Predictors for misreporting sodium and potassium intakes by overweight and obese participants in a food-based clinical trial: implications for practice

Vivienne Guan
University of Wollongong, xg885@uowmail.edu.au

Yasmine Probst
University of Wollongong, yasmine@uow.edu.au

Elizabeth Neale
University of Wollongong, elizan@uow.edu.au

Linda C. Tapsell
University of Wollongong, ltapsell@uow.edu.au

Publication Details
Predictors for misreporting sodium and potassium intakes by overweight and obese participants in a food-based clinical trial: implications for practice

Abstract
This study compared self-reported sodium and potassium intakes with urinary biomarkers and identified predictive factors. Secondary analysis of the 3-month intensive phase of the HealthTrack study with control (C), interdisciplinary intervention (I), intervention plus 30 g walnuts/day (IW) arms (n = 149). Dietary data was derived from diet history (DH) interviews and biomarker measures from urine. Urine-derived sodium (all, p = 0.000) and potassium (C: p = 0.011; I: p = 0.000; IW: p = 0.004) measures were significantly greater than self-reported intakes over the three months. Multiple linear regression showed body weight at baseline, body mass index (BMI) at baseline, and combined BMI at baseline and DH interviewer significantly negatively predicted the differences in sodium intake and excretion for C (β = −21.226, p = 0.016), I (β = −106.140, p = 0.002) and IW (F (9.530, 2df), p = 0.000), respectively. Where intakes of sodium and potassium are of interest in a trial, both reported intake and urinary biomarker measures are recommended.

Disciplines
Medicine and Health Sciences

Publication Details
Predictors for misreporting sodium and potassium intakes by overweight and obese participants in a food-based clinical trial: Implications for practice

Running title: Predictors for misreporting sodium and potassium intakes

Vivienne X Guan¹,², Yasmine C Probst¹,², Elizabeth P Neale¹,², Linda C Tapsell¹,²

1. School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
2. Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia

Corresponding author

Vivienne X Guan

Address: C/O University of Wollongong, Wollongong, New South Wales 2522, Australia
E-mail address: xg885@uowmail.edu.au
Tel: +61 2 4221 8169
Fax: +61 2 4221 4844
This study compared self-reported sodium and potassium intakes with urinary biomarkers and identified predictive factors. Secondary analysis of the 3-month intensive phase of the HealthTrack study with control (C), interdisciplinary intervention (I), intervention plus 30g walnuts/day (IW) arms (n=149). Dietary data was derived from diet history (DH) interviews and biomarker measures from urine. Urine-derived sodium (all, p=0.000) and potassium (C: p=0.011; I: p=0.000; IW: p=0.004) measures were significantly greater than self-reported intakes over the three months. Multiple linear regression showed body weight at baseline, body mass index (BMI) at baseline, and combined BMI and DH interviewer at baseline significantly negatively predicted the difference in sodium intake and excretion for C ($\beta = -21.226, p = 0.016$), I ($\beta = -106.140, p = 0.002$) and IW ($F (9.530, 2df), p=0.000$), respectively. Where intakes of sodium and potassium are of interest in a trial, both reported and urinary biomarker measures are recommended.
Introduction

Well-designed randomised controlled trials (RCTs) provide the highest level of evidence for developing dietary recommendations in nutrition(1). Where food-based trials are undertaken, the relationship between foods and nutrients needs to be considered to reflect the accuracy of reported food intakes. Moreover, the measurement of self-reported dietary intake data appears to be influenced by the dietary intervention itself. This intervention related bias may impact on the interpretation of the findings(2, 3). The aim of this study was to compare estimates of intake for dietary sodium and potassium with biomarker measures for urinary excretion of sodium and potassium. A secondary aim was to determine factors associated with differences between the measures in the context of a RCT for weight loss.

