
University of Wollongong
Research Online

Faculty of Engineering and Information Sciences -
Papers: Part A Faculty of Engineering and Information Sciences

2013

Towards optimal service composition upon QoS in
agent cooperation
Chattrakul Sombattheera
Mahasarakham University, cs50@uow.edu.au

Jun Shen
University of Wollongong, jshen@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Sombattheera, C. & Shen, J. (2013). Towards Optimal Service Composition upon QoS in Agent Cooperation. International Journal of
Computational Science and Engineering, 8 (2), 119-132.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eis

Towards optimal service composition upon QoS in agent cooperation

Abstract
It is quite common in tourism industry that a tourist would love to gain the most wonderful experience from
visiting multiple places in one trip. This is a service composition problem and is difficult to manage because of
several reasons. We address this problem by proposing an agent-based service composition framework to
allocate to the tourist an optimal composite service. We take into account a number of factors including: 1) all
the places of interest must be visited; 2) the preference on visiting places must be obeyed; 3) the total price is
within the budget; 4) the time constraint must be obeyed; 5) the payoffs for service providers are worthwhile
and fair. We propose a bottom-up approach to allocate the optimal service composition where intelligent
agents are deployed to provide flexibility and efficiency to the system. As a result, the system is more
independent and every party is better off.

Keywords
cooperation, towards, agent, composition, service, optimal, qos, upon

Disciplines
Engineering | Science and Technology Studies

Publication Details
Sombattheera, C. & Shen, J. (2013). Towards Optimal Service Composition upon QoS in Agent
Cooperation. International Journal of Computational Science and Engineering, 8 (2), 119-132.

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/1333

http://ro.uow.edu.au/eispapers/1333

Int. J. Signal and Imaging Systems Engineering, Vol. 1, No. 1/1, 1111 1

Towards Optimal Service Composition upon QoS
in Agent Cooperation

Chattrakul Sombattheera*
Faculty of Informatics,
Mahasarakham University,
Khamreang, Kantarawichai, Mahasarakham , 44150 Thailand
Fax: +66 43 754 359
E-mail: chattrakul.s@msu.ac.th
*Corresponding author

Jun Shen
School of Information Systems and Technology (SISAT),
Faculty of Informatics,
University of Wollongong,
NSW 2522 Australia
Phone: +61 2 4221 3873
E-mail: jun shen@uow.edu.au

Abstract: It is quite common in tourism industry that a tourist would love to gain the
most wonderful experience from visiting multiple places in one trip. This is a service
composition problem and is difficult to manage because of several reasons. We address this
problem by proposing an agent-based service composition framework to allocate to the
tourist an optimal composite service. We take into account a number of factors including:
1 all the places of interest must be visited 2 the preference on visiting places must be
obeyed 3 the total price is within the budget 4 the time constraint must be obeyed 5 the
payoffs for service providers are worthwhile and fair. We propose a bottom-up approach to
allocate the optimal service composition where intelligent agents are deployed to provide
flexibility and efficiency to the system. As a result, the system is more independent and
every party is better off.

Keywords: service composition; preference; optimal coalition structure; multiagent
systems; cooperative game.

Reference to this paper should be made as follows: Sombattheera, C. and Shen, J.
(2012) ‘Towards Optimal Service Composition upon QoS in Agent Cooperation’, Int. J.
Computational Science and Engineering, Vol. 1, Nos. 1/1, pp.111–111.

Biographical notes: C Sombattheera is the Leader of the Mahasarakham Intelligent
Systems Laboratory at the Faculty of Informatics, Mahasarakham University, Thailand.
He completed his PhD in 2010 from School of Computer Science and Software
Engineering, Faculty of Informatics, University of Wollongong, NSW, Australia.
His research interest includes coalition formation, multiagent systems, game theory,
optimization and service composition.

Jun Shen is a senior lecturer of School of Information Systems and Technology (SISAT),
leader of the Modelling Agents and Service Oriented Systems (MASOS) research group,
at University of Wollongong, Australia. His research interests include business process
ontology, semantic Web, Web services, knowledge Grid, mobile services. He has published
more than 70 papers and is a senior member of IEEE and ACM.

1 Introduction

Since its emergence, the Web has brought us web-based
applications which extends our reach to outside world
more thoroughly through the channel of web services.

The success of this technology has developed the need
for more complicated web service application, which is
composed of multiple web services. Such a technology is
known as service composition or composite web services,
which combines several web services in a more complex

Copyright c© 2009 Inderscience Enterprises Ltd.

2

and well structured manner to deliver a comprehensive
service to customers. On top of composite web services,
there is another dimension arisen from this area of
research. Such a new direction is to combine services
in an optimal manner to satisfy customers on a certain
criteria. This new area is known as optimal service
composition.

Among many real world domains where composite
web services can be applied, tourism industry is also a
very popular area in which researchers in composite web
services are interested. A common scenario in tourism
industry is for a web service to compose a trip based on
the requirement given by the tourist. Such a requirement
is usually composed of the budget, the time frame,
the preferences on accommodation and food, which the
tourist has. The task of the web service composition is to
compose a set of service providers, e.g. hotels, airliners,
etc., as per request. In this research we consider a domain
where the tourist is interested in visiting places such that
her satisfaction is maximal.

1.1 Motivation

It is quite common in tourism industry that a tourist
would love to gain the most wonderful experience from
visiting multiple places in one trip. However, most single
travel packages offered by companies may not have all
the interested places to the tourist. If we choose to
combine these packages, the tourist may have to visit
the interested places more than once. For many tourist,
visiting the same place more than once is obviously
unnecessary and boring. On the other hand, this may be
pleasant to some tourists because they may love to visit
their favorite places more often. However, visiting the
same place too often can be too much too. Furthermore,
combining packages is not easy to manage because
companies may not like to cooperate due to several
reasons. These companies, for example, are competitors
in nature. Even if they decide to cooperate, there are
many management issues to be solved. Most importantly,
what will be the attractive payoff for these companies?
Will the payoff be worthwhile for their effort and be fair
among them?

We consider this is a service composition problem
and is difficult to manage due to several reasons.
Firstly, in order to satisfy the tourist, her preference
must be precisely captured. Secondly, the preference
is individually subjective to tourists. Some tourists
may prefer to visit each place once, while enthusiastic
ones may prefer to spend more time to the favorite
places. Thirdly, composing a service is computationally
complex because there are several services be offered in
the market. Lastly, the composite service are likely to
require cooperation among companies who are unlikely
to cooperate. Hence it is a challenging problem to find a
solution to satisfy the tourist and these companies.

This problem is clearly a complex one. The ultimate
package to be offered to the tourist will be composed
of (partial) services (each of which is taking the tourist

to a particular place) from various companies such
that the tourist is satisfied and every collaborative
company is better off. From research perspective, it is a
combinatorial optimization problem. The complexity is
of class NP-hard. The question here is that how we could
allocate available resources, i.e. the separate services, to
satisfy the tourist, taking into account performance and
economical point of view.

