2018

Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar

Muhammad N. S Hadi
University of Wollongong, mhadi@uow.edu.au

Mustafa Sameer Abdulkareem Al-azzawi
University of Wollongong, msaa374@uowmail.edu.au

Tao Yu
University of Wollongong, taoy@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

Part of the *Engineering Commons*, and the *Science and Technology Studies Commons*

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar

Abstract
The compressive strength of fly ash-based geopolymer mortar (FBGM) made from five different sources of fly ash was examined. The weight ratio of alkaline activator to fly ash content (AL/FA), the weight ratio of sodium silicate to sodium hydroxide (Na$_2$SiO$_3$/NaOH) and concentration of the NaOH were considered the main parameters. A total of 180 FBGM mixes were prepared and tested for compressive strength. The results indicated that the optimum AL/FA ratio for activating fly ashes was in the range of 0.5 and 0.6. The compressive strength of the FBGM that were mixed with different fly ashes exhibited different response to the increase of the Na$_2$SiO$_3$/NaOH ratio and NaOH concentration. Fly ashes with a high content of fine particles and amorphous components such as SiO$_2$ and Al$_2$O$_3$ activated at a low dosage of Na$_2$SiO$_3$/NaOH ratio and NaOH. While the activation of fly ashes with a low content of fine particles and amorphous components required a high dosage of Na$_2$SiO$_3$/NaOH ratio and NaOH. An artificial neural network was developed and the analytical results showed high performance in predicting the compressive strengths of the FBGM.

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/1329
Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar

Muhammad N.S. Hadi¹*, Mustafa Al-Azzawi², Tao Yu³

¹ Associate Professor, School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia

² PhD Candidate, School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia

³ Senior Lecturer School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia

Correspondence:

Muhammad N. S. Hadi

School of Civil, Mining & Environmental Engineering

University of Wollongong, Australia

E-mail: mhadi@uow.edu.au

Telephone: + 61 2 4221 4762

Facsimiles: + 61 2 4221 3238

* Corresponding author
Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar

Abstract

The compressive strength of fly ash-based geopolymer mortar (FBGM) made from five different sources of fly ash was examined. The weight ratio of alkaline activator to fly ash content (AL/FA), the weight ratio of sodium silicate to sodium hydroxide (Na$_2$SiO$_3$/NaOH) and concentration of the NaOH were considered the main parameters. A total of 180 FBGM mixes were prepared and tested for compressive strength. The results indicated that the optimum AL/FA ratio for activating fly ashes was in the range of 0.5 and 0.6. The compressive strength of the FBGM that were mixed with different fly ashes exhibited different response to the increase of the Na$_2$SiO$_3$/NaOH ratio and NaOH concentration. Fly ashes with a high content of fine particles and amorphous components such as SiO$_2$ and Al$_2$O$_3$ activated at a low dosage of Na$_2$SiO$_3$/NaOH ratio and NaOH. While the activation of fly ashes with a low content of fine particles and amorphous components required a high dosage of Na$_2$SiO$_3$/NaOH ratio and NaOH. An artificial neural network was developed and the analytical results showed high performance in predicting the compressive strengths of the FBGM.

Keywords: Geopolymer; fly ash; alkaline activator; artificial neural network.
1. Introduction

Geopolymer is emerging as an eco-friendly alternative to the Portland cement. The geopolymer is synthesized from the chemical reaction (geopolymerization) between the aluminosilicate materials (industrial by-product, such as fly ash or blast furnace slag) and alkaline activators [1]. Recently, fly ash is gaining more attraction to be used in producing geopolymers. This is because fly ash is considered a cheap and a widely available material [2]. Also, using fly ash in producing geopolymers contributes in decreasing the environmental impacts due to the disposal of the fly ash in landfills [3]. Fly ash is broadly produced in Australia from the combustion of the coal in power plants. Different power plants usually use different types of coal (bituminous and lignite coal), different methods of burning the coal and different ways in collecting the fly ash. Consequently, power plants usually produce different types of fly ashes having different characteristics [4, 5]. Hence, the use of fly ash in producing geopolymers faces obstacles related to controlling the fly ash characteristics.

Different parameters influence the extent of the geopolymerization between fly ash and alkaline activator. The parameters include chemical and physical characteristics of the fly ash as well as properties of the alkaline activator [6]. In general, silicon oxide (SiO$_2$), aluminium oxide (Al$_2$O$_3$), calcium oxide (CaO) and iron oxide (Fe$_2$O$_3$) are considered the major constituents of the fly ash. According to the Ash Development Association of Australia [2], the SiO$_2$ and Al$_2$O$_3$ are considered the main oxides of the Australian fly ashes where they represent about 80% by weight of the fly ash. The contents of components including CaO and the Fe$_2$O$_3$ are less than 20% by weight of the fly ash. The total weight of oxides such as Na$_2$O, K$_2$O, MgO and SO$_3$ is less than 5% by weight of the fly ash. The particle size distribution of the fly ash is considered the main physical characteristics of the fly ash. The
distribution of these oxides in the fly ash determines the extent of the geopolymerization with
the alkaline activator [7].

The SiO$_2$ exists in different microstructural forms (phases): crystal and amorphous forms. The amorphous SiO$_2$ is dissolvable (reactive) in alkaline activator more than the crystal SiO$_2$ [8-10]. The percentage of the amorphous SiO$_2$ relies on the temperature used in burning the original coal and cooling the fly ash [11, 12]. Thus, the role of the SiO$_2$ in the geopolymerization with alkaline activator depends on the percentage of the reactive SiO$_2$ in the fly ash. The Al$_2$O$_3$ significantly affects the geopolymerization between the fly ash and the alkaline activator. As in the SiO$_2$, the amorphous Al$_2$O$_3$ represents the reactive phase of the Al$_2$O$_3$ to react with the alkaline activator. At the early stages of the geopolymerization, the Al$_2$O$_3$ acts as an auxiliary factor in dissolving the SiO$_2$ in an alkaline activator forming aluminosilicate gel [9, 13, 14]. Fernández-Jiménez et al. [10] stated that the reactivity of the fly ash with alkaline activator relies on the balance between the amount of the reactive SiO$_2$ and the reactive Al$_2$O$_3$. The presence of the CaO in the fly ash is considered as the promoting factor in the early compressive strength of the geopolymers [12, 15-17].

