Understanding the Role of ApoE Fragments in Alzheimer's Disease

Sonia Sanz Munoz  
*University of Wollongong, ssm886@uowmail.edu.au*

Brett Garner  
*University of Wollongong, brettg@uow.edu.au*

Lezanne Ooi  
*University of Wollongong, lezanne@uow.edu.au*

Publication Details  
Understanding the Role of ApoE Fragments in Alzheimer’s Disease

Abstract
Alzheimer’s disease (AD) is one of the most devastating neurodegenerative diseases. It has been known for decades that the APOE ɛ4 allele is the most significant genetic risk factor for late-onset AD and yet its precise role in the disease remains unclear. The APOE gene encodes apolipoprotein E (apoE), a 35 kDa glycoprotein highly expressed in the brain. There are three different isoforms: apoE3 is the most common allele in the population, whilst apoE2 decreases, and apoE4 increases AD risk. ApoE has numerous functions that affect neuronal and non-neuronal cells, thus how it contributes to disease onset and progression is hotly debated. The apoE4 isoform has been linked to the accumulation of both of the major pathological hallmarks of AD, amyloid plaques containing amyloid β peptides, and neurofibrillary tangles containing hyperphosphorylated tau protein, as well as other hallmarks of the disease, including inflammation and oxidative stress. Numerous studies have shown that apoE undergoes fragmentation in the human brain, and that the fragmentation pattern varies between isoforms. It was previously shown that apoE4 has neurotoxic functions, however recent data has also identified a neuroprotective role for the apoE N-terminal 25 kDa fragment, which is more prevalent in apoE3 individuals. The ability of the apoE 25 kDa fragment to promote neurite outgrowth was recently demonstrated and this suggests there is a potential loss of neuroprotection in apoE4 individuals in addition to the previously described gain of toxic function for specific apoE4 fragments. Here we review the enzymes proposed to be responsible for apoE fragmentation, the specific functions of different apoE fragments and their possible links with AD.

Disciplines
Medicine and Health Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/ihmri/1286
Understanding the role of apoE fragments in Alzheimer’s disease

Sonia Sanz Muñoz\textsuperscript{1,2}, Brett Garner\textsuperscript{1,2} and Lezanne Ooi\textsuperscript{1,2,*}

\textsuperscript{1}Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales 2522, Australia.

\textsuperscript{2}School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.

*Corresponding author: Email: lezanne@uow.edu.au; Telephone: +61242215865.
Abstract

Alzheimer’s disease (AD) is one of the most devastating neurodegenerative diseases. It has been known for decades that the APOE ε4 allele is the most significant genetic risk factor for late-onset AD and yet its precise role in the disease remains unclear. The APOE gene encodes apolipoprotein E (apoE), a 35 kDa glycoprotein highly expressed in the brain. There are three different isoforms: apoE3 is the most common allele in the population, whilst apoE2 decreases, and apoE4 increases AD risk. ApoE has numerous functions that affect neuronal and non-neuronal cells, thus how it contributes to disease onset and progression is hotly debated. The apoE4 isoform has been linked to the accumulation of both of the major hallmarks of AD, amyloid β (Aβ) plaques and neurofibrillary tangles (NFT), as well as other hallmarks of the disease, including inflammation and oxidative stress. Numerous studies have shown that apoE undergoes fragmentation in the human brain, and that the fragmentation pattern varies between isoforms. It was previously considered that apoE4 has neurotoxic functions, however recent data has identified a neuroprotective role for the apoE N-terminal 25 kDa fragment, which is more prevalent in apoE3 individuals. The ability of the apoE 25 kDa fragment to promote neurite outgrowth was recently demonstrated and this suggests there is a potential loss of neuroprotection in apoE4 individuals. Here we review the enzymes proposed to be responsible for apoE fragmentation, the specific functions of different apoE fragments and their possible links with AD.