Methods

The present study is a secondary analysis of the 3-month intensive phase of the HealthTrack study (ANZCTR#12614000581662) for weight loss, involving three arms: a control (C), a novel interdisciplinary lifestyle intervention (I) and intervention plus 30g walnuts/day (IW). All participants provided written informed consent. Detailed study protocols (4) and primary results (5) are described elsewhere. Detailed methods of data handling are provided in the Supplementary Information. In brief, dietary intakes reflecting usual weekly food consumption over the previous three-month period was collected using a diet history (DH) interview at baseline and 3 months. The plausibility of self-reported dietary intake has been reported elsewhere(6). Overweight and obese participants (Body Mass Index (BMI) 25-40kg/m2) collected 24-hour urine samples at baseline and 3 months. The incomplete urine samples (<500mL or creatinine ratio outside 0.6-1.4) and participants taking diuretics were excluded. Urine-derived intakes were calculated. The usual urine-derived intake of sodium and potassium in the three month intensive phase of the HealthTrack was calculated using the
Multiple Source Method(7). Bland-Altman plots were developed for self-reported vs. urinary measures and multiple linear regression used to determine predictive factors.

Results

A total of 149 participants were included in this analysis (Supplementary Figure 1). The values of age and BMI were 44.2±7.6 years and 32.0±4.2 kg/m², respectively; and 69.1% of participants were female. Participant data by study arms is presented in Table 1.

Median urine-derived sodium and potassium intakes were significantly greater than median self-reported intakes in all arms at three months (sodium: C: p=0.000; I: p=0.000; IW: p=0.000; potassium: C: p=0.011; I: p=0.000; IW: p=0.004). Correlations between self-reported and urine-derived sodium measures were r = 0.213 (p=0.140) for C, r=0.146 (p=0.340) for I and r=0.298 (p=0.026) for IW. Correlations between potassium measures were r=0.188 (p=0.200) for C, r=0.597 (p=0.000) for I and r=0.350 (p=0.008) for IW.

Bland-Altman plots demonstrated participants in all the arms generally underreported their sodium and potassium intakes compared with urinary measures over the three months. The range between the upper and lower limits of agreements for sodium and potassium intakes was wide for all study arms. For sodium, in I the underestimation was greater at higher intakes (Figure 1A), whereas for IW underestimation was less at higher intakes (Figure 1B).

The differences in estimated potassium intakes during the three months between self-reported and urine-derived intakes were fairly consistent for all study arms.

The regression model established that body weight at baseline significantly predicted the difference in sodium intakes during three months for C (β=-21.226, t=-2.511, p=0.016), but BMI at baseline (β=-106.140, t=-3.258, P = 0.002) for I. BMI at baseline (β=-0.017, t=-3.654, p=0.001) and the DH interviewer (β=-0.019, t=-2.382, p=0.021) significantly predicted
the difference in sodium intakes between self-reported and urine-derived data at three months for IW. The model was significant, (F (9.530, 2df), p=0.000) explaining 26% variability of the difference between sodium measurements for IW. There were no identified predictors for the difference in potassium intakes between self-reported and urine-derived data for all arms.

Discussion

The present analysis was aimed to determine the specific observed bias related to intakes of sodium and potassium. As both sodium and potassium are fairly ubiquitous in the food supply, it was expected that participants in all study arms underreported intakes. The finding for sodium intakes are consistent with other research (3), but in this study, the under-reporting of potassium intakes compared to biomarker values was not anticipated (3). This discrepancy may be attributed to differences in dietary advice in the intervention arms, focused on reduced sodium intakes (3), versus energy reductions in the HealthTrack study overall. Additionally, while potassium is mainly sourced from consumed foods, sodium is also added to foods, particularly for processed and convenience foods. The results also suggested that the intra-individual variances of urine-derived sodium intake were greater than those for potassium intake. Thus a greater underreporting of sodium from DH interviews compared to potassium is likely. This aligns with literature previously demonstrating the challenges in estimation of sodium intake (8). It confirms that biomarkers and/or additional dietary assessment tools may be required to strengthen the quality of data in food-based RCTs if there is a concurrent interest in nutrients such as sodium and potassium.

The findings of this study also confirm that dietary interventions themselves may influence accurate assessment of dietary intake data (2, 3), particularly using DH interviews. One of the main activities of individualised dietary advice provided by dietitians is goal setting(9), and in this case losing weight was the primary goal. Anecdotal evidence suggests that those who
did not achieve their weight loss goals required dietitians to ask more probing questions during the DH interviews. Additionally, the proportions of female and overweight and obese participants were high in the present sample, who tended to misreport dietary intake(10). Thus, participants may be more conscious of their body weights measurements, which in turn may influence their dietary intake reporting.