On the other hand, the particle size distribution of the fly ash has a significant impact on the geopolymerization with alkaline activator. It was reported that the increase in the percentage of fine particles increases the reactivity of the fly ash [8, 18, 19]. The increase in the reactivity of the fly ash is attributed to the increase of the exposure area between the fly ash particles and the alkali activator [5, 9, 12]. As a result, the interaction effect due to the chemical and physical characteristics of fly ash leads to a considerable variation in the geopolymerization with alkaline activator.
Different types of the alkaline activators are used in activating the fly ash in order to produce geopolymers. A mix of hydroxide (NaOH and KOH) and liquid silicate (Na$_2$SiO$_3$ and Ca$_2$SiO$_3$) are commonly used in activating fly ash in the geopolymers. The properties of the alkaline activator are dependent on the types and concentrations of the components used in preparing the alkaline activator [20-23]. The selection of the alkaline activator properties is dominated by the fly ash characteristics.

The significant differences in the fly ash characteristics influence proposing a standard method for the selection of the geopolymers mix proportions, particularly, the dosage of the alkaline activator. Several research studies examined different mix proportions of fly ash-based geopolymers using different synthesis conditions. The use of different synthesis conditions complicated the analysis of the controlling factors in the selection of the mix proportion [3, 24-29]. A few researchers have attempted to propose methods of selecting the mix proportions of geopolymers [30-34]. Junaid et al. [34] proposed a mix design method for fly ash-based geopolymer concrete. However, the method proposed in Junaid et al. [34] was limited to selecting the mix proportion of the geopolymer concrete using a specific source of fly ash (Eraring fly ash). Pavithra et al. [30] used the same method of selection of the water/cement ratio (w/c) for normal concrete in selecting the amount of the alkaline activator for fly ash-based geopolymer concrete. However, the method of selecting of the water/cement ratio (w/c) might not be suitable for geopolymers as this method was originally designed for estimating the amount of water required to hydrate Portland cement [35]. This is because the nature of the reaction (geopolymerization) between the alkaline activator and the fly ash is significantly different from the reaction (hydration) between the water and Portland cement [36, 37]. In general, the proposed methods in Azreen et al. [32], Olivia and Nikraz [31], Kupaei et al. [33], Junaid et al. [34] and Pavithra et al. [30] have not adopted as a standard
procedure for selecting of the mix proportions of the geopolymers due to the limitations of these methods. Consequently, more investigations are required to extend the current knowledge about the relationship between different fly ash characteristics and different alkali activators, which can contribute in proposing a standard method of selection of the mix proportion of geopolymers.

The relationship between fly ash characteristics and properties of the alkaline activator in geopolymer is considered as a complex system. Thus, a robust method is required to model the relationship between the primary variables to understand the effect of each parameter on the geopolymer matrix. The artificial neural network (ANN) is a powerful method used in modelling complex systems. The ANN is used for modelling the properties of the normal concrete [38-46]. Thus, the ANN can be used for modelling the fly ash-based geopolymer mortar to understand the effect of the fly ash characteristics on the selection of the alkaline activator component.

In this paper, a comprehensive study on the effect of different fly ash characteristics on the optimum proportions of the alkaline activator components was conducted. The relationship between fly ash characteristics and properties of the alkaline activator was used in developing an ANN model. The result of the ANN model can assist in proposing a mix design method for the fly ash based geopolymer concrete.

2. Experimental methodology

In this study, fly ash Type F, supplied from five different sources, were activated using different proportions of alkali activator to produce geopolymer mortar. The alkali activator was prepared by mixing sodium hydroxide (NaOH) with sodium silicate (Na$_2$SiO$_3$) having
different proportions. The sections below discuss the materials and the methods that were
used in preparing of the mixes, curing and testing of the specimens in details.

2.1 Materials

2.1.1 Fly ash

In this study, fly ash Type F supplied by Ash Development Association of Australia (ADAA)
[47] from five different Australian power stations: Eraring (ER), Mt Piper (MP), Bayswater
(BW), Gladstone (GL), and Collie (CL) was used in producing geopolymer mortar. The X-
Ray diffraction (XRD), X-Ray Fluorescent (XRF) and the particle size distribution analysis
of the fly ash were conducted at the laboratories of the School of Earth & Environmental
Sciences, University of Wollongong, Australia. The results of the XRD and XRF of the major
elements and minerals of the fly ash are shown in Figure 1, Tables 1 and 2, respectively. The
particle size distribution analysis of fly ash samples is shown in Figure 2.

The results of the analysis of the major elements and minerals of the fly ash revealed that all
fly ash samples are classified as Type F according to the ASTM-C618 [48]. The summation
of SiO$_2$, Al$_2$O and Fe$_2$O$_3$ content for all fly ashes were higher than 70%, and the CaO content
was less than 8%. Also, the percentages of unburned particles in terms of the Loss On
Ignition (LOI) for all fly ashes were ranging from 0.7% to 1.7%. The results of the particle
size distribution test showed that the fineness modulus (percentage of the particles retained
on sieve 45 µm (no. 325)) of fly ashes ER, MP, BW, GL and CL were 30%, 23%, 15%, 11%
and 14%, respectively. Moreover, the median particle size (particles diameter of 50% the
passing particles) of fly ashes ER, MP, BW, GL and CL were 24.8, 20.5, 17.0, 3.5 and 9.0
µm, respectively.
For most studies, the fineness modulus is commonly used to express the particle size distribution. However, in this study, the median particle size of the fly ash was used in expressing the particle size distribution. The use of median particle size was due to the significant variance in the median particle size between the fly ashes compared to the variance in the fineness modulus, as shown in Figure 1. For example, the variance in the fineness modulus between BW and CL was about 6%, while the difference in the median particle size was 52%. Thus, the use of median particle size gave a realistic expression to the particle size distribution of the fly ash.