Keywords

Apolipoprotein E; APOE; Alzheimer’s disease; neurodegeneration

Introduction

Apolipoprotein E (apoE) is a 35-kDa glycoprotein widely expressed in the human body that functions as a lipid transporter. Three different alleles of the APOE gene are present in the population: ε2, ε3 and ε4 , with frequencies of 6.4, 78.3 and 14.5%, respectively [1]. The ε4 allele is the major genetic risk factor of late-onset AD, whilst ε2 protects against the disease [2]. The mechanisms by which
APOE genotype influence AD onset and progression are incompletely understood. In the brain, apoE is an extracellular protein that is expressed primarily by astrocytes and taken up by neurons; however, under certain circumstances, apoE can also be expressed by microglia and neurons [3–5]. ApoE plays a major role in the transport of cholesterol and other lipids, participating in their redistribution to cells and facilitating their cellular uptake [5]. Moreover, in the brain apoE promotes Aβ clearance and neuronal signalling [6].

ApoE structure and isoforms

The domain structure of apoE is composed of two main domains, with the N- and C-terminus, linked by a hinge region (Fig. 1) [7, 8]. The N-terminal domain (residues 1-167) consists of a four alpha-helix bundle with a region enriched in arginine and lysine residues (135-150) that forms the LDL-receptor binding region. The C-terminal domain (residues 206-299) consists of amphipathic alpha-helices characteristic of the apolipoprotein family [9] and includes the lipid binding region (residues 244-272).

The three major alleles of the APOE gene found in the population give rise to six different genotypes: the homozygotes ε2/2, ε3/3 and ε4/4, and the heterozygotes ε2/3, ε2/4 and ε3/4. The difference between the three alleles is only two nucleotides, resulting in a protein change of two amino acids located in positions 112 and 158. As shown in Fig., apoE2 contains Cys112 and Cys158, apoE3 Cys112 and Arg158 and apoE4 Arg112 and Arg158 [10]. This amino acid change within the isoforms leads to differences in protein stability and interactions: by changing Cys112 into Arg112 in apoE4, the protein loses the ionic association between Glu109 and Arg61, leaving Arg61 free to interact with Glu255, and therefore creating an inter-domain interaction that reduces the lipid binding capacity of apoE4. In apoE3 and apoE4 there is a salt-bridge between Arg158 and Asparagine (Asp)154 that is lost in apoE2 with Cys158. In this case there is a salt-bridge between Asp154 and Arg150 that removes the positive side chain of Arg150 away from the LDL receptor binding region, affecting its binding capacity [11]. Due to these amino acid interactions, the protein stability differs, with the apoE4 isoform the least stable, followed by apoE3, while apoE2 is the most stable [12].
The \textit{APOE} \textit{e}4 allele is the major genetic risk factor of Alzheimer’s disease

The \textit{e}4 allele of the \textit{APOE} gene is the major genetic risk factor of late onset AD [2]. Carriers of one copy of the \textit{APOE} \textit{e}4 are three times more likely to develop AD, and those that are homozygous for the \textit{APOE} \textit{e}4 have a ten times increased risk of developing the disease [13]. Moreover, the age of onset is lower in the \textit{APOE} \textit{e}4 AD population [13]. The exact mechanism by which apoE influences AD remains unclear. Two of the major hallmarks of AD are the presence of extracellular deposition of A\textit{\beta}, forming amyloid plaques, and the intracellular presence of NFT, composed of aggregations of hyperphosphorylated tau protein [14–17].

One hypothesis linking apoE and AD involves a direct interaction between apoE and A\textit{\beta} peptides. ApoE has been identified within A\textit{\beta} plaques found in AD brains [18, 19], and other studies \textit{in vitro} have shown that the binding between apoE and A\textit{\beta} occurs between residues 13-17 of the A\textit{\beta} peptide with residues 144-148 of the N-terminal region and residues 244-248 of the C-terminal region of apoE [20, 21]. However, another \textit{in vitro} study detected minimal levels of interaction between apoE and A\textit{\beta} using the physiological levels found in cerebrospinal fluid (A\textit{\beta}:apoE molar ratio of 1:50-75), and proposed instead that apoE influences A\textit{\beta} metabolism via interaction with other transporters and receptors in cells [22]. ApoE knock-out studies in mice have shown that apoE is necessary to initiate and maintain A\textit{\beta} plaques [23, 24], while another study reported that apoE decreases the initiation of A\textit{\beta} fibril formation [25]. Moreover, apoE4 has been shown to be less effective in the inhibition of A\textit{\beta} fibril formation than apoE3 [25, 26]. Even if the exact mechanism by which apoE interacts with A\textit{\beta} remains to be clarified, microglia could be a central player in mediating this interaction. Microglia upregulate apoE under certain stress conditions, and they have been found surrounding A\textit{\beta} plaques [27]. Moreover, a recent study showed that apoE deficiency in mice reduced microglial activation around A\textit{\beta} plaques [28], which could result in a reduced ability to clear A\textit{\beta} plaques from the brain.