In conclusion, dietary advice needs to be provided in terms of foods but reporting of food intake is inaccurate, especially with respect to sodium which can be added to food. Where intakes of sodium and potassium are of interest in a trial, both reported measures and urinary biomarkers are required to identify reported food sources, enhance advice provision and to ensure the accuracy of nutrient intake estimates.

Acknowledgements
The authors would like to thank all the participants and the HealthTrack study team.

Conflict of Interest Disclosure
No potential conflict of interest was reported by the authors.

Funding
The HealthTrack study was funded by the Illawarra Health and Medical Research Institute and California Walnut Commission. The funding bodies had no involvement in the data analysis, data interpretation, or writing of the manuscript.

References

Figure legends
Figure 1A: Bland-Altman plot for assessing bias between self-reported dietary intake and urine derived intake for sodium intake for intervention arm during 3 months of intensive phase of the HealthTrack study (secondary analysis cohort)

Figure 1B: Bland-Altman plot for assessing bias between self-reported dietary intake and urine derived intake for Log10 value of sodium intake for intervention + walnut arm during 3 months of intensive phase of the HealthTrack study (secondary analysis cohort)
Table 1: Demographic characteristics, dietary nutrient intakes and biomarkers by arms during 3 months of intensive phase of the HealthTrack study (secondary analysis cohort)

<table>
<thead>
<tr>
<th></th>
<th>Control (n=48)</th>
<th>Intervention (n=45)</th>
<th>Intervention + Walnuts (n=56)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>44.5±7.3</td>
<td>45.8±6.5</td>
<td>42.8±8.5</td>
<td>0.128²</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td>0.893³</td>
</tr>
<tr>
<td>Male</td>
<td>16 (33.3)</td>
<td>13 (28.9)</td>
<td>17 (30.4)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>32 (66.7)</td>
<td>32 (71.1)</td>
<td>39 (69.6)</td>
<td></td>
</tr>
<tr>
<td>Levels of education</td>
<td></td>
<td></td>
<td></td>
<td>0.118³</td>
</tr>
<tr>
<td>No school certificate or other qualifications</td>
<td>3 (6.3)</td>
<td>2 (4.4)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>School or intermediate certificate (or equivalent)</td>
<td>0 (0)</td>
<td>5 (11.1)</td>
<td>1 (1.8)</td>
<td></td>
</tr>
<tr>
<td>Higher school or leaving certificate (or equivalent)</td>
<td>3 (6.3)</td>
<td>2 (4.4)</td>
<td>4 (7.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 1</td>
<td>Group 2</td>
<td>Group 3</td>
<td>p</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Trade/apprenticeship (e.g. hairdresser, chef)</td>
<td>4 (8.3)</td>
<td>5 (11.1)</td>
<td>3 (5.4)</td>
<td></td>
</tr>
<tr>
<td>Certificate/diploma (e.g. child care, technician)</td>
<td>13 (27.1)</td>
<td>6 (13.3)</td>
<td>18 (32.1)</td>
<td></td>
</tr>
<tr>
<td>University degree</td>
<td>10 (20.8)</td>
<td>11 (24.4)</td>
<td>20 (35.7)</td>
<td></td>
</tr>
<tr>
<td>Post graduate degree</td>
<td>15 (31.3)</td>
<td>14 (31.3)</td>
<td>10 (17.9)</td>
<td></td>
</tr>
</tbody>
</table>

Body weight (kg)¹

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>At baseline</td>
<td>90.4±16.8</td>
<td>91.0±15.9</td>
<td>90.2±15.7</td>
<td>0.963<sup>2</sup></td>
</tr>
<tr>
<td>At 3 months</td>
<td>89.1±16.7</td>
<td>87.8±15.8</td>
<td>87.4±15.0</td>
<td>0.848<sup>2</sup></td>
</tr>
</tbody>
</table>

BMI (kg/m²)¹

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>At baseline</td>
<td>32.3±4.2</td>
<td>32.1±4.1</td>
<td>31.8±4.3</td>
<td>0.888<sup>2</sup></td>
</tr>
<tr>
<td>At 3 months</td>
<td>31.8±4.2</td>
<td>30.9±4.3</td>
<td>30.9±4.3</td>
<td>0.515<sup>2</sup></td>
</tr>
</tbody>
</table>

