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Abstract

Postnatal administration of phencyclidine (PCP) in rodents causes major brain dysfunction 

leading to severe disturbances in behavior lasting into adulthood. This model is routinely 

employed to model psychiatric disorders such as schizophrenia, as it reflects schizophrenia 

related brain disturbances including increased apoptosis, and disruptions to myelin and 

plasticity processes. Leucine-rich repeat and immunoglobulin domain-containing protein, 

Lingo-1, is a potent negative regulator of both axonal myelination and neurite extension. The 

Nogo receptor (NgR)/TNF receptor orphan Y (TROY) and/or p75 complex, With No Lysine 

(K) (WNK1) and Myelin transcription factor-1 (Myt1) are co-receptors or co-factors in Lingo-

1 signaling pathways in the brain. We have examined the developmental trajectory of these 

proteins in a neurodevelopmental model of schizophrenia using PCP to determine if Lingo-1

pathways are altered in the prefrontal cortex throughout different stages of life. Sprague 

Dawley rats were injected with PCP (10mg/kg) or saline on postnatal days (PN)7, 9 and 11 and 

sacrificed at PN12, 5 weeks or 14 weeks for measurement of Lingo-1 signaling proteins in the 

prefrontal cortex. Myt1 was decreased by PCP at PN12 (p=0.045), and at 14 weeks PCP 

increased Lingo-1 (p=0.037), TROY (p=0.017) and WNK1 (p=0.003) expression. This is the 

first study reporting an alteration in Lingo-1 signaling proteins in the rat prefrontal cortex both 

directly after PCP treatment in early development and in adulthood. We propose that Lingo-1

pathways may be negatively regulating myelination and neurite outgrowth following the 

administration of PCP, and that this may have implications for the cortical dysfunction 

observed in schizophrenia.

Keywords: schizophrenia; Lingo-1 signaling; neurodevelopment; phencyclidine animal 
model; prefrontal cortex
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Introduction

Phencyclidine, also known as PCP, is primarily a potent non-competitive N-methyl-D-aspartate 

(NMDA) receptor antagonist, but is also an agonist for the dopamine D2 receptors (1–3) and to a 

lesser extent binds opiate, nicotinic, and muscarinic cholinergic receptors (4–7). Administration of 

PCP to healthy human subjects induces hallucinations and delusions which are common symptoms 

of schizophrenia, while  PCP  administration to schizophrenia patients exacerbates their positive 

symptoms (8). Due to its effects on the aforementioned brain receptor targets, which are known to 

be implicated in the pathology of schizophrenia, PCP treatment in rodents has been used to model 

the glutamate hypofunction hypotheses and dopamine hyperfunction hypotheses of schizophrenia 

(2,9). Since the PCP-induced behaviors in rodents are translatable to the psychomimetic effects in 

both humans and other higher order primates, the administration of PCP is now one of the best 

known pharmacological models of schizophrenia (10–12). The use of PCP at postnatal days (PN)7, 

9 and 11 has consistently been shown to induce hyperlocomotion, reduce prepulse inhibition and 

impair social interactions in rodents, all of which are behaviors analogous to a number of 

schizophrenia symptoms observed in humans (13–15).

PCP administration in rodents is reported to cause major disturbances to neuronal cytoarchitecture 

and plasticity during neurodevelopment across the brain (16,17). PCP administration at PN7, 9 

and 11 has been repeatedly shown to result in an increase in neuronal degeneration in the frontal 

and cingulate cortex of rats (18,19). It is hypothesized that disruptions to neuronal structures and 

neuronal plasticity during this critical perinatal period may be directly responsible for deficits in 

brain development, and thus may contribute to the appearance of some of the schizophrenia-like 

symptoms seen in these rats in adulthood. Furthermore, similar to neurons, oligodendrocytes are 

extremely sensitive to the effects of PCP during development (17), and myelination has been 

shown to be significantly affected by PCP treatment both in utero and postnatally (16,17). We have 

previously shown in this rat model that myelin basic protein (MBP), a marker of mature 

oligodendrocytes and myelination, is significantly reduced in early development by perinatal 

administration of PCP (20). Considering the significant role of oligodendrocytes in axonal 

connectivity, conduction and myelination, disruption to these critical processes during early 

neurodevelopment can have significant negative consequences, impacting on normal brain 

development.
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Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1) pathways are 

responsible for regulating levels of myelination and neuronal growth in the brain, which are 

processes impaired in schizophrenia. Lingo-1 is expressed on both neurons and oligodendrocytes 