Another hypothesis linking apoE with AD is the direct interaction between apoE and tau protein. ApoE has been located in NFT mediated by tau [19]. Stable complexes between the microtubule-binding domain of tau and the LDL-receptor binding domain of apoE3, but not apoE4, have been
shown in vitro [29]. Overexpression of human apoE4 in neurons of transgenic mice caused an increase in tau hyperphosphorylation mediated by Erk activation [30, 31]. Moreover, apoE-deficient mice show increased hyperphosphorylation of tau than control mice [32], which might indicate that apoE3 protects tau from hyperphosphorylation. A more recent study using P301S tau mutant transgenic mice on an apoE knock-out or knock-in background showed that apoE4 expression caused more brain atrophy and neurodegeneration than apoE2 or apoE3, while apoE knock-out mice were protected from these changes [33]. This paper also identified a role for microglia in relation to tau, finding that the presence of the apoE4 background promoted microglial reactivity after lipopolysaccharide treatment [33].

ApoE is proteolytically cleaved in the brain

Apolipoprotein E has been shown to be proteolytically cleaved in the human brain generating truncated fragments. Unfortunately, not much is known regarding fragmentation of apoE2, and reports on the mechanism of generation and the function of the fragments are inconsistent in the literature. However it is evident that the apoE fragmentation pattern differs between the apoE3 and apoE4 isoforms [34], therefore understanding the function of the apoE fragments may be critical to understanding the role of apoE in AD. There is a 50% reduction of the 25 kDa N-terminal fragment in apoE4 compared to apoE3 brains [34]. When apoE3 or apoE4 was overexpressed specifically in either neurons or astrocytes, there was no fragmentation of apoE when overexpressed in astrocytes and in neurons there were fewer fragments of apoE4 than apoE3 [35]. This paper also identified that fragmentation was specific to brain regions highly affected in AD, such as the neocortex or hippocampus [35]. Although astrocytes are responsible for high levels of apoE expression, together this data suggests that the enzyme responsible for fragmentation is specifically expressed by neurons and that the fragments may have a role in disease onset or progression.

A number of enzymes have been proposed to be responsible for apoE fragmentation in different studies (Table 1). Enzymes belonging to either the aspartic or the serine protease family have taken most of the attention. The first study by Marques et al. showed that the serine protease, thrombin,
generated a 22 kDa N-terminal apoE fragment that was neurotoxic to primary neurons [36]. Moreover, the 22 kDa fragment from the apoE4 isoform showed higher toxicity than the apoE3 fragment [37, 38]. However, the apoE fragmentation pattern generated \textit{in vitro} by thrombin digestion is different from the pattern observed in the human brain [34]. Cathepsin D, an aspartic protease, was proposed by Zhou et al. to generate a 24 kDa apoE fragment that does correspond to the fragmentation observed in the brain [39]. The apoE fragments and cathepsin D also colocalize with the A\(\beta\) plaques and NFTs in post mortem human tissue [39]. A chymotrypsin-like serine protease was proposed by Harris et al., supported by studies using the specific enzyme inhibitor \(\alpha_1\)-antichymotrypsin [40, 41]. It was also shown that the C-terminal fragment of apoE4 formed with the chymotrypsin-like protease, comprising amino acids 272-299, induces neuropathology and behavioural deficits in transgenic mice overexpressing the fragment [40]. Most recently, high-temperature requirement serine protease A1 (HtrA1) was shown to induce fragmentation of apoE \textit{in vitro}, generating a fragment of 25 kDa, encompassing amino acids 1-195. HtrA1 was able to cleave apoE4 faster and to a greater extent than apoE3 [42]. Of particular interest, recombinant HtrA1 generated apoE3 fragments, particularly a stable 25 kDa fragment [42], that is very similar to the major apoE fragment detected in the human brain [34]. Moreover, inducing apoE expression in SK-N-SH neuroblastoma cells with all-trans retinoic acid led to the formation of a 25 kDa N-terminal apoE fragment, the formation of which was blocked by either \textit{HTRA1} knock-down or inhibition with the specific HtrA1 boronic acid inhibitor [43]. These last two papers together suggest that HtrA1 expressed by neurons could be responsible for generating the 25 kDa N-terminal apoE fragment.