We extend [21] to address this problem by proposing
an agent-based composite web-services framework to
allocate to the tourist an optimal service composition,
the one which maximally satisfies the tourist. By saying
optimal service composition, we take into account a
number of factors including i) all the places of interest
must be visited, ii) the number of redundant places must
be minimal, iii) the total price is within the budget, iv)
the time constraint must be obeyed, and v) the payoffs
for service providers are worthwhile and fair. We apply
the concept of cooperation and optimization among
agents to compose the service. This concept allows
for a rapid search the the optimal composite service
which maximally satisfies the tourist and proposes to
companies an attractive payoff scheme. The framework
also addresses weaknesses in current composite web-
services technology that deploys a top-down approach
where service providers are to be chosen by a service
broker. We propose a bottom-up approach to allocate
the optimal service composition where intelligent agents
are deployed to provide flexibility and efficiency to the
system. As a result, intermediate parties, such as request
brokers, are less important and the system is more
independent. Most importantly, every party involved are
better off.

This research propose a general framework deploying
intelligent agents and an algorithm to appropriately
allocate available resources to service requesters. There
are 3 types of agents:

• The requester agent (RA),

• The request collector agent (RCA), and

• The service provider agent (SPA).

These agents exchange information and know about
each other’s role, availability and capability. With the
algorithm proposed, the optimal service composition will
be decided by the customer.

1.2 Structure of the Paper

The remaining contents of this paper is structured as
following. Section 2 surveys related work in optimal
composite web services as well as the coverage on the
underpinning concepts of multiagent systems used to
solve the optimization problem. Section 3 describes
the proposed architecture where each RCA proposes
to the customer its solution. Section 4 deals with the
algorithm used to allocate service providers to satisfy the
customer optimally. Section 5 discusses the experiments

Towards Optimal Service Composition upon QoS in Agent Cooperation 3

and presents the results. Section 6 concludes the research
conducted.

2 Literature Review

Since this work proposes a new framework in composite
web-services, this section reviews related research
including composite web-services, cooperative game,
multi-agent systems, and optimal coalition structures.

2.1 Optimal composite web services

A web service is an Internet-based application that is
composed of several components distributed across the
Internet. These components communicate to each other
by exchanging requests and responses throughout the
process cycle of the application. Requests and Responses
are referred to as messages. These messages are made
of XML tags. These tags are constructed based on
certain languages/protocols. These languages/protocols
are business- oriented and are used specifically for
a particular area. While web services area has gain
more and more attention from researchers, the need for
more complex scenarios, where multiple layers of service
providers cooperatively combine to solve the problem for
requesters, has lead to another area of research in web
services. This area is known as composite web services.
The early work of composite web services focus merely
on accomplishing the request of the requester.

However, this leaves a major flaw in composing such
web services that the performance is not taken into
account. Arisen from this is a new area of research,
known as optimal composite web services. Optimal
composite web services is the area of web services
that aims to construct the best services possible from
available services providers based on certain criteria. In
the following, we will explore previous work in the area.

Huang, Lan and Yang [2], propose a QoS-based
scheme to compose optimal services which helps service
requesters select services based on single QoS-based
service discovery and QoS-based optimization of service
composition. A number of involved attributes include i)
response time, which is the time required for the service
providers to get back to the requesters, ii) reliability,
which is the ability to provide requested functionality,
iii) availability, which is the degree or frequency that the
service is accessible and operational, and iv) price, which
is the cost of service request. Multiple criteria for making
decision and selecting optimal service are proposed.
The scheme is efficient and works well for complicated
scenarios. While their experiments look for number of
tasks that can fit a request, we look for retrieving an
optimal solution quickly. Furthermore, their number of
tasks (98) involved is far lower than what we will do
(1382958545 services, i.e the number of set partitions for
15 agents).

Cheng and Koehler [1] study how to achieve
optimal pricing policies for web-enabled application

services. Service providers provide a contractual service
offering to deploy, host, manage, and lease what is
typically packaged application software from a centrally
managed facility. The application ranges from standard
productivity tools to expensive applications such as
Enterprise Resource Planning systems like SAP or
PeopleSoft. The economic dynamics between these
service providers and their potential customers are
modeled to consider a two-part pricing scheme. Bulking
was not considered but the service providers reimburses
customers for time spent waiting for services. In
addition, they required a minimal average performance
guarantee. They proposed that “the optimal pricing
policy need not be in the form of a fixed fee,
metered price, two-part tariff, or two-part tariff plus
reimbursement”. They showed that there exists a unique
rational expectation equilibrium. This work also differs
from ours because we look into different domain and
focus on achieving the optimal solution (package)
quickly.

Lin, Liu, Xia and Zhang [8] tried to find the
optimal capacity allocation in a clustered Web system
environment so as to minimize the cost while providing
the end-to-end performance guarantees. Constraints on
both the average and the tail distribution of the end-
to-end response times were considered. They deploy a
nonlinear program to solve the problem. The results
show that, under a certain condition, the solution yields
a nice geometric interpretation. Also, the algorithm
can yield asymptotically optimal solution for stringent
service requirement. Although this work considers the
problem a nonlinear function like we do, the problem
domain is different. Furthermore, they are interested
in end-to-end delay while we are interested in fitting
maximal number of places to visit in timely fashion.

Tang and Cheng [26] study the optimal pricing and
location strategy of a Web service intermediary (WSI).
They model the problem as a linear city model and
then extend their research on the more general model.
Their analysis show that that the optimal strategy can
be derived by delay cost, integration cost, and prices of
the constituent Web services. Their results show that the
WSI can be optimally located between the Web service
providers. The also found that a penetration price can
be charged when the delay cost is low. Furthermore,
they also propose that multiple optimal locations for the
WSI can be obtained when the proximity of Web service
providers are dispersed. This work differs from our work
that we consider different domain and we look forward
to achieving optimal solution in timely fashion.

2.2 Cooperative game

As we have briefly discussed previous works in optimal
composite web services, it is clearly shown that we
need a new model for solving the problem of allocating
optimal packages (service providers) to tourists as per
requests. We therefore propose to deploy an idea of
solving a multiagent system problem, known as optimal

4

coalition structure problem, to solve our problem in
tourism domain. In the following, we will briefly explore
the related work in optimal coalition structure.

Game theory is a mathematical study of decision
making by multiple decision making units (agents).
Game theory differs from decision theory in the sense
that agents’ decisions are inter-related. The ultimate
objective of game theory is to find at least a stable state,
known as equilibrium, where every agent is satisfied and
does not want to change its decision. Game theory can
be divided into non-cooperative games and cooperative
games. In the non-cooperative games, agents cannot (by
rule of the games) collaborate or communicate with each
other. A well known equilibrium in this area is Nash
Equilibrium [9] in which none of the agents can benefit
from changing their strategies, given that other agents
are adhere to their present strategies.

In contrast to non-cooperative game theory,
cooperative game theory allows for agents to have
communications that lead them to cooperation [3],
from which they can benefit more individually. Agents
communicate in order to negotiate with regard to whom
they can cooperate and how the joint benefits will be
distributed among them. When several agents make a
binding agreement to cooperate, we say a coalition has
been formed. Hence, the cooperative game theories are
also known as the theories of coalition formation [3].
Mathematically, given set N of n agents, a coalition
is a non-empty subset S of N , S ⊆ N,S 6= ∅. The set
N itself is called the grand coalition while a coalition
of one agent is called singleton coalition. Let S be the
set of all coalitions, whose size of S is 2n − 1. Given
a set of 3 agents, N = {n1, n2, n3}, all the 7 coalitions
are {n1}, {n2}, {n3}, {n1, n2}, {n1, n3}, {n2, n3} and
{n1, n2, n3}. As in set theory, the cardinality, |S|, of S
is the size of (the number of agents in) S. Once agents
have formed coalitions, they can be viewed as if they
have divided themselves into a mutually exclusive and
exhaustive partitions. We define a coalition structure,
CS, as a partition of N . A CS can be described by
CS = {S1, S2, . . . , Sm}. The set of all CS is denoted by
CS. All CS, for example, in S are {{n1}, {n2}, {n3}},
{{n1, n2}, {n3}}, {{n1, n3}, {n2}}, {{n2, n3}, {n1}},
{{n1}, {n2}, {n3}}.