Waist circumference (cm)¹

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>At baseline</td>
<td>104.0±13.6</td>
<td>102.8±11.1</td>
<td>102.3±12.2</td>
<td>0.776<sup>2</sup></td>
</tr>
<tr>
<td>At 3 months</td>
<td>101.3±14.0</td>
<td>99.2±12.5</td>
<td>98.2±11.9</td>
<td>0.466<sup>2</sup></td>
</tr>
</tbody>
</table>

Energy intake (kJ/d)⁴
<table>
<thead>
<tr>
<th></th>
<th>At baseline</th>
<th>During 3 months</th>
<th>Intra-individual variance (mg/d)</th>
<th>3 months (mg/d) (^{4, 6})</th>
<th>Urinary potassium excretion (mg/d) (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated energy requirement (kJ/d)</td>
<td>8612.4 (7152.4 – 11021.7)</td>
<td>7337.4 (6660.9 – 8972.0)</td>
<td>2008.6 (1557.7 – 2754.1)</td>
<td>3792.4 (3125.3 – 4666.6)</td>
<td>8612.4 (7152.4 – 11021.7)</td>
</tr>
<tr>
<td>Dietary sodium intake (mg/d)</td>
<td>9165.0 (7820.4 – 11636.6)</td>
<td>6635.6 (5933.0 – 7614.3)</td>
<td>2587.6 (1990.2 – 3014.4)</td>
<td>3821.0 (3304.7 – 4569.9)</td>
<td>9165.0 (7820.4 – 11636.6)</td>
</tr>
<tr>
<td></td>
<td>9208.7 (7337.7 – 10720.4)</td>
<td>7252.5 (6310.4 – 8821.1)</td>
<td>2634.9 (1964.5 – 3200.3)</td>
<td>3684.1 (3077.7 – 4317.0)</td>
<td>9208.7 (7337.7 – 10720.4)</td>
</tr>
<tr>
<td></td>
<td>0.510 (^5)</td>
<td>0.014 (^5)</td>
<td>0.120 (^5)</td>
<td>0.464 (^5)</td>
<td>0.946 (^5)</td>
</tr>
<tr>
<td>Dietary potassium intake (mg/d)</td>
<td>8229.7 (7243.3 – 9600.4)</td>
<td>8285.4 (7479.7 – 9446.5)</td>
<td>2060.4 (1566.5 – 2464.2)</td>
<td>3608.5 (2979.9 – 4224.0)</td>
<td>8229.7 (7243.3 – 9600.4)</td>
</tr>
<tr>
<td></td>
<td>8276.8 (7544.0 – 9818.6)</td>
<td>7252.5 (6310.4 – 8821.1)</td>
<td>1717.7 (1393.6 – 2064.9)</td>
<td>3320.2 (2990.2 – 3741.6)</td>
<td>8276.8 (7544.0 – 9818.6)</td>
</tr>
<tr>
<td></td>
<td>0.014 (^5)</td>
<td>0.054 (^5)</td>
<td>0.336 (^5)</td>
<td>0.36 (^5)</td>
<td>0.819 (^5)</td>
</tr>
<tr>
<td>Urinary sodium excretion (mg/d)</td>
<td>3757.6 (2701.2 – 4981.1)</td>
<td>3450.0 (2527.3 – 4573.3)</td>
<td>3182.6 (2300.0 – 4366.0)</td>
<td>3759.0 (3142.2 – 4176.6)</td>
<td>3757.6 (2701.2 – 4981.1)</td>
</tr>
<tr>
<td></td>
<td>4011.6 (3162.5 – 5141.6)</td>
<td>3102.3 (2326.7 – 4787.2)</td>
<td>3182.6 (2300.0 – 4366.0)</td>
<td>3551.4 (2999.8 – 4186.0)</td>
<td>4011.6 (3162.5 – 5141.6)</td>
</tr>
<tr>
<td></td>
<td>0.223 (^5)</td>
<td>0.431 (^5)</td>
<td>0.431 (^5)</td>
<td>0.819 (^5)</td>
<td>0.223 (^5)</td>
</tr>
<tr>
<td>Urine-derived sodium intake during 3 months (mg/d)</td>
<td>3.60</td>
<td>1.37</td>
<td>0.34</td>
<td>-</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td>Urine-derived potassium intake (mg/d)<sup>4,6</sup></td>
<td>Intra-individual variance (mg/d)<sup>6</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At baseline</td>
<td>4153.2 (3013.6 – 5356.2)</td>
<td>3748.1 (3393.5 – 4533.1)</td>
<td>4001.3 (2773.1 – 5267.5)</td>
<td>0.588<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td>At 3 month</td>
<td>3570.8 (3152.9 – 4457.1)</td>
<td>3798.7 (3064.3 – 4406.5)</td>
<td>4077.3 (2139.5 – 3744.2)</td>
<td>0.779<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td>Urine-derived potassium intake</td>
<td>4015.3 (3415.2 – 4642.0)</td>
<td>3962.3 (3501.4 – 4388.4)</td>
<td>3803.6 (3322.8 – 4658.5)</td>
<td>0.858<sup>5</sup></td>
<td></td>
</tr>
</tbody>
</table>