\textbf{Table 1. Enzymes proposed to cleave apolipoprotein E.}

<table>
<thead>
<tr>
<th>Enzyme proposed</th>
<th>Fragment generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombin</td>
<td>ApoE 22 kDa N-terminal</td>
</tr>
<tr>
<td>Cathepsin D</td>
<td>ApoE 24 kDa N-terminal</td>
</tr>
</tbody>
</table>
Some studies have shown a brain homogenate pattern composed of one fragment detected at ~23-25 kDa and a smaller fragment detected at ~10 kDa [44]. The hinge region of apoE (that connects the N-terminal and C-terminal regions) is highly exposed, thus it is a likely potential target of enzyme cleavage. Moreover, apoE4 has been shown to form a molten globule, in which the N-terminal region is more open, and therefore more accessible to be cleaved by enzymes [45]. Predicted cleavage sites for cathepsin D, chymotrypsin-like protease and HtrA1 are located throughout the amino acid sequence of the protein, and specifically in the hinge region. These data also support the pattern seen in the human brain, as the predicted molecular weight of the N-terminal domain is ~24 kDa and the C-terminal domain is ~10 kDa. Small variations in apoE molecular weight in different studies could be due to a carbohydrate molecule attached to Thr\textsuperscript{194} via O-linked glycosylation [46].

### Understanding the function of apoE fragments

The difference in the apoE fragmentation pattern observed in apoE3 and apoE4 brains leads us to question the biological roles of the different apoE fragments and whether they have a relationship with AD pathogenesis (Table 2). Specific apoE fragments have been directly linked with the formation of Aβ plaques or NFT or the initiation of neurodegeneration [35, 40, 47–49]. An 18 kDa N-terminal fragment (1-172 aa) of apoE4 was found within NFT of AD patients [50], however the presence of this fragment in cerebrospinal fluid or plasma did not correlate with AD or APOE genotype [51]. Huang et al. found a different fragment, 1-271 aa of apoE4, to be part of NFT-like inclusions in neuronal cells [48]. Moreover, there was reduced truncation of apoE3 compared to apoE4 and the inclusions did not occur in non-neuronal cells [48]. The same group generated a transgenic mouse overexpressing the fragment 1-271 of apoE4. The mice that expressed high levels of the fragment died at 2-4 months of age, showing AD-like neurodegeneration in the cortex and
hippocampus. Meanwhile, the mice that expressed lower levels of the fragment showed impaired learning and memory at 6-7 months of age [40]. Transgenic mice hAPP<sub>FAD</sub> [52] overexpressing apoE3 or apoE4 showed a decrease in Aβ deposition and increase of Aβ clearance compared to mice that did not overexpress human apoE. However, the overexpression of the apoE4 1-271 fragment resulted in lower binding to Aβ peptides than apoE3 or apoE4, suggesting there was a decrease in Aβ clearance and an increase in Aβ deposition [53]. A similar fragment size was also tested in Neuro-2a mouse neuroblastoma cells, showing that the 1-272 apoE4 fragment (including both LDL-receptor binding and lipid binding regions) induced neurotoxicity and mitochondrial dysfunction, whereas the 1-240 fragment of apoE4 (containing only the LDL-receptor binding region) or full-length apoE4 did not [54]. However, the 214-272 fragment of apoE4 (containing only the lipid-binding region) did not induce neurotoxicity; this data therefore suggests a requirement for both regions of apoE4 to cause mitochondrial dysfunction and neurotoxicity [54].