Mathematically, a CS has to satisfy three
conditions [3]:

1) Sj 6= ∅, j = 1, 2, . . . ,m,
2) Si ∩ Sj = ∅ for all i 6= j, and
3)

⋃

Sj = N.

The joint benefit of a coalition is call the coalition
value, which is a numeric value that usually represents
the utility which accrues from their cooperation. It is
quite common in cooperative game theory that the
coalition value is money value, e.g., dollars. Cooperative
game theory assumes that there is a characteristic
function [3], V that assigns a real number to each
S, V : 2n → R. We shall denote the coalition value
of S with VS . Hence, a cooperative n-person game

in characteristic function form is defined by the pair
(N ;V) [3]. The portion of VS given to agent ni

is the payoff, Ui, of the agent for which the agent
plays the game. The collection of payoffs to each
agent is the payoff vector, U = (U1, U2, . . . , Un), which
specifies the payoff for each respective agent. Putting
together a coalition structure and a payoff vector is
the payoff configuration [3], (U ;CS), which describes a
possible outcome of the game. For example,the payoff
configuration (5, 10, 5; {n1, n3}, {n2}) means agents 1
and 3 have formed a coalition and receive payoff for 5
dollars each while agent 2 remains a singleton coalition
and receives 10 dollars payoff on its own.

2.3 Optimal coalition structure

Searching for optimal coalition structures has gained
much attention from researchers recently. It is so
important for two reasons: i) it indicates the optimal
solution of a given system, and ii) it helps determining
the core of the system (collective rationality). In the
following, we shall discuss the overview of the problem
as it is presented in the literature [11].

Given a CS, we define its value,

V (CS) =
∑

S∈CS

VS ,

which indicates the system’s utility yielded by that
partitioning. An optimal coalition structure is a CS∗

such that

CS∗ = argmaxCS∈LV (CS)

The number of all coalition structures can be
determined by Bn [7], Bell Number which is the size of
the whole search space. Since the value of Bn can be very
large for a small value of n, existing algorithms tend to
divide the search space into small portions. There are
two divisional methods. Firstly, we can categorize CSs
by the number of coalitions within them [11]. We denote
the set of CSs, whose number of coalitions of each CS
is 1 ≤ i ≤ n, by Li. Each Li is known as a layer. The
number of CSs in Li is known as the Stirling Number
of the Second Kind [7]. Hence, the set of all CSs is
L =

⋃n

i=1
Li. Alternatively, we can categorize CSs by

the integer partition of n that describes the number
of coalitions and their cardinalities. Each instance j of
such a partition is known as a “pattern” [24, 22] or
a “configuration” [10], Gj , which is usually written in

the form b1 + . . .+ bk, where
∑k

l=1
bl = n. Given a set

of 4 agents, all the patterns are 4, 3+1, 2+2, 2+1+1,
1+1+1+1.

2.4 Coalition Formation in Multi-agent systems

Coalition formation in multi-agent systems is a dynamic
process towards cooperation among agents, consisting of
inter-related activities, i.e., deliberation and negotiation,
that eventually help agents reach agreement to form
coalitions. During the deliberation, agents deal with

Towards Optimal Service Composition upon QoS in Agent Cooperation 5

necessary calculations, including computing coalition
values, choosing potential coalition members, and
computing reasonable payoffs. In negotiation, agents
follow a protocol to exchange information, which is
computed during their individual deliberation, among
each other to convince potential coalition members
to make a decision. Note that coalition formation
requires simultaneous multilateral rather than bilateral
negotiation [12].

Dynamic coalition formation dated back to the study
of Transfer Schemes by Stearns [25]. This work is
a mathematical analysis of the dynamic process of
coalition that leads to a final payoff configuration (a
payoff vector for all agents and a coalition structure of
all agents) for a given game with respect to a solution
concept, such as the Kernel. Agents repeatedly compute
excesses of each pair of agents, balance the differences,
and eventually converges to an equilibrium. Stearns [25]
shows that agents can eventually converge to the Kernel
with the cost of exponential time.

The real implementation of dynamic coalition
formation among (computer software) agents took place
between the late 80’s and the early 90’s. One such
work was Zlotkin and Rosenschien’s [27] which studied
coalition formation of n agents, which were allocated
parcels to deliver in a grid environment and they had to
finish their tasks within limited steps. Agents are allowed
to cooperate. Hence, their coalition values are the costs
they can save by exchanging tasks. The payoffs to agents
are calculated based on the Shapley value. This work is
a good example of applying a cooperative game theory
into a multi-agent system. Agents can decide to form
coalitions by applying one of the proposed schemes which
will suggest the most appropriate coalition for each agent
itself.

Ketchpel [4] proposes a two-agent auction mechanism
for coalition formation that prescribes an algorithm for
agents to negotiate. Agents join auctions to win contracts
from which they earn guaranteed payments. Firstly,
agents broadcast their individual offers to other agents.
These offers are ranked in preference orders by interested
agents. Each interested agent then chooses the most
attractive agent, as a potential coalition member, in
order to form a coalition of 2 agents. These two agents
then enter the “two agent auction” phase where an agent
will act as the manager. The manager will propose to its
potential coalition member a payoff. The member agent
receives a fixed payment for its role in the coalition.
The principle of ranking potential coalition members
for negotiation seems to be a mainstream of coalition
formation algorithms derived in later research [19, 18,
16, 17, 20, 15, 13, 5, 6]. Note that only a small number
of coalitions are formed due to the ranking.

Similar to Ketchpel [4], Shehory and Kraus [14]
explore coalition formation among cooperative agents.
These agents use resources, which may include materials,
energy, information, communications, etc. to fulfill their
tasks. The tasks are to deliver parcels, but the coalitions
can be made of more than two agents at a time. An agent

will be appointed to compute the payoffs for coalition
members. Alternatively, agents can negotiate about
their payoffs. In this environment, strong coalitions are
those whose potential coalition values are high, thus is
preferred by agents. Weak coalitions are those whose
potential coalition values are low. Strong coalitions are
the ones which other coalitions join to form larger
ones. Each coalition will have a representative, who
values the potential coalition higher and takes care of
negotiation with weaker coalitions. The negotiation is to
distribute relevant information, i.e., payoff and resource
vectors. Shehory et al. [14] also analyze the complexity
of negotiation which is 2(n− 1)2 operation for their
algorithm. The payoffs to agents in each coalition are
based on the “common extra” payoff, i.e., the increased
value of the joint pair of coalitions. This common extra
payoff will be distributed equally among agents in the
new coalition. Since, agents operate in superadditive
environment, they eventually form the grand coalition.