2.1.2 Alkaline activator

The alkaline activator used in this study was prepared by mixing of sodium hydroxide (NaOH) and sodium silicate (Na$_2$SiO$_3$) in different proportions. The NaOH solution was prepared by dissolving the caustic soda, which contained about 98% by weight NaOH, in distilled water to the required concentrations of the NaOH (12, 14 and 16 mole/L). The solution was prepared 24 hours prior mixing with the FBGM mix. The Na$_2$SiO$_3$ was provided from PQ Australia Pty., Ltd in liquid form [49]. The Na$_2$SiO$_3$ contained about 29.4%, 14.7% and 55.9% by weight SiO$_2$, Na$_2$O and water, respectively. The Na$_2$SiO$_3$ was blended with NaOH into three Na$_2$SiO$_3$/NaOH weight ratios of 1.5, 2.0 and 2.5 according to the studies conducted by Joseph and Mathew [50] and Olivia and Nikraz [31]. The alkaline activator was blended with fly ash into four weight ratios (AL/FA) which are 0.4, 0.5, 0.6 and 0.7. The ranges of the AL/FA ratios were selected according to previous investigations [6, 51-53]. As a result, different proportions of the alkaline activator were examined to evaluate the effects of NaOH concentration, the NaOH content and the Na$_2$SiO$_3$ content on the compressive strength of the FBGM.
2.2 Mixing, casting, curing, and testing of the FBGM

The mixes of FBGM were prepared by mixing fly ash, sand and alkaline activator in different proportions. These mixes were divided according to the fly ash source into five groups which are ER, MP, BW, GL and CL. Each group contained 36 mixes as shown in Table 3. In total, 180 mixes of the FBGM were conducted.

The FBGM mixes were labelled according to the fly ash source, the weight ratio of total alkaline activator to the weight of fly ash content (AL/FA), Na$_2$SiO$_3$/NaOH ratio and the concentration of the NaOH. The fly ash sources (FA) were designated as ER, MP, BW, GL and CL corresponding to the fly ashes Eraring, Mt-Piper, Bayswater, Gladstone and Collie, respectively. The ratio of AL/FA was expressed by the values of 0.4, 0.5, 0.6 and 0.7 according to the range of the AL/FA investigated in this study. The ratio of Na$_2$SiO$_3$/NaOH was expressed by the letter R followed by the ratios (1.5, 2.0 and 2.5). Finally, the concentration of the NaOH was identified by letter C followed by the concentrations 12, 14 and 16 mole/L. For example, the mix ER0.5R2.5C14 refers to the FBGM mixed with fly ash from the Eraring power station, AL/FA ratio of 0.5, the Na$_2$SiO$_3$/NaOH ratio of 2.5 and the NaOH concentration of 14 mole/L.

The weight ratio of fly ash to sand was fixed at 1:2.75 according to Australian Standard AS-1012.9 [54]. The mixing procedure used in this study included dry mixing of the fly ash and the sand for two minutes using a five-litre mixer. Then the alkaline activator solution was added to the mixture and mixed for further 3 minutes. The mixture was poured into Polyvinyl Chloride (PVC) cylindrical moulds of 50 mm in diameter and 100 mm in height. The specimens were kept at ambient temperature for 24 hours as proposed by Hardjito and Rangan [55] and Vora and Dave [56]. Afterwards, the specimens were cured in an oven at
70° C for another 24 hours as recommended by Soutsos et al. [6], Gunasekara et al. [28], Helmy [57] and Temuujin et al. [58]. Finally, the specimens were de-moulded and kept at room temperature until being tested at 7 days. The compressive strength was obtained using W&T Avery Testing Machine with a loading capacity of 1800 kN. For each mix, the average compressive strength of three specimens was used in the analysis.

3. Results and Discussion

3.1 Analysis of the compressive strength

The results of the compressive strength test of the FBGM revealed a correlation with increasing the amorphous SiO$_2$ content and the median particle size of the fly ash as shown Figure 3. It was observed that the compressive strength of the specimens decreased as the percentage of the SiO$_2$ in the fly ash increased. For FBGM made with GL fly ash (amorphous SiO$_2$ content = 42% and median particle size = 3.6 µm), the average of the compressive strength of FGBM was 50 MPa. While for the FBGM made with BW fly ash (amorphous SiO$_2$ content = 76% and median particle size = 15 µm), the average of the compressive strength of the specimens was 17 MPa. The average compressive strength of the FBGM was 39 MPa, 18.5 MPa and 21 MPa, for mixes that used fly ashes CL, ER and MP, respectively.

However, the correlation between the compressive strength of the FBGM and other fly ash components (i.e. amorphous Al$_2$O$_3$ content, CaO and Na$_2$O) is unclear as shown in Figure 3: the increase of one of these components did not necessarily lead to the increase (or decrease) of the compressive strength. This observation may be attributed to the effect of median particles size and amorphous SiO$_2$ content in the fly ash, which affected the chemical reactivity of amorphous Al$_2$O$_3$ content, CaO and Na$_2$O in the fly ash with an alkaline activator, and consequently the compressive strength of the FBGM.
3.2 Effect of AL/FA ratio on the compressive strength of the FBGM

The effect of AL/FA ratios on the compressive strength of the FBGM are presented in Figures 4 (a) to (e). The AL/FA ratios represent the total weight of the alkali liquids (NaOH and Na$_2$SiO$_3$) to the weight of the fly ash. The results showed that the fly ash characteristics affect the optimum AL/FA required to develop optimum compressive strength. The compressive strength of mixes that used ER, MP and BW fly ashes exhibited higher compressive strength when using AL/FA of 0.6 regardless the Na$_2$SiO$_3$/NaOH ratio and the NaOH concentration, as shown in Figures 4 (a) to (c). In contrast, the optimum compressive strength of the mixes that used GL and CL fly ashes were achieved when the AL/FA was 0.5, as shown in Figures 4 (d) and (e).

It is evident from the results that each fly ash has an optimum AL/FA ratio to achieve the optimum compressive strength. This variance in the optimum AL/FA ratio used in activating different fly ash sources might be attributed to the differences in particle size distribution of the different fly ashes. Fine particles increase the exposure area of the amorphous components in the fly ash to the alkaline activator which in turn affect the rate of the geopolymerization with alkaline activator. Because of this, using a fly ash with a high percentage of fine particle size results in a significant reduction in the friction induced between the particles of the geopolymer mix. This reduction in the friction leads to reducing the amount of the total liquid required for blending the geopolymer mix. Also, fly ash with finer particles provides a better coverage to aggregate particles that results in forming a dense interfacial transition zone at the surface of the aggregate and consequently high binding strength [59]. This is true when comparing the median particle size of the fly ashes used in this study and the optimum AL/FA ratio. Mixes that used fly ashes GL and CL required
lower AL/FA ratio than mixes that used fly ashes ER, MP and BW. Based on the results, each type of fly ash has an optimum AL/FA ratio related to particle size distribution of the fly ash. In addition, the results show that using an AL/AF ratio lower than the optimum value leads to a remarkable reduction in the compressive strength of the geopolymer mortar. The decrease in the compressive strength may be attributed to the insufficient amount of the alkaline activator that was required to dissolve the fly ash particles. Consequently, a weak geopolymer mortar with non-homogeneous structure is likely formed due to the presence of unreacted fly ash particles [60]. In contrast, the use of AL/FA higher than the optimum value has an adverse impact on the compressive strength of the geopolymer mortar. The reduction in the compressive strength may be explained by the excessive amount of the alkaline activator that leads to inhibit the geopolymerization process [61, 62]. Moreover, the increase of the AL/AF in geopolymer mixes results in a significant increase in the porosity of the geopolymer mixes especially when the specimens are cured at elevated temperature [31].