(21); it acts through a trimolecular complex both with the Nogo receptor (NgR) co-receptor and 

either the p75 neurotrophin receptor or its functional homolog, TNF receptor orphan Y (TROY) 

(22–24). Together this signaling complex activates RhoA leading to the inhibition of both neuronal 

growth and myelination related processes (21,25). Lingo-1 signaling through additional co-factors 

such as With No Lysine K (WNK1), Myelin transcription factor 1 (Myt1) and its homolog Myt1-

like (Myt1l) also lead to the regulation of myelination and neurite outgrowth (26–28).

Studies in the healthy adult postmortem human brain have shown that expression of cortical Lingo-

1 transcripts are among the highest in the brain (29). Considering the high degree of identity 

between human and mouse Lingo-1 orthologs (99.5%), and that Lingo-1 transcript levels were 

reported to be highly expressed in the cortical regions of both  rat and mouse brains in adulthood 

and throughout neurodevelopment (29,30), the perinatal PCP neurodevelopmental model seems 

ideal for studying the developmental trajectory of Lingo-1 expression in the context of 

schizophrenia.

We have recently provided the first evidence of an alteration in Lingo-1 signaling pathways in the 

postmortem dorsolateral prefrontal cortex (DLPFC) in schizophrenia (31). Bearing in mind the 

role of Lingo-1 signaling proteins in myelin related processes, and the fact that we found Lingo-1

protein expression to be significantly upregulated in the human DLPFC in schizophrenia (31), the 

present study specifically focuses on Lingo-1 signaling protein alterations in the prefrontal cortex 

of the rats in our model. Considering that the perinatal administration of PCP to rodents is a well-

established developmental animal model for schizophrenia, we sought to investigate the effects of 

perinatal PCP administration on levels of expression of Lingo-1 signaling proteins in the prefrontal 

cortex, a critical region for cognitive processing that is consistently reported to be disrupted in 

schizophrenia.
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Experimental

Ethical Statement

This study was approved by the Animal Ethics Committee at The University of Wollongong 

(AE13/01), and was conducted according to the guidelines of the Australian code of Practice for 

the Care and Use of Animals for Scientific Purposes, 8th Edition (2013), conforming to the 

International Guiding Principles for Biomedical Research Involving Animals. All efforts were 

made to minimize numbers of animals used and their suffering.

Animals

Timed pregnant Sprague Dawley rats were obtained at gestation day 14 from the Animal Resource 

Centre (Perth, WA, Australia). Rats were housed in environmentally controlled conditions at 22°C 

in a 12:12 hour light dark cycle with food and water access ad libitum. The day of birth was denoted 

postnatal day PN0 (Figure 1), and the pups were sexed on PN7 when the litters were subsequently 

randomly assigned to PCP or saline groups. The female pups remained in the litters until weaning, 

however only male rats were used in this study. The pups were weaned at PN24-28, and were 

housed in pairs according to treatment.

Experimental design

The pups received a single daily subcutaneous injection, administered between 08:00 h and 09:00 

h, on PN7, 9 and 11; of PCP (10 mg/kg/day; Sigma, Castle Hill, NSW, Australia) or saline (0.9% 

NaCl at a volume of 1 ml/kg) (Figure 1). The acute effects of PCP administration were validated 

by observing an immediate increase in locomotor activity and a lack of huddling for the few hours 

immediately following injections in the PCP treated pups compared to saline treated pups, as 

previously described (32). Six rats from each treatment group (PCP and control) were sacrificed 

by decapitation at PN12 days, or by CO2 asphyxiation at 5 weeks and 14 weeks of age, representing 

perinatal, adolescent and adult developmental stages respectively as described previously (33–35)