3 An Agent-based Framework

Typical web-services composition architectures deploy
request brokers to locate appropriate service providers
and create the complete services. Request brokers play
important roles in this kind of architecture that they
impose their roles as the central command unit of the
systems. However, this is also a threat to the availability,
performance and security of the system. Furthermore,
service providers may not be able to maximize the
benefit out the resources because they cannot do much
on negotiation in such architectures.

In contrast to typical composite web-services
architectures, we propose an architecture where the
importance of centralized request brokers is minimized.
We deploy intelligent agent technologies to help increase
the performance of the system. Furthermore, service
providers can leverage maximal benefits out of their
resources. While most works in service composition are
concerned with computational and networking issues, we
consider a tourism domain where the quality of service
is the satisfaction of a tourist. We treat the satisfaction
by means of utility. The satisfaction is the preference
of the tourist over the places. We allow the tourist to
expressively specify the preference, and it is captured for
computing the utility.

In the sections below, we propose an architecture and
related underpinning components for the domain of our
study.

3.1 Architecture

We model the scenario as a service-oriented computing
system and deploy the multiagent systems concept to
enhance the performance. The architecture is depicted
in Figure 1. We firstly define optimal composite services,
a multiagent system architecture, and a set of protocol
in the system.

6

3.1.1 Representing Stakeholders with Intelligent
Agents

First, we define the components of the aforementioned
tourism scenario in terms of service oriented computing
(SOC). The tourist will be regarded as the service
requester who can submit the request for (composite)
service on line. The travel agencies, who can provide
travel packages, will be regarded as the service providers.
In the following, we will define the stake holders in SOC
in terms of an agent-based system.

A service requester will be represented by an agent
running on a computer, which is connected to the
Internet. We shall refer to such an agent as a requester
agent (RA). For the requester, its requester agent needs
to know what is the goal of the requester, e.g. to achieve
its goal with minimal cost. The goal of a requester,
of course, varies depending on the type and activity
of the requester. For a traveling agent, the goal may
be to formulate a travel package satisfying the user’s
specification. Such a specification, for example, may
include request for minimal number of star of each
hotel, traveling time from the airport, traveling time
to shopping centers, specific foods, and within a given
budget. For a grid agent, the goal may be to aggregate
a number of hosts who have appropriate resources to
execute the given tasks. The tasks may require specific
programs, minimal primary storage capacity, minimal
memory capacity, minimal CPU speed and node, etc.

Instead of using request broker agent, we propose a
request collector agent (RCA). This type of agents acts
as a blackboard to where requester agents can post their
requests. The role of RCAs is not to be the manager as
a request broker which brings weaknesses to the system.
It does not search for service providers and choose them
to compose the service providers. Instead, it receives
request for services from requesters and provides details
of requests to the service providers up-on requests. A
requester agent can post its request to RCAs. An RCA
will manage all requests, i.e. receiving new requests and
make them accessible, maintaining their status whether
the requests have been served, keeping tracks of the
served requests. There can be multiple RCAs in a system
(which we assume can be a large one). Each RCA will
make its presence known to other agents in the system
by broadcasting a message.

The last stakeholder is the service provider agent
(SPA), which will take care of utilizing the service
provider’s resources. This type of agents knows at least
one RCA and will keep an eye on the availability of
requests for services of which they are capable. SPAs
will maintain its list of relevant agents whom it might
cooperate to compose a composite service. A service
provider can deploy an SPA and join the system by
sending out a request to participate (RTP) to existing
RCAs. An RTP is a message that specifies what is the
agent’s capability, which is merely a set of places in its
travel packages.

3.1.2 Communication Protocol

Since there are three stake holders involved in the
architecture, there must be a way for each of them to
know the existence of other agents before they can really
compose services. As a standard means in multiagent
systems, we introduce a protocol for the agents, who
communicate to each other by sending messages. Here
we are interested in high level communication, which can
be extended by any real implementation via XML (and
that is not the focus of this research).

We take into account what travel agencies do in
real world tourism industry, where service providers
may form loosely-coupled associations. Travel agencies
in an association usually cooperate to their associative
members to some extent. Then a tourist is free to
negotiate with any of them and choose the best option.
We follow this real world setting by allowing SPAs
to register themselves as a member of an association.
This association will have just one registrator, which
is represented by an RCA. The role of an RCA is
to run the composite algorithm to find the optimal
service composition of its members and propose it to
the requesting SPA, who will choose the optimal global
composition.

• a message to broadcast the availability of a RCA.
Any agent that wants to act as an RCA will
broadcast the message which notifies other agents,
including existing RCA, in the system that it wants
to play the role of RCA. The message is of the form
〈RCA ID, RCA AVAIL〉, where RCA ID is a high
level identification of the agent and RCA AVAIL is
merely a plain text specifying this agent wants to
be an RCA. Receiving RCAs and SPAs will update
their databases accordingly.

• a message to broadcast the availability of SPA.
Any agent that wants to perform the SPA role for
an RCA who belongs to the same association has
to make its availability and capability recognized
by other agents. It will send the respective RCA
the message 〈SPA ID, SPA AVAIL, SPA CAP 〉,
where SPA ID is the identification of the agent,
SPA AVAIL is the a plain text specifying the agent
wants to act as an SPA agent, and SPA CAP is the
plain text explaining the agent’s capability.

• a message to acknowledge the availability of
SPAs. Receiving RCAs will update their databases
accordingly and send the acknowledgment message
〈 RCA ID, SPA ACK 〉 to the SPA in order to
acknowledge the availability. Up-on receiving the
acknowledgment message, the new SPA updates its
database for existing RCAs accordingly.

• a message between RA and RCA to broadcast
the request for service. A demanding requester
agent will send a message 〈RA ID, R SPEC〉,
where RA ID is the identification of the RA and

Towards Optimal Service Composition upon QoS in Agent Cooperation 7

Figure 1 Architecture We deploy intelligent agents to represent stakeholders. Request agents (RA) represent end users.
Request collector agents (RCA) collect requests, allocate tasks, broadcast the allocation. Service provider agents
represent service providers.

8

R SPEC is the request specification. Receiving
RCAs will update their databases for available
requests accordingly. Each RCA will execute
its composition algorithm which will derive its
optimal composite service.

• a message between RCA and RA to launch a bid
for service. Having obtained its optimal composite
service, each RCA will send the message 〈 RCA ID,
SERVICE〉 directly to the respective RA who will
determine the winning bid.

• a message to broadcast the wining bid. SPA will
send message 〈 RCA ID, SERVICE〉 to all bidding
RCAs in order to announce the winner. The winner
is then bound to contract and provide service to
SPA.

The final decision for the winning composite service
is made by the tourist based on her satisfaction. This
satisfaction is, of course, subjective to individual tourists
and varies. For example, given the same quality of
service, the composite service with lowest cost offers
higher value to the tourist and satisfies the tourist more
than other services.