1. Data presented as mean ± SD
2. Derived by one-way analysis of variance between arms
3. Derived by Pearson’s chi-square test for differences in portions between arms
4. Data presented as median (interquartile range)
5. Derived by Kruskal-Wallis H test between arms
6. Derived from 24-h urinary data calculated by the Multiple Source Method(7), by computing 24-h urinary data at baseline and at 3 months
Figure 1A: Bland-Altman plot for assessing bias between self-reported dietary intake and urine derived intake for sodium intake for intervention arm during 3 months of intensive phase of the HealthTrack study (secondary analysis cohort). Solid line represented the mean difference; dotted lines represented upper and lower limits of agreement (mean ± 1.96 SDs).
Figure 1B: Bland-Altman plot for assessing bias between self-reported dietary intake and urine derived intake for Log10 value of sodium intake for intervention + walnut arm during 3 months of intensive phase of the HealthTrack study (secondary analysis cohort).\(^1\)

\(^1\) Solid line represented the mean difference; dotted lines represented upper and lower limits of agreement (mean ± 1.96 SDs)
Supplementary information - Detailed methods

The HealthTrack study

The present study is a secondary analysis of the 3-month intensive phase of the HealthTrack study. Detailed study protocols (4) and primary results (5) are described elsewhere. In brief, the HealthTrack study was a 12-month randomised controlled trial (Australian and New Zealand Clinical Trial Registry, ANZCTRN 12614000581662). Ethics approval for the HealthTrack study was obtained from the University of Wollongong/Illawarra Shoalhaven Local Health District Human Research Ethics Committee (HE13/189). The aim of the trial was to test the effects of a novel interdisciplinary lifestyle intervention delivered by a dietitian compared with usual care delivered by a nurse. The primary outcomes was weight loss in overweight and obese adults. There were three arms involved in the study, a control arm providing usual care based on the Australian Guide to Health Eating (C) (11), an intervention arm receiving interdisciplinary intervention delivered by individualised dietary advice (I) and a third arm receiving the intervention plus 30g walnuts per day (IW). A computer-generated randomisation sequence was applied for randomization by an independent investigator. Participants and DH interviewers were blinded to the randomised groups. Individualised dietary advice in the intervention groups was achieved by personalised target requirements and participants’ usual food habits. Estimated energy requirements were calculated using the Mifflin-St Jeor equation (12). Recruited participants were aged 25-54 years, with a Body Mass Index (BMI) of 25-40kg/m^2, and residents of the Illawarra region. Participants who were unable to communicate in the English language, had an impaired ability to participate in the study, other medical conditions thought to limit survival to 1 year, suffered from immunodeficiency, reported illegal drug use or regular alcohol intake associated with alcoholism (>50 g/day), or difficulties or major impediments to participating in components of the study were excluded. Participants’ level of education was self-reported
during a screening survey. Body weight, height, waist circumference were measured by using standard procedures (4). BMI was also calculated.

Urine derived dietary intake

Participants were asked to collect 24-hour urine samples to assess sodium and potassium excretion at baseline and 3 months. Detailed instructions were provided by Accredited Practising Dietitians (APDs) and standard plastic containers were distributed to all participants. Participants were instructed to discard the first urine of the day and collect the rest over a 24 hour period. The collected samples were stored at 2°C to 8°C by Southern IML Pathology. The total volume of urine was measured, recorded and indirect ion-specific electrodes were used to determine sodium and potassium concentrations. The Jaffe reaction colorimetric method was applied to determine creatinine concentration (13). Participants who were taking diuretics and those with incomplete urine samples were excluded from analyses. Total urine volume of a sample less than 500 mL (14) and/or a creatinine ratio out of range of 0.6-1.4(15) was used to identify incomplete urine samples. The creatinine ratio was calculated as observed creatinine excretion divided by expected creatinine excretion, with expected creatinine excretion estimated using the Joossens & Geboers algorithm (expected creatinine excretion = body weight (kg) * 24 for males or 21 for females) (15). In the case that body weight was not collected, the sample was discarded if the creatinine of the sample was ≤6.0 mmol/day and the urine volume was <1000mL/day(16).