(Figure 1). These time-points were chosen specifically because they are important and distinct 

developmental periods in life (36) and are particularly relevant to the pathophysiology of 

schizophrenia. Brains were extracted and the prefrontal cortex was regionally dissected on ice with 

the aid of a standard rat brain atlas (37). Immediately following dissection samples were snap 
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frozen in liquid nitrogen and then stored at -80°C until use. The prefrontal cortex was specifically 

examined in this study for two reasons; firstly it is a region highly implicated in the schizophrenia 

pathophysiology (38), and secondly we have previously shown Lingo-1 and its signaling partners 

to be significantly altered in the prefrontal cortex of postmortem schizophrenia brains compared 

to controls (31).

Tissue was gently homogenized in lysis buffer (50 mM Tris pH 7.5, 50% glycerol), containing 

aprotinin and a protease inhibitor cocktail (Sigma). Protein concentrations were determined by a 

total of 10 μg protein from each sample was separated by electrophoresis on 4-12% pre-cast bis-

Tris polyacrylamide gels (Bio-Rad). All samples were run in duplicate or triplicate across 4-6 gels 

per protein, and were loaded in a randomized order with even numbers of PCP and control samples 

per time-point per gel to minimize the effects of gel-to-gel variability on the results. A pooled 

sample was used as a positive control and was loaded onto each gel within the experiment to 

account for any gel-to-gel variability which was calculated to be between 1.1 and 14.8%. Proteins 

were subsequently transferred to polyvinylidene fluoride membranes (Bio-Rad). The resultant 

membranes were blocked using 5% bovine serum albumin (BSA) for 1 h, followed by overnight 

incubation at 4°C with primary antibodies in 1% BSA for each of the proteins of interest. 

Following 3 x 5 min washes in phosphate buffered saline + 0.1% Tween 20 (PBST) membranes 

were incubated with horseradish conjugated secondary antibodies for 1 h at room temperature. The 

Gel Logic 2200 Pro (Carestream Molecular Imaging; Rochester, NY, USA) was used to visualize 

and quantify the bands of interest. Samples from each gel were then normalized to their respective 

- -actin 

expression levels did not differ between PCP and control groups (p>0.05) -actin 

expression levels were found to be affected by age (p<0.05). All experiments and quantifications 

were performed blind to treatment and age group.

Antibodies

The polycolonal antibodies for Lingo-1 (ab23631), NgR (ab26291), p75 (ab8874), TROY 

(ab12126), and Myt1 (ab82844), and monoclonal antibody for WNK1 (ab128858) were all 

purchased from Abcam (Melbourne VIC, Australia). Primary antibody dilution ranged from 1:200 

to 1:500. Secondary antibodies for rabbit (AP307P) and mouse (AP308P) were purchased from 
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Merck Millipore (Bayswater VIC, Australia) and were used at a concentration of 1:3000. The 

-actin (MAB1501) was also purchased from Merck Millipore and was 

used at a concentration of 1:5000. Antibody specificity has been previously demonstrated by the 

use of appropriate positive controls as documented in both the literature (33,39–44) and the 

antibody datasheets provided by Abcam.

Statistics

Statistical analyses were performed using SPSS (version 20.0, SPSS Inc. Chicago, USA). As all 

data were normally distributed (Kolmogorov–

implemented. Two-way multivariate analyses of variance (MANOVA) followed by Tukey’s HSD 

post-hoc tests, were performed to assess interactions between treatment (PCP or control) and time-

point (PN12, 5 weeks or 14 weeks). One-way analyses of variance (ANOVA) followed by Tukey’s 

HSD post-hoc tests, were used to assess for differences in protein expression across successive 

developmental time points within each treatment group; however since -actin was found to be 

altered across developmental time-points the effects of age on protein expression must be 

considered with caution. Unpaired two-tailed t-tests were also used at individual time-points to 

assess differences in protein expression between PCP and control groups. Since we have 

previously reported expression levels of the myelin related proteins MBP and myelin 

oligodendorocyte glycoprotein (MOG) in this cohort of rats (20), we performed Pearson’s 

correlations to examine the relationship between the expression of Lingo-1 and these myelination 

related proteins across developmental time-points in both control and PCP treated groups of rats. 