3.2 Optimal Composite Services

Let P = {pi| where 1 ≤ i ≤ n} be a set of n interested
places, which are available to tourists. A travel package is
a plan offered to tourists a number of places which they
will visit. We define a package P ⊆ P is a subset of all
the places. The set of all packages is denoted by 2P. Each
of these package is normally offered by a company at a
certain cost and will take some time to operate, i.e. there
is a start time and an end time. Therefore, we consider to
a package as a service. Let C = {cj | where 1 ≤ j ≤ m}
be the set of m companies. Let θ ∈ Z+ be the cost of
operating a service. Let (Ts, Te) where Ts inZ+, Te ∈ Z+

and Ts < Te be the service time, which is the pair of
start and end time of the service. (In practice, we refer
to time of a day in terms of hour, minute, and second.
Beyond a day, we refer to time as a date which has day of
month, month, and year. However, both of them can be
represented by specified number of milliseconds since the
standard base time known as the epoch, namely January
1, 1970, 00:00:00 GMT.) We denote by T the set of all
service times. Here, a service is defined as a tuple S =<
P, c, θ, T >. The set of all services is denoted by S. The
package, service provider, cost, and service time of S
are denoted by S.P,S.c,S.θ, and S.T , respectively. Note
that a service always offer at least one place of interest
to the tourist.

Normally, a tourist would like to visit as many places
as possible. For an enthusiastic tourist, there might be
a number of certain places that she cannot afford to
miss. All these places are considered to be P. However,
the tourist is under time and budget constraints–she
has some time for the whole trip and cannot afford
over spending for the trip. In this work, we capture

these main issues in the R SPEC defined in the above
architecture. We define R SPEC = 〈P,R〉 where R =
〈Ω,Ψ〉 the request to visit places of interest with budget
Ω ∈ Z+ and time Ψ ∈ T constraints. One can always
extend this definition for further details and constraints
of the request specification.

We define a composite service

CS =
{Si| Si ∈ S and

⋃

Si.P = P and
Si.T .s � Sj .s � Si.T .e and
Sj .T .s � Si.s � Sj .T .e}

is a set of services which cover all places.
Note that we are only concerned with the

exhaustiveness condition of the previously defined
CS, i.e. all the places must be included in the
composite service, but do not have the complete mutual
exclusiveness, i.e. these packages may offer the same
places to the tourist S.Pi ∪ S.Pj 6= ∅. On the other hand,
we are concerned with the exclusiveness condition of
the service times that there must be no conflicts among
them, i.e. a service cannot start during the operation
of another service in the same composite service. We
refer to both the exhaustiveness and the exclusiveness as
the completeness condition of the composite service. We
assume that there is at least a service for each place and
there is no conflict among their service times. We also
assume that the budget of the tourist is at least as much
as the sum of the cost of these packages. Our assumption
is realistic because there are several packages (services)
that will take a tourist to a place of interest. These
packages usually operate as often as possible. Some may
start in the morning, some may start in the afternoon
and last as long as needed. However, in reality, we cannot
guarantee that there exists Si.P = Pk ∈ 2P, i.e. some of
the packages may not be offered as part of a service by
any company due to several reasons. Given a large P,
for example, it may be too costly to offer the package
of P itself or any package whose size is close to that of
P. Some packages containing places that are disperse in
proximity can also be costly.

Given the five conditions of a composite service for
attracting the tourist, the quality of service to satisfy the
tourist depends on the following four conditions:

• The number of visited places must be maximized,

• The number of redundant places must be
minimized,

• The total price is within the budget,

• The time constraint must be obeyed.

The last condition, the payoffs for service providers
are worthwhile and fair, is more concerned with
the decision of the service providers and is the the
additional condition to attract cooperation among
service providers.

Given a service S, the service frequency matrix is

F (S) =
[

α1 α2 α3 . . . αn

]

Towards Optimal Service Composition upon QoS in Agent Cooperation 9

where

αi,1≤i≤m =

{

0 if pi /∈ S.P
1 if pi ∈ S.P

Given a composite service CS, the composite service
frequency matrix is

F (CS) =

α1, 1 α1, 2 α1, 3 . . . α1, n
α2, 1 α2, 2 α2, 3 . . . α2, n
...

...
...

...
...

αm, 1 αm, 2 αm, 3 . . . αm, n

The aggregated frequency vector of CS is

AF (CS) =
[

σ1 σ2 σ3 . . . σn

]

where

σj =
m
∑

i=1

αi,j .

Here, we define the utility function

Φ : P× Z+ ← Z+

which specifies the degree of satisfaction for a tourist
visiting a place for a number of times.

Associated to each CS is the cost of composite service

Θ(CS) =
∑

S∈CS

S.θ

Let φi = Φ(pi, σi) be the utility of visiting pi for σi

times. We define the satisfaction vector

S(CS) =
[

φ1 φ2 φ3 . . . φn,
]

Therefore, we define the QoS function below:

QoS(CS) =
n
∑

j=1

φj . (1)

We are interested in finding, for a given request, an
optimal composite service CS∗ such that

CS∗ = argmax QoS(SS∗). (2)

3.2.1 Defining Utility

We refer to satisfaction in terms of utility. Since this
satisfaction is subjective to the tourist’s preference
over places, the tourist can expressively specify the
preferences (and this is also practical and realistic). In
general, a tourist will be happy to visit a place once.
Visiting the same place again will be unnecessary and
boring. The tourist may define the utility as follows:

• The utility for the visiting a place once is 1, and

• The utility decreases by half every time a place is
visited more than once.

In this case, the utility function can be defined as follow:

Φ(p, σ) =

{

1 if σ = 1
1

2n
if σ > 1

On the other hand, an enthusiastic tourist may prefer
to visit a place more than once, while visiting other
places does not excite she that much. The reason may
be the place is large and it will take days for a thorough
visit. De Louvre, for example, in Paris is a huge museum
that no one can do a detailed visit in one single day.
However, spending time more than a certain number of
days immediately turns the trip into an unpleasant one.
The tourist may define the utility as follows:

• For visiting the favorite place p∗, the utility
increases by the number of days spending there up
to 3 days.

• Visiting p∗ more than 3 days negates the utility by
the number of excessive days.

• The utility for the visiting p′ 6= p∗once is 1, and

• The utility decreases by half every time p′ is visited
more than once.

In this case, the utility function can be defined as follow:

Φ(p, σ) =

σ if p = p ∗ and σ ≤ 3
3− σ if p = p ∗ and σ > 3
1 if p = p′ and 6= p∗ and σ = 1
1

2n
if p = p′ and σ > 1

3.2.2 Computing Payoffs for Service Providers

Here we will apply Shapley value to distribute payoffs to
service providers of a composite service. Firstly, we need
to find the contribution each service provider has made
in the composite service. Since we may not have all the
packages offered by service providers, we cannot strictly
follow the steps for computing shapley values. However,
we can measure the contribution of a service provider
by its importance, i.e. how much the quality of service
will be decreased if the service provider is excluded from
the composite service. Let CS−S be a set of all service
providers in CS excluding S. The contribution of of S is

CON(S) = QoS(CS)−QoS(CS−S)

We define the accumulated contribution of all service
providers as

ACC(CS) =
∑

S∈CS

CON(S)

We define the payoff for S as

PO(S) =
CON(S)

ACC(CS)
× (Ω−Θ(CS)),

where Ω > Θ(CS). Note that we can compute payoffs
for service providers only for those who are members of
profitable composite services.