Other research groups have used mimetic peptides to address the function of specific fragments. The apoE fragment 141-155 was shown to cause specific degeneration of neurites in embryonic chick sympathetic neurons [55], whereas a shorter fragment, apoE 141-149, showed inhibition in proliferation and cytotoxicity in IL2-dependent T lymphocytes [56]. Another peptide, apoE 133-149, corresponding with the LDL-receptor binding region, was shown to be responsible for reducing inflammation after injury. The peptide was able to mimic the effects of the full-length protein, suppressing microglial activation and release of tumor necrosis factor-α and nitric oxide after lipopolysachharide administration in BV2 mouse microglial cells [57, 58]. The same 133-149 apoE peptide showed a neuroprotective function after exposure to N-methyl-D-aspartate, suppressing cell death and calcium influx in primary neuronal-glia mixed cultures from brain cortices of fetal rats [59]. From the same group, the peptide was studied in mouse models of other disease models, including multiple sclerosis and post-ischemia necrosis and also led to an improvement after administration of the 133-149 apoE peptide [60, 61]. Another group used the same peptide apoE 133-149 to understand its interaction with neuronal nicotinic acetylcholine receptors (nAChRs) [62–64]. There was a complete inhibition of acetylcholine-evoked responses in rat hippocampal slices when the peptide was
added. Furthermore, the same effect was seen when using the shorter peptide apoE 141-148, but not with 133-140, demonstrating that the interaction with nAChR is mediated by the arginine-rich domain [64]. Further studies in Xenopus laevis oocytes showed that the interaction of the apoE 133-149 peptide, or the shorter 141-148, disrupted nAChR signaling by blocking the α7 nAChRs [62, 63].

Isoform-specific proteolysis has been identified in a number of different studies, showing higher levels of fragmentation of apoE4 compared to apoE3. A study in Neuro2a mouse neuroblastoma cells identified an intracellular apoE C-terminal 13 kDa fragment following transfection with the human apoE3 or apoE4. This fragment, that was highly expressed in apoE4-transfected cells, inhibited the formation of Aβ fibrils and stabilized the formation of Aβ hexamers in vitro [65]. Other studies have focused on the role of different N-terminal apoE4 fragments ranging from 17 to 22 kDa. Love et al. suggested the extracellular proteases collagenase and matrix metalloprotease-9 produce a 17 kDa apoE 1-151 fragment and in the apoE4 background the fragment traffics to the nucleus of BV2 mouse microglial cells increasing cell death [49]. Dafnis et al. showed in the SK-N-SH human neuroblastoma cell line that the 19 kDa N-terminal fragment of apoE4 (apoE 1-165) stimulated the intracellular accumulation of Aβ42, generating ROS, but this effect was absent with apoE3 or with the 21 kDa fragment (apoE 1-185) [66, 67]. However, the 1-185 fragment of apoE4 promotes matrix metalloprotease 9 / tissue inhibitor of metalloprotease 1 (MMP-9/TIMP1), induced by expression of IL-1β in human neuroblastoma SK-N-SH cells and astrocytoma cells SW-1783 cells [68]. The 22 kDa fragment proposed to be generated by thrombin cleavage exhibited neurotoxicity from apoE4 but not when generated from apoE3 in primary neurons [36]. The same fragment was studied in embryonic chick sympathetic ganglia and embryonic rat hippocampus tissue showing that the fragment generated an increase in intracellular calcium and the neurotoxic function of the apoE4 fragment was mediated through the heparan sulfate proteoglycan-LDL receptor-related protein complex [37, 38]. We recently identified that the 25 kDa fragment generated by HtrA1 cleavage in the apoE3 background of SK-N-SH human neuroblastoma cells was stable and induced neuritogenesis [43]. This suggests that the 25 kDa apoE fragment may also promote neurite outgrowth in vivo. Thus, the reduction of this 25 kDa N-terminal fragment in apoE4 subjects could contribute to a reduction in neuritogenesis, in addition to
the potential neurotoxic effects previously proposed for the apoE4 C-terminal fragments along with other apoE peptides (Table 2).