The significance for all statistical tests was set to p<0.05. All data are expressed as mean±SD.

Results

Protein detection

Lingo-1 and NgR were each detected as a single specific band at 83 kDa and 51 kDa respectively 

as has been previously reported (33,42,43) (Figure 2). In addition to the specific bands for p75 (75 

kDa), TROY (46 kDa), WNK1 (250 kDa) and Myt1 (135 kDa), a number of non-specific bands 

were also observed with the use of these antibodies. As mentioned above in, the specificity of these 
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antibodies has been previously demonstrated by the use of appropriate positive controls in the 

literature (33,39–44) and the suppliers’ antibody datasheets; therefore the single bands 

corresponding to the expected molecular weights were the bands quantified in this study (Figure 

2).

Levels of Lingo-1, and signaling partners TROY, WNK1 and Myt1 protein expression are altered 

in the prefrontal cortex of rats throughout development by perinatal administration of PCP

There was a significant age x treatment interaction on levels of Lingo-1 protein expression 

(F2,30=4.701; p=0.017). Post-hoc analyses revealed that this interaction occurs at 14 weeks of age, 

and that Lingo-1 levels are significantly increased by 14.5% in PCP treated rats compared to 

controls (p=0.037; Figure 2). While there was no significant main effect of treatment on protein 

expression (F1,30=0.255; p=0.617), there was a highly significant main effect of age on levels of 

Lingo-1 protein expression (F2,30=25.247; p<0.001). Within the control group, there was a 

significant 33% increase in Lingo-1 expression in the 5 week old rats compared to the PN12 rats 

(p<0.001; Figure 3), and a 24.5% decrease in Lingo-1 expression in the 14 week rats compared to 

the 5 week rats (p<0.001; Figure 3). Furthermore, in the PCP treated group, there was a significant 

36% increase in Lingo-1 expression in the 5 week group compared to PN12 (p=0.001; Figure 3), 

and a 20% increase in the 14 week group compared to PN12 (p=0.012; Figure 3).

There was also a significant age x treatment effect on the protein expression levels of the Lingo-1

signaling partners TROY (F2,30=8.274; p=0.001), WNK1 (F2,30=9.094; p=0.001) and Myt1 

(F2,30=5.594; p=0.009). In all three cases, there was an increase in protein expression in the adult 

PCP treated rats compared to the control group, despite the effect on TROY protein expression 

only being a minor increase of 7% (p=0.011; Figure 2), and the effect on Myt1 protein expression 

only equating to a borderline significant increase of 14.5% (p=0.056; Figure 2). The most 

significant age x treatment interaction on the three signaling partners was the 15% increase in 

WNK1 protein expression in the 14 week old PCP treated rats compared to controls (p=0.003;

Figure 2). There was also a very minor but significant 4.5% decrease in TROY expression in PCP 

treated rats compared to controls at 5 weeks of age (p=0.011; Figure 2), and a significant 9.5% 

decrease in Myt1 expression in PN12 PCP treated rats compared to controls (p=0.045; Figure 2). 

As with Lingo-1, there was no main effect of treatment on protein expression for TROY 

(F1,30=0.183; p=0.672), WNK1 (F1,30=2.417; p=0.130), or Myt1 (F1,30=0.063; p=0.803); however 
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in all three cases, there was a highly significant main effect of age on protein expression (TROY: 

F2,30=138.129; p<0.001, WNK1: F2,30=11.254; p<0.001, and Myt1: F2,30=25.047; p<0.001). Post-

hoc analyses revealed that for TROY, within both the control group and PCP treated group, these 

changes resulted in an increase in TROY expression in the 5 week group compared to the PN12 

group (control: +29%; p<0.001, PCP: +29.5%; p<0.001; Figure 3), and an increase in TROY 

expression in the 14 week group compared to the PN12 group (control: +22%; p<0.001, PCP: 