10

4 Generating Composite Services

In this section, we will discuss about the algorithms
proposed to use with the aforementioned framework. We
consider composing a service in our context is similar
to generating a coalition structure. Even though there
are several algorithms for generating coalition structures,
many of them are not applicable here due to many
reasons. Firstly, since some packages may not be offered
as part of any services, we cannot use these algorithms
because they require all coalitions (packages). One may
solve this problem by assigning value 0 to these packages,
but they will uselessly occupy memory and slow down
the performance of the algorithm. Secondly, there may
be several services offering the same package, i.e. there
may be multiple instances of the same package as
part of the input. These algorithm cannot handle this
setting because they require a unique coalition in the
input. Here, we will apply the concept of the best-first
search optimal coalition structure algorithm [23] to solve
the optimal service composition problem because of its
flexibility. This new algorithm will be run on each RCA.

There are two main steps in solving the problem:

• data preparation stage. In this stage, each RCA
will sort services by lexicographic order in each
cardinality,

• search for optimal composite service stage. In this
stage, each RCA will apply the new algorithm to
search for the optimal service composition.

After that, the respective RA will identify the most
appropriate service composition for RA. RA will decide
which one of the composite services being proposed will
be the most appropriate one.

4.1 Data Preparation

We use similar data structures as in [23] to generate
composite services. In this research, we consider a service
is equivalent to a coalition. Services are collected, sorted
by their cost in ascending order, and stored in C, a 2-
dimensional dynamic array. The first dimension refers to
the number of cardinalities, the size of (number of places
in) the services, of all services. For each cardinality, the
size of the respective array is the number of services
of that cardinalities. We use B, a 2-dimension array to
keep track the progress of the generation of composite
services. We use CS, a 1-dimension array of size n to
store the composite service being generated. We use R,
a 1-dimension array of size n to store the remaining
places yet to be included in the composite services. We
denote by |R| the number of non-zero elements of R, i.e
number of the remaining places yet to be included in the
composite services.

4.1.1 Indicating Best Candidate

The principle of the algorithm for generating composite
services is to repeatedly choose the best services from

the available candidates and place it in CS until the
completeness condition is met. Once this holds, CS can
be exported to CS, i.e. a new service has been completely
composed. The whole process is then repeated until no
more CS can be generated.

The most important step in the algorithm is to
identify the best candidate out of available services in
order to compose CS. As in the algorithm on which this
work is based, we need an indicative information which
would direct the search towards optimality quickly. Since
the quality of service in this work is subjective to the
tourist’s preferences over the number of times visiting
places, we can apply the concept of QoS(CS).

Let

QoS(S) =
n
∑

j=1

αj

be the quality of service of S. Let QoS(CS) be the
present quality of service of CS being constructed. Let
QoS(CS+S) be the projective quality of service of CS if
S is added into the present CS. We define the projective
contribution of S towards CS as

PRO(S) = QoS(CS+S)−QoS(CS).

Hence, the best candidate is

S∗ = SargmaxPRO(S).

Note that we cannot determine S∗ basing on QoS(S)
alone because it may result in severely decreasing
QoS(CS+S).

4.1.2 Data Example

As shown in Table 1, all sorted Ss in each cardinality are
placed in their respective columns from top to bottom.
Apparently, we do not have any package of size 3.
Furthermore, the number of Ss in each cardinality is not
related to binomial coefficient (nC|S.P|). It is arbitrarily
depending on what are being offered in the system. Since
each of these services can be proposed individually by
service providers in the system, acquiring, sorting, and
storing these data will be done on the fly.

Table 1 shows an example in our setting. There
are 3 places, P = {P1, P2, P3}. Mathematically, these
places comprises seven packages (non-empty subsets).
However, in the example, there are 7 services, S =
{S1, S2, . . . , S7}. Assuming QoSs are given, these
services are sorted in descending order based on their
QoSs and placed in their respective C. Note that not all
packages are offered in these services. Furthermore, there
are 2 packages being offered twice in these services.

4.2 The Optimal Service Composition Algorithm

4.2.1 The Main Function

As shown in Algorithm 1 on page 11, the first thing to do
is to set the present level l of CS to 1. Then the first S∗ is

Towards Optimal Service Composition upon QoS in Agent Cooperation 11

P S.P S.θ C[1](|S.P| = 1) C[2](|S.P| = 2) C[3](|S.P| = 3)
p1 S1.P = {p1, p2} S1. = 10 S4 (r̄ = 6) S1 (r̄ = 5)
p2 S2.P = {p2, p3} S2.θ = 12 S7 (r̄ = 8) S2 (r̄ = 6)
p3 S3.P = {p1} S3.θ = 9 S3 (r̄ = 9) S6 (r̄ = 7)

S4.P = {p2} S4.θ = 6 S5 (r̄ = 9)
S5.P = {p1, p3} S5.θ = 18
S6.P = {p1, p2} S6.θ = 14
S7.P = {p3} S7.θ = 8

Table 1 Example of data Services in each cardinality are sorted by their costs, given by the cost function

achieved by calling function BestService. The algorithm
then goes to the main loop where the best service will
be placed at the present level, i.e 1, of CS. The set
of unvisited placed R will be updated by removing the
visited places S∗.P from R. The variable S∗ is then set
to null. At this point, the algorithm determines if all the
places are visited. If it is the case, the algorithm prints
out the solution, i.e. CS. After that, the algorithm tries
to extend the CS by i) locating the next candidate for all
cardinalities, whose value is not greater thanR by calling
function NextCandidate, and ii) determining S∗ for the
next level of CS by calling BestService. If S 6= null, i.e
the best service can be identified, the level of l is set to
l + 1, i.e it will be placed in CS in the next round.

Otherwise, the algorithm tries to alter the last
service of CS with an alternative service. The visited
places in the last service of CS will be returned to
R. The algorithm then locates the next candidate
service of the respective cardinality by calling function
NextCandidate, and identifies S∗ by calling function
BestService. The algorithm determines if S∗ can be
retrieved. If that is the case, the algorithm reaches the
end of the loop and the new S∗ will be placed in the
present level of CS in the next round.

Otherwise, the algorithm tries to shrink CS. It
reduces the level l of CS by 1 and returns the visited
places in the present level of CS to R. The position
for starting search for the next candidate is assigned
to u and the next candidate can be identified by
calling function NextCandidate. The algorithm then
calls function BestService for determining S∗.

The algorithm will reach the end of the main loop
and will go to the beginning of the main loop where
it determines if the next S∗ is empty. If that is the
case, the algorithm exits the main loop and terminates.
Otherwise, the algorithm enters the loop and places S∗

into the present level of CS and continues its journey
through the end of the loop again.