3.3 Effect of the Na$_2$SiO$_3$/NaOH ratio on the compressive strength of the FBGM

The effect of the Na$_2$SiO$_3$/NaOH ratio on the compressive strength of the FBGM is also presented in the Figures 4 (a) to (e). A significant increase in the compressive strength of concrete for mixes made with fly ashes ER, MP and BW was observed when the Na$_2$SiO$_3$/NaOH ratio increased from 1.5 to 2.5. The increase in the compressive strength of FBGM due to the increase of the Na$_2$SiO$_3$/NaOH ratio from 1.5 to 2.5 was 51%, 47% and 53% for mixes that used ER, MP and BW fly ashes, respectively.

In contrast, increasing the Na$_2$SiO$_3$/NaOH ratio for FBGM mixes that used GL and CL fly ashes resulted in a reduction in the compressive strength of the specimens, as shown in
Figures 4 (d) to (e). The maximum decrease in the compressive strength of FBGM mixes that used GL fly ash was 32% and for FBGM mixes that used CL fly ash was 27.5%.

The variation in the effect of the \(\text{Na}_2\text{SiO}_3/\text{NaOH} \) ratio on the compressive strength of the FBGM may be attributed to the distribution of the main oxides in the fly ash (see Table 1). The chemical equilibrium between amorphous \(\text{SiO}_2 \) and the amorphous \(\text{Al}_2\text{O}_3 \) in the fly ash controls the geopolymerization reaction with the alkaline activator in the geopolymer [10]. The \(\text{Na}_2\text{SiO}_3/\text{NaOH} \) ratio controls the amount of the amorphous \(\text{SiO}_2 \) and \(\text{Al}_2\text{O}_3 \) liberated from fly ash in the geopolymer matrix [63]. Thus, adding more silicon \((\text{Si}^{4+}) \) and sodium \((\text{Na}^+) \) ions liberated from the \(\text{Na}_2\text{SiO}_3 \) in the matrix may congest the matrix with free ions that inhibit the geopolymerization [50, 60, 64]. This is true when increasing the \(\text{Na}_2\text{SiO}_3/\text{NaOH} \) ratio in the alkaline activator used for GL and CL mixes. On the other hand, reducing the \(\text{Si}^{4+} \) and \(\text{Na}^+ \) affect adversely the formation of the coherent structure that consequently reduces developing the compressive strength [60]. This behaviour was observed in FBGM mixes that used ER, MP and BW fly ashes where the compressive strength decreased with decreasing the \(\text{Na}_2\text{SiO}_3/\text{NaOH} \) ratio. As a result, the characteristics of the fly ash dominate the optimal proportion of the \(\text{Na}_2\text{SiO}_3/\text{NaOH} \) ratio in the alkaline activator.

3.4 Effect of the NaOH concentration on the compressive strength of the FBGM

The effect of the NaOH concentration on the compressive strength of the FBGM is also presented in Figures 4 (a) to (e). The results show that the FBGM mixes that used ER, MP and BW fly ashes exhibited higher compressive strength when the concentration of the NaOH solution increased from 12 to 16 mole/L (Figures 4 (a) to (d)). The increase in the compressive strength was 50%, 54% and 52% for FBGM mixes that used ER, MP and BW fly ashes, respectively.
In contrast, increasing the concentration of the NaOH from 12 to 16 mole/L resulted in a significant reduction in developing the compressive strength of FBGM mixes that used fly ash from GL and CL (Figures 4 (d) to (e)). The reduction in the compressive strength was 29.2% and 27.5% for FBGM mixes that used GL and CL fly ashes, respectively.

This variance in the effect of the NaOH concentration on the compressive strength of the FBGM is possibly due to the differences in the nature and types of the molecules forming the fly ash particles particularly the amorphous components. These differences in the types of the molecules affect the extent of leaching the SiO$_2$, Al$_2$O$_3$, CaO and Fe$_2$O$_3$ in the alkaline activator where the leaching of the SiO$_2$ is slower than the other components [26]. According to Fernández-Jiménez and Palomo [21], the concentration of the NaOH is responsible for breaking down the bonds of the main oxides. Thus, fly ash with the higher SiO$_2$ content (BW for example) requires a higher concentration of NaOH to release the SiO$_2$ and the other oxides from the fly ash particles to initiate the geopolymerization. The use of a high concentration of the NaOH, however, led to a minor increase in the extent of compressive strength of the FBGM of the mixes that used ER, MP and BW fly ashes. This limitation in the range of developing the compressive strength of mixes made with ER, MP and BW fly ashes may be attributed to the large particle size of those fly ashes, as shown in Table 1 and Figure 2. The presence of coarser particles in fly ash reduces the surface area of the amorphous components that expose to the alkaline activator [5]. This means that low chemical reaction and partial dissolving on the surface of the coarse particles may occur. As a result, these unreacted particles will exhibit as a weak point between the geopolymer matrix that consequently reduces the compressive strength of the geopolymer specimens.
4. Artificial Neural Network (ANN)

4.1 The architecture of the ANN

The Artificial Neural Network (ANN) was used for modelling the relationship between factors that affect the compressive strength of the geopolymer mortar. In this study, the fly ash characteristics including amorphous SiO$_2$ content, amorphous Al$_2$O$_3$, CaO, amorphous Fe$_2$O$_3$, Na$_2$O, K$_2$O and the median particle size were used in the ANN. The alkaline activator that was used in this study was mainly composed of the molecules SiO$_2$ and Na$_2$O in different ratios. Thus the effect of the alkaline activator on the compressive strength of the FBGM in term of total Na$_2$O (from NaOH and from Na$_2$SiO$_3$) and the liquid SiO$_2$ (from Na$_2$SiO$_3$) were used in the ANN.

A feedforward multi-layers network system was used in modelling the experimental data. This method was used for developing mix design of ordinary concrete [41, 42, 44, 45]. The ANN model consists of layers including one input layer, one or more hidden layers and an output layer. These layers are fully interconnected by nodes that process and transmit the data. The data in the feedforward ANN flows in one direction from the input layer to the output layer through the hidden layers. The ANN modelling was developed using a JMP Pro 11.0.0 software [65].