+37%; p<0.001; Figure 3). Additionally, there was a small but significant decrease in TROY 

expression in the 14 week control rats compared to the 5 week control rats (-5.5%; p=0.038; Figure 

3). With regard to WNK1 expression, there was a significant increase in the 5 week group 

compared to PN12 (control: +10%; p=0.031, PCP: +12%; p=0.009; Figure 3). There was also a 

significant decrease in WNK1 expression in the 14 week control rats compared to the 5 week 

control rats (-9.5%; p=0.022; Figure 3), and a significant increase in WNK1 expression in the 14 

week PCP treated rats compared to the PN12 PCP treated rats (+19%; p<0.001; Figure 3). Lastly, 

Myt1 expression levels were only found to be affected by age in the control rats. There was a 

highly significant decrease in Myt1 expression in the 14 week rats compared to the PN12 rats (-

30%; p<0.001; Figure 3) and in the 14 week rats compared to the 5 week rats (-23%; p<0.001;

Figure 3). There was no significant difference in in Myt1 protein expression observed across any 

Cortical levels of NgR and p75 proteins are unaltered by perinatal PCP treatment

There were no significant interactions between age and treatment on levels of NgR or p75 

(F2,30=0.147; p=0.864 and F2,30=0.928; p=0.406 respectively). Furthermore there were no main 

effects of treatment on levels of NgR (F1,30=3.242; p=0.082; Figure 2) or p75 (F1,30=0.034;

p=0.855; Figure 2)  protein expression in the prefrontal cortex of the treated rats. However, an 

extremely significant age effect was observed in relation to both NgR (F2,30=104.653; p<0.001) 

and p75 (F2,30=22.782; p<0.001) protein levels in the prefrontal cortex of the treated rats. Post-hoc 

analyses demonstrated that this age effect resulted in an immense increase in NgR expression 

levels in both control and PCP treated rats in both the 5 week old rats compared to the PN12 rats 

(control: +116%; p<0.001, PCP: +113.5%; p<0.001; Figure 3), and in the 14 week old rats 

compared to the PN12 rats (control: +100%; p<0.001, PCP: +101.5%; p<0.001; Figure 3). 

Alterations in p75 were still highly significant, although the magnitude of change was less than 
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that of NgR. In both the control and PCP groups, a significant increase in p75 protein expression 

was observed in the 14 week age group compared to the PN12 age group (control: +19.5%; 

p<0.001, PCP: +32.5%; p=0.003; Figure 3), as well as in the 14 week age group compared to the 

5 week age group (control: 21%; p<0.001, PCP: +25.5%; p=0.010; Figure 3).

The relationship between Lingo-1 protein expression and myelination related proteins MBP and 

MOG throughout neurodevelopment in control and PCP treated rats

Pearson’s correlations revealed that there were no significant relationships between levels of 

Lingo-1 protein expression and either of the myelin related proteins MBP or MOG in either control 

or PCP treated rats at PN12 and 5 weeks of age (Table 1). Furthermore, there was no significant 

correlation between Lingo-1 and MBP levels in either the 14 week old control or PCP treated rats 

(Table 1). However there was a strong significant negative correlation between Lingo-1 and MOG 

expression levels in the PCP treated rats at 14 weeks of age (Table 1).

Discussion

Postnatal administration of PCP in rodents causes major disturbances to neurobiological processes 

including neurite outgrowth and myelination, both of which are integral to the neurodevelopmental 

hypothesis for schizophrenia (45–47). Here we provide the first report of developmental alterations 

of the expression of Lingo-1 signaling proteins in the prefrontal cortex in a validated 

neurodevelopmental animal model of schizophrenia. We have shown that levels of Lingo-1, 

TROY and WNK1 proteins were significantly increased in the prefrontal cortex of rats treated 

perinatally with PCP in adulthood compared to their controls. Additionally, Myt1 was significantly 

decreased in juvenile PCP treated rats at PN12 compared to control rats. Despite these significant 

alterations to Lingo-1 signaling proteins, the co-receptors NgR and p75 were not found to be 

significantly altered by PCP treatment across any of the 3 tested developmental time-points. We 

have recently provided the first evidence of alterations of Lingo-1 signaling pathway proteins in 

the postmortem schizophrenia prefrontal cortex (31). Considering current literature, the results of 

the present study not only validate the PCP rodent model for use in the study of Lingo-1 signaling 

proteins in the context of schizophrenia, but also suggest that the PCP rodent model is a suitable 



Andrews et. al.
 