4.2.2 The Supportive Functions

BestService: As shown in Algorithm 2 on page 12,
the search for the best candidate is very simple.
Firstly, the S∗)is set to ∅ as well as its PRO(S∗)
is set to 0. The algorithm then goes through each
candidate service S in ascending order of the cardinality
and compares PRO(S) against PRO(S∗). Only if

Algorithm 1 Construct composite service by adding the
best service chosen from available candidates into CS

1: set the present level to l
2: set S∗ to BestService(l)
3: while is there still S∗ do

4: fill CS[l] with S∗

5: update R with S∗

6: reset S∗

7: if R is empty then ⊲ a solution has been
created

8: print ”***** ”+CS;
9: end if ⊲ attempt to extend layer

10: if the present level l < n then

11: for each cardinality of size 1 to |R| do
12: locate the beginning position to search for

the next candidate
13: end for ⊲ Is there any valid service at the

next layer?
14: set S∗ to BestService(l + 1)
15: end if

16: if S∗ is not null then ⊲ Extend to the next level
17: set the next level l + 1;
18: else ⊲ cannot extend then attempt for altering
19: update R with CS[l]
20: set u as the beginning position to search for

next candidate
21: set B[|CS[l]|][l] to NextCandidate(|CS[l]|, u)
22: reset CS[l]
23: set S∗ to BestService(l) ⊲ cannot alter
24: if S∗ is not empty then ⊲ attempt to shrink
25: if the present level l > 1 then

26: set l to l − 1
27: update R with CS[l]
28: set u as the beginning position to

search for next candidate
29: set B[|CS[l]|][l] to

NextCandidate(|CS[l]|, u)
30: reset CS[l]
31: set S∗ to BestService(l);
32: end if

33: end if

34: end if

35: end while

12

PRO(S) > PRO(S∗) then S∗ is set to S. This way,
even multiple candidate services have exactly the same
PRO(S), only the first S remains S∗.

Algorithm 2 BestCandidate Function

1: function BestService(l)
2: S∗ ← ∅
3: PRO(S∗)← 0
4: for |S| = 1 to |R| do ⊲ for each valid cardinality
5: if B[l][c] > 0 then ⊲ if there is a candidate

coalition
6: compute PRO(S)
7: if PRO(S) > PRO(S∗) then
8: S∗ ← S ⊲ set the candidate as the

new best service
9: end if

10: end if

11: end for

12: return S∗

13: end function

NextCandidate: As shown in Algorithm 3 on page
12, at any layer l, the algorithm needs to prepare the
candidate services in each valid cardinality. A valid
cardinality is one whose value is not greater than the
number of remaining places, i.e. |S.P| < |R|. For each of
these cardinalities, we just need only the next available
coalition, i.e., the one whose members are all in R, as
the candidate of its cardinality for the next layer of CS.
The search for the candidate will be done towards the
last service in each cardinality.

Algorithm 3 NextCandidate Function

1: function NextCandidate(c,p)
2: for j = p to |C| do ⊲ starting from position p

towards nCc

3: if C[c][j] ⊆ R then ⊲ if the service at c, p is
in R

4: return j ⊲ return its position
5: end if

6: end for

7: return 0
8: end function

5 Experiments

Since we are the only algorithm to solve this problem,
which is quite unique to the area of web services, we run
our algorithm with the proposed heuristic against the
exhaustive search.

5.1 Setting

We conduct experiments on n ∈ [12 . . . 15] places. Due
to the large search space, we set a terminate time
for running the exhaustive search for optimal results.

num-agent exhaustive converge terminate
12 30852 6859 7347

13 289326 6973 7629

14 2974952 7792 7954

15 29674021 7850 9342

Table 3 Raw figure results

The table shows the raw execution times achieved from
the exhaustive search and our algorithm in milliseconds.

The terminate time of exhaustive search is projected.
The number of services in each cardinality i in each
of a variation of n is derived from nCi. The numbers
of services in each case of n are shown in Table 2.
Although the number of services in each cardinality can
be arbitrary in reality, we rather set up the number
of services in each cardinality this way for the sake of
experiment. The numbers of nCi across all cardinality
form the bell shape of normal distribution with an
extremely high mean. Furthermore, the distribution of
the costs of the services in each cardinality is of normal
distribution as well. We conducted our experiment for
the extreme cases, i.e. the customer prefer no redundancy
on the places to be visited. Therefore, the algorithm will
use the utility function that gives −∞ to any package
that contains redundant places with those already placed
in SS. In other words, the experiment is similar to that
of [23].

In each setting (a variant of n), we run our
algorithm with the generated data against the exhaustive
search, which guarantees optimal results. We run the
experiments a number of times for each n and compare
the results achieved from our algorithm against that of
the optimal cases. The experiments are conducted on an
AMD Turion 64 X2 2GHz machine with 896MB of RAM.

5.2 Results

The raw figures obtained from our experiments are
presented in Table 3. The equivalent results are also
depicted in Figure 2, where the x axis is the number
of agents, ranging from 12 to 15 agents, and the y axis
is the log(10) of execution time in milliseconds. Note
that we can carry out the experiments with exhaustive
search for merely 14 places, which take a lot of time
to finish. We project the figure for the execution time
of 15 places based on the previous cases. Although we
can carry out the search with our algorithm for up to
26 places, we do not do so because the difference of
the results, i.e convergence and termination times of our
algorithm and the exhaustive case will be too much.
Note that whereas the execution time of the exhaustive
search bursts exponentially, our algorithm yields pretty
consistent execution time throughout all the cases, i.e.
lower than 10 seconds (104 ms).

Towards Optimal Service Composition upon QoS in Agent Cooperation 13

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12 i=13 i=14 i=15

n=12 12 66 220 495 792 924 792 495 220 66 12 1

n=13 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

n=14 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

n=15 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

Table 2 Number of Services In each case of 8 ≤ n ≤ 10, the table lists the number of services for each 1 ≤ i ≤ n

.

 0

 2

 4

 6

 8

 10

 12 12.5 13 13.5 14 14.5 15of
 E

la
ps

ed
 T

im
e

(lo
g(

10
)

m
s)

Number of Agents

Optimal Service Composition

Exhaustive
Converge
Terminate

Figure 2 Experiment Results The results of our
experiments are shown here. The times required
for exhaustive search grow exponentially while the
convergence and termination times of our
algorithm are quite consistent, i.e. around 4K and
5K ms respectively.

5.3 Discussion

We have shown here how we can optimally allocate
available service providers to perform tasks for requesters
in global scale. Note that a number of available agents
may not be allocated with any task. This means a
number of these agents may not benefit from their
existing resources. This is due to the fact that the
allocation is focused on the benefit of the requesters. It is
left open to further research to explore for the balance of
being allocated with tasks and accruing benefit to service
providers.

The messages being sent over the Internet in our
protocols may be at risks if they are not encrypted.
However, encrypting messages is considered a lower level
of implementation. Some parts, if not all, of the messages
can be encrypted given any latest security technology.
We leave it open in our research here because the focus
of this research is to optimally allocate tasks to agents.

6 Conclusion

A common problem in tourism industry is that a tourist,
who is under a budget and time constraints, would prefer
to visit places as many as possible in one trip. Since
it is also quite common that multiple service providers
offer redundant services to tourists, i.e. their traveling
packages include the same places and it is boring to
the tourist, it is very useful if a service composition
can optimally plan for the tourist what packages to
take. Since traveling agencies, as service providers, are

competitors and are unlikely to cooperate, this issue is
not so easy to manage in real world. Furthermore this is
a hard problem from computer science perspective.

We address this problem by proposing an agent-
based composite web-services framework to allocate to
the tourist an optimal service composition, one which
maximally satisfies the tourist. We take into account a
number of factors including i) the number of places be
visited must be maximal, ii) the number of redundant
places must be minimal, iii) the total price is within
the budget, and iv) the time constraint must be obeyed.
Since current composite web-services technology deploys
a top-down approach, where service providers are to be
chosen by a service broker, which is inefficient in many
settings, we propose a bottom-up approach to allocate
the optimal service composition. We deploy a best first
search algorithm that is used to solve the optimal
coalition structure to solve this problem. Where other
work in optimal service composition considers various
aspects which are different from us, we seeks to find
optimal packages for the tourist in timely fashion. The
utility proposed can be substituted with other utility
functions which can be more complex and appropriate to
different domains. The results show that our approach
can yield optimal results in less than 10 seconds for 15
places bundled in 1,382,958,545 packages, which would
take around 21896 seconds for the exhaustive search.