The overall recovery rates of urinary sodium and potassium are reported to be 86% and 77%, respectively (17, 18). Thus, the 24-hour urine-derived intakes of sodium and potassium were the result of 24-hour urinary sodium and potassium divided by 0.86 and 0.77, respectively.

Self-reported dietary intakes
Dietary intake data reflecting usual weekly food consumption at baseline and at three months was collected using a DH interview performed by APDs, conducted between May 2014 and July 2015. The dietary intake data collection protocol was validated previously (19). Participants were asked to recall their usual intake over the past three-month period at the three month time point. A food checklist was used to assess commonly omitted food items during the interviews. Collected food intake data was coded to FoodWorks Professional nutrient analysis software (Xyris, Springhill QLD, Australia, Version 7, 2007) supported by the AUSNUT 2007 food composition database (20). The plausibility of self-reported dietary intake has been examined and reported elsewhere(6).

Statistical methods

The usual urine-derived intake of sodium and potassium in the three month intensive phase of the HealthTrack were calculated by using the Multiple Source Method (7). To account for within-person variability of intakes, the 24-h urine-derived intakes of sodium and potassium at baseline and three months were computed. Statistical analyses were performed using IBM SPSS Statistics (version 21.0, IBM Corp, Chicago IL, 2012). Normally distributed data was presented as mean and standard deviation and as median and interquartile range for skewed data. To assess difference in demographic characteristics, dietary nutrient intakes and biomarkers between study arms, one-way analysis of variance was used for normally distributed data and Kruskal-Wallis H test for nonparametric data. The post-hoc test was used to identify where the differences were within arms. A Pearson’s chi-square test was applied to compare differences in the proportion of gender, levels of education and DH interviewers between arms. The Wilcoxon signed rank test was conducted to assess the difference in self-reported dietary intake and urine-derived intake of sodium and potassium between baseline and three months in each arm, and Spearman’s correlation was used to examine the relationship between self-reported dietary intake and urine-derived intake of sodium and
potassium. Bland-Altman plots (21) were used to investigate relative agreement between self-reported dietary intakes and urine-derived intakes by plotting the difference of intake of each participant against the mean of both measurements. The 95% limits of agreement in Bland-Altman plots were calculated by the mean difference ± 1.96 * SD. Stepwise multiple linear regression was used to identify the predictors of the difference between dietary and urinary sodium and potassium measures. Covariates included age (y), gender, levels of education, body weight at baseline (kg), BMI at baseline (kg/m²), waist circumference at baseline (cm), body weight change at 3 months (kg) and DH interviewers who conducted DH interview at 3 months. Normality, linearity, multicollinearity and homoscedasticity of the identified models were assessed to ensure there were no violations of assumptions. The distribution of differences between self-reported and urine-derived intakes of sodium and potassium were estimated prior to performing Bland-Altman plots and stepwise multiple linear regression analysis using the Shapiro-Wilk test. A logarithmic transformation of original data was conducted for differences that were not normally distributed for the Bland-Altman plots and stepwise multiple linear regression analysis. Statistical significance was determined as a two-sided P values less than 0.05.

References

Supplementary Figure 1: Participant flow of urinary collection and analyses in the HealthTrack study

Randomised
N=377

24-h urine collections completed
N=365 (97%)

Completed in C arm at baseline
N=122
Included in secondary analysis
N=48
Incomplete urine sample at baseline N=12
Incomplete urine sample at 3 months N=14
Taking medications during 3 months N=1

Completed in I arm at baseline
N=118
Included in secondary analysis
N=45
Incomplete urine sample at baseline N=16
Incomplete urine sample at 3 months N=14
Taking medications during 3 months N=1

Completed in IW arm at baseline
N=125
Included in secondary analysis
N=56
Incomplete urine sample at baseline N=17
Incomplete urine sample at 3 months N=16
Taking medications during 3 months N=3