11
 

preclinical model to assess novel therapeutic agents targeting Lingo-1 signaling to potentially 

combat the dysregulation of myelination and neurite outgrowth seen in schizophrenia.

Perinatal PCP administration affects cortical expression of Lingo-1 signaling proteins at juvenile 

and adult stages of life

Perinatal PCP treatment was found to significantly increase levels of Lingo-1 protein expression 

in adult rats, a result that is in line with our previous finding of a significant increase of Lingo-1

protein expression in the DLPFC of postmortem schizophrenia brains compared to controls (31);

however Lingo-1 expression was not significantly altered in the earlier stages of rodent 

neurodevelopment by perinatal PCP administration. While no immediate effect of PCP treatment 

was reported for Lingo-1 expression at PN12, Myt1 protein expression was found to be 

significantly decreased in the prefrontal cortex of PCP treated rats at PN12. NMDA receptor 

blockade has previously been shown to cause an increase in MEK1 phosphorylation in cultured 

striatal rat neurons (52), and in rats treated with PCP (53). Considering that MEK1 can 

phosphorylate and inactivate Myt1 (54,55), it was not surprising to observe a significant decrease 

in Myt1 protein expression immediately following NMDA receptor antagonism by PCP treatment 

in the prefrontal cortex of our treated rats compared to controls. Furthermore, since Myt1 is known 

to play an essential role in the maturation of oligodendrocytes during development (48) this result 

is also in parallel with our previous reports of a decrease in the expression of MBP, a marker of 

mature oligodendrocytes and myelination, in the same region using the same drug administration 

paradigm (20).

Despite having previously reported an alteration of the mature oligodendrocyte and myelination 

marker MBP in the prefrontal cortex of juvenile PCP treated rats (20), it appears that the blockade 

of NMDA receptors by PCP early in neurodevelopment may only result in the dysregulation of 

Lingo-1 later in life, and thus may only affect the regulation of Lingo-1 myelin related processes 

in adulthood. This is supported by a significant negative correlation between Lingo-1 and MOG 

expression levels in the PCP treated 14 week old rats reported in this study, while no significant 

correlations were observed between Lingo-1 and either MBP or MOG at any other stage of 

development in control or PCP treated rats. It is possible that PCP induced Lingo-1 related 

disturbances early in life are masked by dysregulation of other myelin regulating proteins, such as

the receptor tyrosine-protein kinase ErbB4, a well-established receptor involved in positively 
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regulating myelination, notably during neurodevelopment. Previous studies by our research group 

using the same PCP animal model as that of the present study, have reported a significant decrease 

in levels of ErbB4 expression in the pr ), 

which persisted, although slightly attenuated, (34). These results 

in conjunction with those of the present study demonstrate that while ErbB4 was strongly altered 

by PCP treatment immediately after treatment and was sustained into adulthood, Lingo-1

dysfunction by PCP administration was only detectable later in life. Due to the high levels of 

plasticity occurring in this brain region in the early stages of neurodevelopment, it is possible that 

compensatory mechanisms may have masked alterations in Lingo-1 expression induced by PCP 

in the juvenile rats. However, in the later stages of life when neuron development is complete, 

Lingo-1 and a number of its co-receptors/co-signaling partners were significantly affected, as 

demonstrated by the results of the present study. In addition, the developmental expression profile 

of Lingo-1 protein throughout healthy brain development, as demonstrated in our control rats, 

showed an increase in Lingo-1 expression at 5 weeks compared to PN12, with Lingo-1 levels 

decreasing in adulthood and returning to levels close to those of juvenile rats (Figure 3). Similarly, 

in the PCP treated rats the levels of Lingo-1 were also elevated at 5 weeks compared to PN12, 

although to a lesser extent; however in contrast to the control rats, Lingo-1 levels remained high 

into adulthood. These results support our hypothesis that Lingo-1 pathway dysregulation is only 

detectable at the adult stage of life -actin loading control was found to be 

significantly affected by age in this study, these results must be considered with caution.