References

[1] Hsing Cheng and Gary Koehler. Optimal pricing policies
of web-enabled application services. Decision Support
Systems, 35(3):259–272, June 2003.

[2] Angus Huang, Ci-Wei Lan, and Stephen Yang.
An optimal qos-based web service selection scheme.
Information Science, 179(19):3309–3322, September
2009.

[3] James Kahan and Amnon Rapoport. Theories of
Coalition Formation. Lawrence Erlbaum Associates,
Hillsdale, NJ, USA, 1984.

[4] Steven Ketchpel. Forming coalitions in the face
of uncertain rewards. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI
94), volume 1, pages 414–419, Seattle, WA, USA, 1994.
AAAI Press.

[5] Sarit Kraus, Onn Shehory, and Gilad Taase. Coalition
formation with uncertain heterogeneous information. In
Proceedings of the 2nd International Joint Conference
on Autonomous Agents and Multiagent Systems
(AAMAS 03), pages 1–8, Melbourne, Australia, 2003.
ACM Press.

14

[6] Sarit Kraus, Onn Shehory, and Gilad Taase. The
advantages of compromising in coalition formation with
incomplete information. In Proceedings of the 3rd
International Joint Conference on Autonomous Agent
and Multi Agent Systems (AAMAS 04), pages 588–595,
Washington DC, USA, 2004. IEEE Computer Society.

[7] Donald Kreher and Douglas Stinson. Combinatorial
Algorithms Generation, Enumeration and Search. CRC
Press, FA, USA, 1999.

[8] Wuqin Lin, Zhen Liu, Cathy H. Xia, and Li Zhang.
Optimal capacity allocation for web systems with end-
to-end delay guarantees. Performance Evaluation,
62(1):400–416, October 2005.

[9] John Nash. Non-Cooperative Game. PhD thesis,
Department of Mathematics, Princeton University,
Princeton, USA, May 1950.

[10] Timothy Norman, Alun Preece, Stuart Chalmers,
Nicholas Jennings, Michael Luck, Viet Dang, Thuc
Nguyen, Vikas Deora, Jianhua Shao, Alex Gray, and
Nick Fiddian. Agent-based formation of virtual
organisations. Knowledge-Based Systems, 17(2-4):103–
111, 2004.

[11] Tuomas Sandholm, Kate Larson, Martin Andersson,
Onn Shehory, and Fernando Tohm. Coalition structure
generation with worst case guarantees. Artificial
Intelligence, 111(1-2):209–238, 1999.

[12] Tuomas Sandholm and Nir Vulkan. Bargaining
with deadlines. In Proceedings of the 16th National
Conference on Artificial Intelligence (AAAI 99), pages
44–51, Orlando, FA, USA, 1999. AAAI Press.

[13] Onn Shehory, Gal Kaminka, and Eran Shoham. Multi-
agent coalition re-formation and league ranking. In
Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS
04), pages 1348–1349, New York, USA, 2004. IEEE
Computer Society.

[14] Onn Shehory and Sarit Kraus. Coalition formation
among autonomous agents: Strategies and complexity.
In From Reaction to Cognition, Selected Papers from
the 5th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW 93), volume
957/1995, pages 55–72. Springer Berlin / Heidelberg,
1995.

[15] Onn Shehory and Sarit Kraus. Task allocation via
coalition formation among autonomous agents. In
Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI 95), pages 655–661,
Acapulco, Mexico, August 1995. Morgan Kaufman.

[16] Onn Shehory and Sarit Kraus. Formation of
overlapping coalitions for precedence-ordered task-
execution among autonomous agents. In Proceedings of
the 2nd International Conference on Multiagent Systems
(ICMAS 96), pages 330–337, Kyoto, Japan, December
1996. AAAI Press.

[17] Onn Shehory and Sarit Kraus. Methods for task
allocation via agent coalition formation. Artificial
Intelligence, 101(1-2):165–200, 1998.

[18] Onn Shehory and Sarit Kraus. Feasible formation
of coalitions among autonomous agents in non-super-
additive environments. Computational Intelligence,
15(3):218–251, August 1999.

[19] Onn Shehory, Sarit Kraus, and Osher Yadgar. Emergent
cooperative goal-satisfaction in large-scale automated-
agent systems. Artificial Intelligence, 110(1):1–55, May
1999.

[20] Onn Shehory, Katia Sycara, and Somesh Jha. Multi-
agent coordination through coalition formation. In
Proceedings of the 4th International Workshop on
Intelligent Agents IV, Agent Theories, Architectures,
and Languages (ATAL 1997), number 1365 in Lecture
Notes on Computer Science, pages 143–154, Providence,
RI, USA, 1998. Springer-Verlag.

[21] Chattrakul Sombattheera. Optimal service composition
via agent-based quality of service. In Proceedings of
the 5th Multi-Disciplinary International Workshop on
Artificial Intelligence (MIWAI 2011), volume 7080 of
Lecture Notes in Artificial Intelligence, pages 274–285,
Heidelberg, Germany, 2011. Springer.

[22] Chattrakul Sombattheera and Aditya Ghose. A pruning-
based algorithm for computing optimal coalition
structures in linear production domains. In Advances
in Artificial Intelligence, Proceedings of the 19th
Conference of the Canadian Society for Computational
Studies of Intelligence (AI 2006), Lecture Notes in
Computer Science, pages 13–24, Quebec, Canada, 2006.
Springer–Verlag.

[23] Chattrakul Sombattheera and Aditya Ghose. A best-
first anytime algorithm for computing optimal coalition
structures. In Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), pages 1425–1428. ACM Press,
2008.

[24] Chattrakul Sombattheera and Aditya K. Ghose. A
distributed branch-and-bound algorithm for computing
optimal coalition structures. In Advances in Artificial
Intelligence, Proceedings of the 4th Helenic Conference
on AI, volume 3955 of Lecture Notes in Computer
Science, pages 334–344, Crete, Greece, 2006. Springer–
Verlag.

[25] Richard Stearns. Convergent transfer schemes for
n-person games. Transactions of the American
Mathematical Society, 134(3):449–459, December 1968.

[26] Qian Tang and Hsing Cheng. Optimal location and
pricing of web services intermediary. Decision Support
Systems, 40(1):129–141, July 2005.

[27] Gilad Zlotkin and Jeffrey Rosenschein. Coalition,
cryptography, and stability: Mechanisms for coalition
formation in task oriented domains. In Working Notes
of the AAAI Spring Syposium on Software Agents, pages
87–94, Stanford, CA, USA, 1994. AAAI Press.

	University of Wollongong
	Research Online
	2013

	Towards optimal service composition upon QoS in agent cooperation
	Chattrakul Sombattheera
	Jun Shen
	Publication Details

	Towards optimal service composition upon QoS in agent cooperation
	Abstract
	Keywords
	Disciplines
	Publication Details

	full-report.ps