The architecture of the ANN depends on the number of parameters (nodes) utilized in the layers. The input parameters of the ANN model were selected to include the factors affecting the compressive strength of the FBGM. Accordingly, nine variables were used in the nodes of the input layer include amorphous SiO$_2$ (%), amorphous Al$_2$O$_3$ (%), CaO (%), amorphous Fe$_2$O$_3$ (%), Na$_2$O (%), K$_2$O (%), the median particle size (μm), liquid SiO$_2$ (%) and total Na$_2$O (%).
The number of nodes in the hidden layer was determined by trial and error as there is no method to determine the optimum number of nodes in the hidden layer, so far. Thus the highest correlation factor (R^2), lowest negative log likelihood and the Root Mean Square Error (RMSE) were used as criteria to determine the optimum number of the nodes in the hidden layer. After a number of trials, six nodes were used as an optimum number of nodes in the hidden layer. The transfer function used in this study was a Gaussian function. The output layer consisted of the compressive strength of the geopolymer mortar. The architecture of the ANN used in this study is illustrated in Figure 5.

In general, the ANN uses the data to train a model by recognizing the relationship (learning) between the inputs and the output. The ANN uses learning algorithms for training a model by comparing the variance (error) between the experimental and calculated output. The ANN runs the algorithms iteratively until the error between the experimental and calculated output reaches the minimum value [66].

4.2 Validation of the ANN

The validation of the developed ANN involved using part of the data to verify the accuracy of the model. The software selected the data utilized for the validation randomly. The validation process involves using the input parameters of the selected data as external inputs in the trained ANN without any changing in the training parameters. The variance between the experimental and the calculated output was then evaluated. In this study, K-fold method was adopted in validating the model. In this process, the dataset is divided into five folds. Through the training of the ANN, one of these folds was excluded from the training process for validating. This method was adopted because it is suitable for the small dataset (<1000 observations) as recommended by the software guide [66].
4.3 Performance of the ANN model

The performance of the developed ANN model is illustrated in Figure 6 (a) and Table 4. Figure 6 (a) shows the linear fitting between the experimental and predicted compressive strength obtained from training the developed ANN using 144 mixtures. Table 4 illustrates the statistical analysis of the linear regression fit between the compressive strength from experimental and from the predicted by the ANN. The results of the ANN show a good correlation between the predicted and the actual compressive strength where the R^2 was 0.94. This means that the output of the trained ANN tends to be very close to the average values. The lowest values of the RMSE and negative log likelihood were 3.63 and 390, respectively.

The result of the ANN validation is plotted in a linear regression fit between the experimental and the predicted output using 36 mixtures, as shown in Table 4 and Figure 6 (b). The results of the fitting show a high correlation between the predicted and the experimental compressive strength where the R^2 was 0.93. In addition, the developed ANN was validated using data from studies that were conducted by Ryu et al. [67], Adak et al. [68], Gunasekara et al. [28], Kazemian et al. [69] and Zeng and Wang [70] as shown in Figure 7. All these studies used fly ash Type F. The alkaline activators that were used in activating the fly ashes were a mix of NaOH and Na$_2$SiO$_3$. The range of compressive strength that was recorded in these studies was between 14 MPa and 80 MPa. The ANN was used in predicting the compressive strength of the FBGM using the data obtained from these studies. In general, the results showed that the developed ANN gave conservative values to predict the compressive strength of the FBGM based on the selected parameters. However, the developed ANN underestimated the compressive strength of FBGM mixes that were obtained from Zeng and Wang [70]. This was because of the high curing temperature (75° C) and the long period of the heat curing temperature (60 hours) that was applied on the specimens which resulted in an increase in the
Accordingly, the proposed ANN can predict the compressive strength of the geopolymer mortar with a high accuracy. As a result, the ANN shows a high performance in modelling the relationship between ingredients of the FBGM and the compressive strength. Therefore, this model is used in simulating data to investigate the effect of different fly ash characteristics and alkaline activator on the behaviour of the compressive strength.

4.4 Modelling the relationship between the alkaline activator and the compressive strength of the FBGM

The effect of the fly ash parameters (amorphous SiO$_2$, amorphous Al$_2$O$_3$ and median particle size) on the selection of the proportion of the alkaline activator was simulated, as shown in Figures 8, 9 and 10. The simulation used the developed ANN model for predicting the compressive strength of the FBGM for three levels of amorphous SiO$_2$, amorphous Al$_2$O$_3$ and median particle size and different dosage of alkaline activator. The simulation used the extent of the examined parameters in the experimental work regarding the fly ash characteristics and proportions of the alkaline activator.

In general, the result of the simulation shows that the variation in the predicted compressive strength was significantly influenced by variation in the fly ash characteristics particularly the amorphous SiO$_2$ content, amorphous Al$_2$O$_3$ and median particle size. The range of the predicted compressive strength, for example, declines significantly with increasing the SiO$_2$. The simulation also provided a useful method to examine the effect of different fly ash particle sizes at a specific amorphous SiO$_2$ content and amorphous Al$_2$O$_3$. The fly ash with a low median particle size (i.e., 3.6) shows a high range of the compressive strength as
compared to the coarser one. Figure 8 demonstrates the relationship between the total Na\textsubscript{2}O of the alkaline activator and the predicted compressive strength at different amorphous SiO\textsubscript{2} content and median particle size at three levels of the amorphous Al\textsubscript{2}O\textsubscript{3}. The results of the simulation show that the optimum content of the Na\textsubscript{2}O is significantly dependent on the amorphous SiO\textsubscript{2} content, amorphous Al\textsubscript{2}O\textsubscript{3} content and the median particle size of the fly ash.

Figure 9 shows the relationship between the liquid SiO\textsubscript{2} content used in the alkaline activator and the predicted compressive strength for fly ashes with different amorphous SiO\textsubscript{2} content, amorphous Al\textsubscript{2}O\textsubscript{3} and median particle size. The simulated data show that the amorphous SiO\textsubscript{2} content and amorphous Al\textsubscript{2}O\textsubscript{3} content of the fly ash governed the selection of the liquid SiO\textsubscript{2} content significantly. The median particle size also shows a remarkable effect on the optimization of the liquid SiO\textsubscript{2} content in the alkaline activator.