Table 2. Proposed functions of apolipoprotein E fragments in cell and animal models related to AD and differences in apoE isoforms.

<table>
<thead>
<tr>
<th>ApoE fragment studied</th>
<th>Function of the peptide</th>
<th>Model of study</th>
<th>Differences within apoE isoforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crutcher et al., 1994 [55]</td>
<td>ApoE 141-155</td>
<td>Causes neurite degeneration</td>
<td>Embryonic chick sympathetic ganglia in vitro</td>
</tr>
<tr>
<td>Clay et al., 1995 [56]</td>
<td>ApoE 141-149</td>
<td>Exhibits cytotoxicity</td>
<td>IL2-dependent T lymphocytes</td>
</tr>
<tr>
<td>Marques et al., 1996 [36]</td>
<td>ApoE 22 kDa N-terminal</td>
<td>Exhibits cytotoxicity, increased in apoE4 background compared to apoE3</td>
<td>Primary neurons</td>
</tr>
<tr>
<td>Tolar et al., 1997 [37]</td>
<td>ApoE 22 kDa N-terminal</td>
<td>The neurotoxic function of the fragment is receptor-mediated</td>
<td>Embryonic chick sympathetic ganglia in vitro and embryonic rat hippocampal tissue</td>
</tr>
<tr>
<td>Tolar et al., 1999 [38]</td>
<td>ApoE 22 kDa N-terminal</td>
<td>Induces calcium influx and neurotoxicity involving cell surface receptors</td>
<td>Embryonic chick sympathetic ganglia in vitro and embryonic rat hippocampal tissue</td>
</tr>
<tr>
<td>Huang et al., 2001 [48]</td>
<td>ApoE 1-271 N-terminal</td>
<td>Induces NFT-like inclusion in neuronal cells</td>
<td>Neuro-2a mouse neuroblastoma cells</td>
</tr>
<tr>
<td>Laskowitz et al., 2001 [57]</td>
<td>ApoE 133-149</td>
<td>Suppresses microglial activation and release of TNFα and NO</td>
<td>BV2 mouse microglia cells</td>
</tr>
<tr>
<td>Aono et al., 2003 [59]</td>
<td>ApoE 133-149</td>
<td>Suppresses neuronal cell death and calcium influx associated with N-methyl-D-aspartate</td>
<td>Primary neuronal-glial cells</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>---------------------------------------------------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Harris et al., 2003 [40]</td>
<td>ApoE 1-271 N-terminal</td>
<td>Causes AD-like neurodegeneration and behavioural deficits</td>
<td>Transgenic mice C57BL6/J overexpressing apoE 1-271</td>
</tr>
<tr>
<td>Lynch et al., 2003 [58]</td>
<td>ApoE 133-149</td>
<td>Suppresses inflammatory response after LPS administration</td>
<td>Wild-type mice C57BL6/J</td>
</tr>
<tr>
<td>Klein and Yakel, 2004 [64]</td>
<td>ApoE 133-149 ApoE 141-148</td>
<td>Inhibit Ach-evoked responses in a dose-dependent manner</td>
<td>Rat hippocampal slices</td>
</tr>
<tr>
<td>Chang et al., 2005 [54]</td>
<td>ApoE 1-272 N-terminal</td>
<td>Exhibits neurotoxicity via mitochondrial dysfunction</td>
<td>Neuro-2a mouse neuroblastoma cells</td>
</tr>
<tr>
<td>Wellnitz et al., 2005 [65]</td>
<td>ApoE 13 kDa C-terminal</td>
<td>Inhibits Aβ fibril formation and induces formation and stabilization of hexameric species of Aβ</td>
<td>Neuro-2a mouse neuroblastoma cells</td>
</tr>
<tr>
<td>Gay et al., 2006, 2007 [62, 63]</td>
<td>ApoE 133-149 ApoE 141-148</td>
<td>Block α7 nAChRs disrupting nAChR signalling</td>
<td>Xenopus laevis oocytes</td>
</tr>
<tr>
<td>Dafnis et al., 2010, 2016 [66, 67]</td>
<td>ApoE 1-165 19 kDa and apoE 1-185 21 kDa N-terminal</td>
<td>ApoE 1-165 stimulates the intracellular accumulation of Aβ42 that generates ROS, but apoE 1-185 do not</td>
<td>SK-N-SH human neuroblastoma</td>
</tr>
</tbody>
</table>
**Conclusions**

