). Analytical conditions were the same as those described in Figure S8.

Figure S12. HPLC analysis of (a) linear, (b) folded, and (c) purified products of Vc1.1[N9R,D11S] (Purity: 97.8%). Analytical conditions were the same as those
described in Figure S8.

Figure S13. HPLC analysis of (a) linear, (b) folded, and (c) purified products of DesG-Vc1.1[N9R] (Purity: 100%). Analytical conditions were the same as those described in Figure S8.
Figure S14. HPLC analysis of (a) linear, (b) folded, and (c) purified products of Ac-Vc1.1[N9R] (Purity: 96.5%). Analytical conditions were the same as those described in Figure S8.

Figure S15. HPLC analysis of (a) linear, (b) folded, and (c) purified products of Benzoyl-Vc1.1[N9R] (Purity: 97.6%). Analytical conditions were the same as those described in Figure S8.
Figure S16. HPLC analysis of (a) linear, (b) folded, and (c) purified products of Benzoyl-Vc1.1 (Purity: 95.2%). Analytical conditions were the same as those described in Figure S8.

Figure S17. Mass spectrometry of Vc1.1
Figure S18. Mass spectrometry of Vc1.1[N9R]
Figure S19. Mass spectrometry of Vc1.1[N9R,D11N]

Figure S20. Mass spectrometry of Vc1.1[N9R,D11R]

Figure S21. Mass spectrometry of Vc1.1[N9R,D11S]
Figure S21. Mass spectrometry of Vc1.1[N9R,D11S]

Figure S22. Mass spectrometry of DesG-Vc1.1[N9R]
Figure S23. Mass spectrometry of Ac-Vc1.1[N9R]

Figure S24. Mass spectrometry of Benzoyl-Vc1.1[N9R]
Figure S24. Mass spectrometry of benzoyl-Vc1.1[N9R]

Mass Spectrum List Report

Benzoyl-Vc1.1

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>z</th>
<th>I</th>
<th>S/N</th>
<th>Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1274.1022</td>
<td>3+</td>
<td>306</td>
<td>187.2</td>
<td>11386</td>
</tr>
<tr>
<td>2</td>
<td>1274.4358</td>
<td>3+</td>
<td>577</td>
<td>352.5</td>
<td>11191</td>
</tr>
<tr>
<td>3</td>
<td>1274.7697</td>
<td>3+</td>
<td>710</td>
<td>434.0</td>
<td>10921</td>
</tr>
<tr>
<td>4</td>
<td>1275.1026</td>
<td>3+</td>
<td>657</td>
<td>401.7</td>
<td>11655</td>
</tr>
<tr>
<td>5</td>
<td>1275.4367</td>
<td>3+</td>
<td>482</td>
<td>294.8</td>
<td>11191</td>
</tr>
<tr>
<td>6</td>
<td>1275.7696</td>
<td>3+</td>
<td>294</td>
<td>179.7</td>
<td>10752</td>
</tr>
<tr>
<td>7</td>
<td>1276.1023</td>
<td>3+</td>
<td>174</td>
<td>106.5</td>
<td>11773</td>
</tr>
<tr>
<td>8</td>
<td>1276.4381</td>
<td>3+</td>
<td>86</td>
<td>52.4</td>
<td>11283</td>
</tr>
<tr>
<td>9</td>
<td>1276.7673</td>
<td>3+</td>
<td>41</td>
<td>24.9</td>
<td>10551</td>
</tr>
<tr>
<td>10</td>
<td>1277.0963</td>
<td>3+</td>
<td>16</td>
<td>10.1</td>
<td>11861</td>
</tr>
</tbody>
</table>

Figure S25. Mass spectrometry of benzoyl-Vc1.1
Figure S26. CD spectrum of Vc1.1

Figure S27. CD spectrum of Vc1.1[N9R]
Figure S28. CD spectrum of Vc1.1[N9R,D11N]

Figure S29. CD spectrum of Vc1.1[N9R,D11R]
Figure S30. CD spectrum of Vc1.1[N9R,D11S]

Figure S31. CD spectrum of DesG-Vc1.1[N9R]
Figure S32. CD spectrum of Ac-Vc1.1[N9R]

Figure S33. CD spectrum of benzoyl-Vc1.1[N9R]
Figure S34. CD spectrum of benzoyl-Vc1.1

References

(3) Yu, R.; Tae, HS., Tabassum, N.; Shi, J.; Jiang, T.; Adams, D.J. Molecular determinants conferring the stoichiometric-dependent activity of α-conotoxins at the