Finally, the combined effects of the total Na\textsubscript{2}O content and the liquid SiO\textsubscript{2} content on the compressive strength of the geopolymer mortar with respect to amorphous SiO\textsubscript{2} content and median particle size are shown in Figure 10. The simulation reveals that increasing the total Na\textsubscript{2}O content leads to a significant change in the optimum liquid SiO\textsubscript{2} content. The changing in the optimum liquid SiO\textsubscript{2} content was controlled significantly by the fly ash characteristics.

As a result, the developed ANN model can be used for predicting the compressive strength of the geopolymer mortar for different fly ash characteristics. Also, the results of the simulation can be employed as a preliminary guide to estimate the proportion of the alkaline activator required for a specific fly ash characteristics.
5. Conclusion

The influences of different fly ash characteristics and different alkaline activator contents on the compressive strength of the FBGM were evaluated. The FBGM specimens were cured at 70°C for 24 hours. The use of fly ashes from different sources exhibited different chemical reaction with alkaline activator. The compressive strength of the FBGM, in this study, was in the range 7.0 MPa to 67 MPa. Fly ashes with a high content of amorphous components (SiO$_2$, Al$_2$O$_3$, CaO and Fe$_2$O$_3$) and a low median particle size (> 17 µm) required a low dosage of alkaline activator in terms AL/FA, Na$_2$SiO$_3$/NaOH ratio and concentration of the NaOH to achieve the optimum compressive strength. In contrast, the optimum compressive strength of the FBGM that used fly ash with a low content of amorphous components and high median particle size required (< 17 µm) required a higher dosage of alkaline activator. The particle size distribution affects the extent of developing the compressive strength for the fly ashes with similar chemical composition. The artificial neural network shows high performance in modelling the factors that influence the compressive strength of the FBGM. The amorphous SiO$_2$ content, amorphous Al$_2$O$_3$ and the median particle size of the fly ash can be used as reactivity index of fly ash used for geopolymers.

Acknowledgements

The authors acknowledge the University of Wollongong, Australia for providing the support and facilities to implement the experimental work presented in this study. The authors thank the Ash Development Association Australia (ADAA) for their support in providing the fly ash used in this study. The authors also thank the technical support provided by Senior Technical Officers Richard Gasser, Ritchie Mclean and Alan Grant. The second Author acknowledges the Iraqi government for funding his scholarship.
References

[35] ACI, ACI-211.1: Standard practice for selection proportions for normal, heavy-weight, and mass concrete, American Concrete Institute, Detroit, USA, 1997.

Natural Pozzolan for Use in Concrete, American Standard for Testing Materials, United
States 2015.

[49] PQ Australia, PQ Australia Limited, 8/10 Riverside Rd, Chipping Norton NSW 2170,

[51] U. Rattanasak, P. Chindaprasirt, Influence of NaOH solution on the synthesis of fly ash

[53] P. Nath, P. Sarker, Effect of alkaline activator properties on the fly ash based
geopolymer concrete for ambient curing condition, In Concrete 2013: Proceedings of the
26th Biennial National Conference of the Concrete Institute Australia (2013).

[54] AS 1012.9: Methods of testing concrete-Compressive strength tests-Concrete, mortar
and grout specimens, Standards Australian International Ltd, Australia, 2014.

[56] P. R. Vora, U. V. Dave, Parametric studies on compressive strength of geopolymer

[64] P. Duxson, S. W. Mallicoat, G. C. Lukey, W. M. Kriven, J. S. J. van Deventer, The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-
based geopolymers, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

<table>
<thead>
<tr>
<th>Page</th>
<th>List of Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>670</td>
<td>Table 1. Major elemental composition of the fly ashes</td>
</tr>
<tr>
<td>671</td>
<td>Table 2. Main phases of the fly ash determined by XRD</td>
</tr>
<tr>
<td>672</td>
<td>Table 3. Details of the typical mix proportion of the geopolymer mortar</td>
</tr>
<tr>
<td>673</td>
<td>Table 4. Statistical evaluating of the ANN model</td>
</tr>
</tbody>
</table>
List of Figures

Fig 1. Full diffraction pattern of the crystalline phases of Eraring, Mt-Piper, Bays water, Gladstone and Collie fly ashes

Fig 2. Particles size distribution of the fly ash samples

Fig 3. Compressive strength of the fly ash based geopolymer mortar at different fly ash characteristics

Fig 4. Effect of AL/FA ash ratio on the compressive strength of geopolymer mortar mixed with different Na₂SiO₃/NaOH ratio and NaOH concentration for fly ashes (a) Eraring (ER), (b) Mt-Piper (MP), (c) Bayswater (BW), (d) Gladstone (GL) and (e) Collie (CL)

Fig 5. Architecture of the ANN

Fig 6. Prediction performance of the ANN model a: training set, b: validation set

Fig 7. Validation of the ANN model

Fig 8. Effect of the total Na₂O content on the predicted compressive strength at different amorphous SiO₂ content, various median particle size and varying levels of amorphous Al₂O₃

Fig 9. Effect of the liquid SiO₂ content on the predicted compressive strength at different amorphous SiO₂ content, various median particle size and varying levels of amorphous Al₂O₃

Fig 10. The effect of the liquid SiO₂ and the total Na₂O content on the predicted compressive of the FBGM at different SiO₂ content and median particle size of the fly ash
Table 1. Major elemental composition of the fly ashes