Since the *APOE* ε4 allele is the major genetic risk factor for AD, understanding its role in the development of AD is paramount. A direct link between apoE and the two major hallmarks of the disease, Aβ plaques and NFTs, has been identified but the precise roles that apoE plays in AD are still debated. ApoE is expressed in the brain mainly by astrocytes, however the evidence suggests that neurons rather than astrocytes express the enzymes leading to apoE fragmentation. A number of enzymes have been proposed to cleave apoE, whilst different fragments have been shown to have diverse effects on cells. The majority of studies have focused on the toxic impact of apoE4 (reviewed [69]) promoting neurotoxicity [36], mitochondrial dysfunction [54], NFT-like inclusions [48], neurodegeneration [40], cell death [49] or suppressing microglial activation [57] (Fig. 2). However, our recent study has found a protective function of the apoE 25 kDa fragment that is more prevalent in apoE3 than apoE4 brains [43]. This suggests that in addition to the neurotoxic effects of apoE4 fragments, a loss of neuroprotective apoE3 fragments may also contribute to neurodegeneration in

| **Bien-Ly et al., 2011 [53]** | ApoE 1-271 N-terminal | Decreases Aβ clearance and increases Aβ deposition | Transgenic mice J20 line of hAPP<sub>FAD</sub> and overexpressing apoE 1-271 | Full-length apoE3 and apoE4 expressing mice were able to stimulate Aβ clearance |
| **Dafnis et al., 2012 [68]** | ApoE 1-185 21 kDa N-terminal | Promotes MMP9/TIMP1 imbalance by inducing IL-1β and reducing IL-10 expression | SK-N-SH human neuroblastoma and SW-1783 human astrocytoma cells | Only apoE4 studied |
| **Love et al., 2017 [49]** | ApoE 1-151 17 kDa N-terminal | Trafficking to the nucleus and increase in cell death | BV2 mouse microglia cells | Effects not seen in apoE3 |
| **Muñoz et al., 2018 [43]** | ApoE 1-195 25 kDa N-terminal | Promotes neuritogenesis | SK-N-SH / SH-SY5Y human neuroblastoma cells | Only apoE3 studied |
AD. Future studies need to address the role of apoE fragments in astrocytes, microglia and other non-neuronal cell types and their precise role in AD pathogenesis. Very little is known about the fragmentation of apoE2 and this should be investigated in the future. Understanding the differences between apoE isoforms in different cell types will undoubtedly involve the use of induced pluripotent stem cells (iPSCs) that express physiological levels of endogenous genes, rather than relying on overexpression models. In particular the use of genome-edited isogenic lines [70] bearing apoE2/apoE3/apoE4 can delineate the specific effects of endogenous levels of apoE fragments from each genotype and their role in AD pathogenesis.

Figure legends

**Fig. 1 Structure of apolipoprotein E.** The N-terminal domain (1-167 aa) is connected by a hinge region with the C-terminal domain (206-299 aa). The LDL-receptor binding (135-150 aa) and the lipid binding (244-272) regions are shown. Positions 112 and 158 show the different amino acids that give rise to each of the apoE isoforms (ε2, ε3 and ε4).

**Fig. 2 Overview of apoE structure and the function assigned to each of the fragments studied.** Red fragment, apoE4; blue fragment, apoE3; black fragment, N/A.
Fig. 1
Fig. 2

[Diagram showing the LDL-receptor binding region and Lipid binding region with annotations indicating various effects such as cell death, Aβ42 accumulation, inflammation, cytotoxicity, neurotoxicity and calcium influx, neuritogenesis, NFT-like inclusions, neurodegeneration and behavioural deficits, mitochondrial dysfunction, Aβ clearance and Aβ deposition, increased response and disrupts nNOS signaling, microglia activation, neuronal cell death and inflammatory response, and inhibits Aβ fibril formation and stabilizes Aβ hexamers at specific amino acid positions.]