<table>
<thead>
<tr>
<th>Element</th>
<th>Eraring (ER) (%)</th>
<th>SD*</th>
<th>Mt-Piper (MP) (%)</th>
<th>SD</th>
<th>Bayswater (BW) (%)</th>
<th>SD</th>
<th>Gladstone (GL) (%)</th>
<th>SD</th>
<th>Collie (CL) (%)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>0.53</td>
<td>0.0040</td>
<td>0.14</td>
<td>0.0017</td>
<td>0.21</td>
<td>0.0037</td>
<td>0.97</td>
<td>0.0029</td>
<td>0.24</td>
<td>0.0039</td>
</tr>
<tr>
<td>MgO</td>
<td>0.34</td>
<td>0.0033</td>
<td>0.12</td>
<td>0.0040</td>
<td>0.26</td>
<td>0.0027</td>
<td>1.37</td>
<td>0.0043</td>
<td>0.59</td>
<td>0.0030</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>25.84</td>
<td>0.0339</td>
<td>25.80</td>
<td>0.0354</td>
<td>15.23</td>
<td>0.0187</td>
<td>26.22</td>
<td>0.0244</td>
<td>33.40</td>
<td>0.0293</td>
</tr>
<tr>
<td>SiO₂</td>
<td>62.89</td>
<td>0.0788</td>
<td>66.60</td>
<td>0.0362</td>
<td>77.20</td>
<td>0.0326</td>
<td>43.44</td>
<td>0.0252</td>
<td>52.67</td>
<td>0.0135</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.30</td>
<td>0.0036</td>
<td>0.10</td>
<td>0.0033</td>
<td>0.04</td>
<td>0.0021</td>
<td>1.26</td>
<td>0.0014</td>
<td>0.08</td>
<td>0.0015</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.16</td>
<td>0.0010</td>
<td>0.10</td>
<td>0.0011</td>
<td>0.10</td>
<td>0.0012</td>
<td>0.32</td>
<td>0.0032</td>
<td>0.04</td>
<td>0.0039</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.20</td>
<td>0.0031</td>
<td>2.70</td>
<td>0.0028</td>
<td>1.51</td>
<td>0.0028</td>
<td>0.49</td>
<td>0.0034</td>
<td>0.25</td>
<td>0.0036</td>
</tr>
<tr>
<td>CaO</td>
<td>2.32</td>
<td>0.0025</td>
<td>0.37</td>
<td>0.0040</td>
<td>0.62</td>
<td>0.0027</td>
<td>5.41</td>
<td>0.0008</td>
<td>0.96</td>
<td>0.0035</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.06</td>
<td>0.0038</td>
<td>1.05</td>
<td>0.0022</td>
<td>0.61</td>
<td>0.0022</td>
<td>1.45</td>
<td>0.0037</td>
<td>2.10</td>
<td>0.0035</td>
</tr>
<tr>
<td>MnO</td>
<td>0.07</td>
<td>0.0024</td>
<td>0.01</td>
<td>0.0026</td>
<td>0.04</td>
<td>0.0023</td>
<td>0.26</td>
<td>0.0030</td>
<td>0.15</td>
<td>0.0044</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.06</td>
<td>0.0018</td>
<td>0.94</td>
<td>0.0016</td>
<td>2.45</td>
<td>0.0023</td>
<td>17.42</td>
<td>0.0035</td>
<td>8.90</td>
<td>0.0027</td>
</tr>
<tr>
<td>LOI</td>
<td>1.74</td>
<td>0.0029</td>
<td>1.31</td>
<td>0.0013</td>
<td>0.72</td>
<td>0.0016</td>
<td>0.70</td>
<td>0.0021</td>
<td>0.43</td>
<td>0.0026</td>
</tr>
</tbody>
</table>

* The standard deviation of three samples
<table>
<thead>
<tr>
<th>Phase Type</th>
<th>Eraring (ER)</th>
<th>SD*</th>
<th>Mt-Piper (MP)</th>
<th>SD</th>
<th>Bayswater (BW)</th>
<th>SD</th>
<th>Gladstone (GL)</th>
<th>SD</th>
<th>Collie (CL)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz (%)</td>
<td>8.21</td>
<td>0.13</td>
<td>3.75</td>
<td>0.03</td>
<td>11.46</td>
<td>0.17</td>
<td>3.62</td>
<td>0.05</td>
<td>2.36</td>
<td>0.07</td>
</tr>
<tr>
<td>Mullite (%)</td>
<td>18.20</td>
<td>0.12</td>
<td>11.40</td>
<td>0.01</td>
<td>8.48</td>
<td>0.09</td>
<td>14.54</td>
<td>0.02</td>
<td>19.48</td>
<td>0.04</td>
</tr>
<tr>
<td>Hematite (%)</td>
<td>1.39</td>
<td>0.02</td>
<td>0.72</td>
<td>0.04</td>
<td>1.31</td>
<td>0.04</td>
<td>6.12</td>
<td>0.02</td>
<td>1.86</td>
<td>0.03</td>
</tr>
<tr>
<td>Amorphous (%)</td>
<td>72.19</td>
<td>0.07</td>
<td>84.13</td>
<td>0.03</td>
<td>78.75</td>
<td>0.08</td>
<td>75.72</td>
<td>0.10</td>
<td>76.30</td>
<td>0.04</td>
</tr>
</tbody>
</table>

* The standard deviation of three samples

Table 2. Main phases of the fly ash determined by XRD
Table 3. Details of the typical mix proportion of the geopolymer mortar

<table>
<thead>
<tr>
<th>Mix ID<sup>a</sup></th>
<th>Alkaline activator/ fly ash wt. ratio</th>
<th>Na<sub>2</sub>SiO<sub>3</sub>/NaOH wt. ratio</th>
<th>NaOH (mole/L)</th>
<th>NaOH solution (kg/m<sup>3</sup>)</th>
<th>Na<sub>2</sub>SiO<sub>3</sub><sup>b</sup> (kg/m<sup>3</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA4R1.5C12</td>
<td></td>
<td></td>
<td>12</td>
<td>83</td>
<td>124</td>
</tr>
<tr>
<td>FA4R1.5C14</td>
<td>1.5</td>
<td></td>
<td>14</td>
<td>83</td>
<td>124</td>
</tr>
<tr>
<td>FA4R1.5C16</td>
<td></td>
<td></td>
<td>16</td>
<td>83</td>
<td>124</td>
</tr>
<tr>
<td>FA4R2.0C12</td>
<td></td>
<td></td>
<td>12</td>
<td>69</td>
<td>139</td>
</tr>
<tr>
<td>FA4R2.0C14</td>
<td>0.4</td>
<td></td>
<td>14</td>
<td>69</td>
<td>139</td>
</tr>
<tr>
<td>FA4R2.0C16</td>
<td></td>
<td></td>
<td>16</td>
<td>69</td>
<td>139</td>
</tr>
<tr>
<td>FA4R2.5C12</td>
<td></td>
<td></td>
<td>12</td>
<td>59</td>
<td>149</td>
</tr>
<tr>
<td>FA4R2.5C14</td>
<td>2.5</td>
<td></td>
<td>14</td>
<td>59</td>
<td>149</td>
</tr>
<tr>
<td>FA4R2.5C16</td>
<td></td>
<td></td>
<td>16</td>
<td>59</td>
<td>149</td>
</tr>
<tr>
<td>FA5R1.5C12</td>
<td></td>
<td></td>
<td>12</td>
<td>104</td>
<td>155</td>
</tr>
<tr>
<td>FA5R1.5C14</td>
<td>1.5</td>
<td></td>
<td>14</td>
<td>104</td>
<td>155</td>
</tr>
<tr>
<td>FA5R1.5C16</td>
<td></td>
<td></td>
<td>16</td>
<td>104</td>
<td>155</td>
</tr>
<tr>
<td>FA5R2.0C12</td>
<td></td>
<td></td>
<td>12</td>
<td>87</td>
<td>173</td>
</tr>
<tr>
<td>FA5R2.0C14</td>
<td>0.5</td>
<td></td>
<td>14</td>
<td>87</td>
<td>173</td>
</tr>
<tr>
<td>FA5R2.0C16</td>
<td></td>
<td></td>
<td>16</td>
<td>87</td>
<td>173</td>
</tr>
<tr>
<td>FA5R2.5C12</td>
<td></td>
<td></td>
<td>12</td>
<td>74</td>
<td>186</td>
</tr>
<tr>
<td>FA5R2.5C14</td>
<td>2.5</td>
<td></td>
<td>14</td>
<td>74</td>
<td>186</td>
</tr>
<tr>
<td>FA5R2.5C16</td>
<td></td>
<td></td>
<td>16</td>
<td>74</td>
<td>186</td>
</tr>
<tr>
<td>FA6R1.5C12</td>
<td></td>
<td></td>
<td>12</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>FA6R1.5C14</td>
<td>1.5</td>
<td></td>
<td>14</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>FA6R1.5C16</td>
<td></td>
<td></td>
<td>16</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>FA6R2.0C12</td>
<td></td>
<td></td>
<td>12</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>FA6R2.0C14</td>
<td>0.6</td>
<td></td>
<td>14</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>FA6R2.0C16</td>
<td></td>
<td></td>
<td>16</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>FA6R2.5C12</td>
<td></td>
<td></td>
<td>12</td>
<td>86</td>
<td>216</td>
</tr>
<tr>
<td>FA6R2.5C14</td>
<td>2.5</td>
<td></td>
<td>14</td>
<td>86</td>
<td>216</td>
</tr>
<tr>
<td>FA6R2.5C16</td>
<td></td>
<td></td>
<td>16</td>
<td>86</td>
<td>216</td>
</tr>
<tr>
<td>FA7R1.5C12</td>
<td></td>
<td></td>
<td>12</td>
<td>145</td>
<td>217</td>
</tr>
<tr>
<td>FA7R1.5C14</td>
<td>1.5</td>
<td></td>
<td>14</td>
<td>145</td>
<td>217</td>
</tr>
<tr>
<td>FA7R1.5C16</td>
<td></td>
<td></td>
<td>16</td>
<td>146</td>
<td>217</td>
</tr>
<tr>
<td>FA7R2.0C12</td>
<td></td>
<td></td>
<td>12</td>
<td>121</td>
<td>243</td>
</tr>
<tr>
<td>FA7R2.0C14</td>
<td>0.7</td>
<td></td>
<td>14</td>
<td>121</td>
<td>243</td>
</tr>
<tr>
<td>FA7R2.0C16</td>
<td></td>
<td></td>
<td>16</td>
<td>121</td>
<td>243</td>
</tr>
<tr>
<td>FA7R2.5C12</td>
<td></td>
<td></td>
<td>12</td>
<td>104</td>
<td>260</td>
</tr>
<tr>
<td>FA7R2.5C14</td>
<td>2.5</td>
<td></td>
<td>14</td>
<td>104</td>
<td>260</td>
</tr>
<tr>
<td>FA7R2.5C16</td>
<td></td>
<td></td>
<td>16</td>
<td>104</td>
<td>260</td>
</tr>
</tbody>
</table>

^aThe FA refers to the fly ash source that was used in this study: ER, MP, BW, GL and CL.

^bThe Na₂SiO₃ in liquid form
<table>
<thead>
<tr>
<th>Measure</th>
<th>Training set</th>
<th>Validation set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Factor (R^2)</td>
<td>0.94</td>
<td>0.93</td>
</tr>
<tr>
<td>Root mean square error (RMSE)</td>
<td>3.63</td>
<td>3.93</td>
</tr>
<tr>
<td>Negative log-likelihood</td>
<td>390</td>
<td>100</td>
</tr>
<tr>
<td>Number of processed data</td>
<td>144</td>
<td>36</td>
</tr>
</tbody>
</table>
Fig 1. Full diffraction pattern of the crystalline phases of Eraring, Mt-Piper, Bays water, Gladstone and Collie fly ashes
Fig 2. Particles size distribution of the fly ash samples
Fig 3. Compressive strength of the fly ash based geopolymer mortar at different fly ash characteristics.
Average Compressive Strength (MPa)

- 55.0 ± 1.1
- 52.0 ± 0.9
- 49.0 ± 1.0
- 54.4 ± 0.6
- 58.0 ± 0.4
- 59.3 ± 0.8
- 49.0 ± 1.4
- 45.0 ± 0.5
- 41.0 ± 0.7
- 50.0 ± 0.9
- 54.0 ± 0.5
- 50.0 ± 1.2
- 38.0 ± 0.5
- 45.0 ± 0.7
- 48.0 ± 0.3
- 40.8 ± 1.2
- 50.0 ± 0.8
- 38.0 ± 0.9
- 46.6 ± 0.9
- 45.0 ± 0.7
- 51.0 ± 0.8
- 46.6 ± 1.6
- 61.0 ± 0.7
- 60.0 ± 0.6
- 36.0 ± 1.1
- 53.3 ± 0.3
- 54.0 ± 1.1
- 38.0 ± 1.0
- 46.0 ± 0.6
- 35.0 ± 1.1
Fig 4. Effect of AL/FA ash ratio on the compressive strength of geopolymer mortar mixed with different Na$_2$SiO$_3$/NaOH ratio and NaOH concentration for fly ashes (a) Eraring (ER), (b) Mt-Piper (MP), (c) Bayswater (BW), (d) Gladstone (GL) and (e) Collie (CL)
Fig 5. Architecture of the ANN
Fig 6. Prediction performance of the ANN model (a) training set, (b) validation set
Fig 7. Validation of the ANN model
Fig 8. Effect of the total Na₂O content on the predicted compressive strength at different amorphous SiO₂ content, various median particle size and varying levels of amorphous Al₂O₃.
Fig 9. Effect of the liquid SiO₂ content on the predicted compressive strength at different amorphous SiO₂ content, various median particle size and varying levels of amorphous Al₂O₃.
Fig 10. The effect of the liquid SiO$_2$ and the total Na$_2$O content on the predicted compressive strength of the FBGM at different SiO$_2$ content and median particle size of the fly ash.