Levels of TROY expression were also found to be significantly increased in adult PCP treated rats 

compared to controls in the present study. TROY is widely expressed in adult neurons where it 

can substitute for p75 in the Lingo-1/NgR/p75 signaling complex in the presence of myelin 

associated inhibitors in p75 deficient neurons (24,58–60). Since p75 levels were found to be 

unaltered in the adult rats by perinatal PCP treatment in the present study, we would suspect that 

in this instance, TROY has substituted for p75 within the Lingo-1/NgR/p75 receptor complex on 

neurons in the adult PCP treated rats. Considering TROY and Lingo-1 are expressed together in 

certain subpopulations of neurons, in addition to reactive astrocytes, and macrophages/microglia, 

but not in oligodendrocytes (61,62), it could be hypothesized that the concurrent upregulation of 

these two proteins in the prefrontal cortex in adult rats following perinatal PCP administration are 

playing a role in negatively regulating neurite outgrowth in the prefrontal cortex of our adult PCP 
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treated rats. In support of this, dominant-negative forms of TROY, in addition to TROY knockout 

mice, have reduced levels of activated RhoA and enhanced neurite outgrowth in the presence of 

myelin inhibitors (24,58,63).

Lingo-1 has also been shown to directly bind to EGFR, negatively regulating the EGFR/PI3-K/Akt 

signaling pathway, where it has been found to regulate dopamine neuron survival, growth and 

function (64). It was found that all of these factors were improved following Lingo-1 antagonism, 

and that inhibiting Lingo-1 also increased both EGFR and phosphorylated Akt levels in the 

absence of myelin inhibitors promoting retinal cell survival (64,65). We hypothesize that the 

increased levels of Lingo-1 protein expression in the prefrontal cortex of PCP treated rats may be 

negatively regulating the EGFR/PI3K/Akt signaling pathway, whereby it would impede neuronal 

growth and survival. This hypothesis is supported by previous findings from our research group 

showing that phosphorylated levels of Akt were significantly decreased in the prefrontal cortex of 

adult PCP treated rats using the same treatment regime (34). Further to this, Myt1 has been reported 

to be inhibited and significantly downregulated by Akt phosphorylation (66). In the present study, 

Myt1 was found to be increased in the prefrontal cortex of adult PCP treated rats by the same 

magnitude as that of Lingo-1, despite not reaching statistical significance (p=0.056). Therefore, 

we suspect that a decrease in phosphorylation of Akt by Lingo-1 may reduce the negative 

regulation of Myt1 by Akt intracellularly, resulting in higher levels of Myt1 in the prefrontal cortex 

of our adult PCP treated rats. This is in line with our finding of a concurrent increase in both Lingo-

1 and Myt1 protein expression in the postmortem DLPFC of schizophrenia patients compared to 

controls (31), and is further supported by a study that has identified microduplications in the Myt1l

gene in 2% of childhood onset schizophrenia subjects from the largest cohort of very-early onset 

childhood onset schizophrenia subjects to date (67). Additionally, both Lingo-1 and Myt1 gene 

expression have been found to be increased when adult nerve cells were exposed to traumatic 

injuries, and in demyelinated lesions in rodent and human central nervous system injuries 

respectively (30,68), indicating that the concurrent upregulation of Lingo-1 (and potentially Myt1) 

observed in the present study may be playing a significant role in regulating neuronal survival and 

myelination processes in the prefrontal cortex of our PCP treated rats.

The final Lingo-1 signaling protein to be significantly altered by PCP administration in the present 

study was WNK1, a Lingo-1 binding partner shown to be co-localized with Lingo-1 in cortical 
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cultured neurons (28). WNK1 expression was found to be significantly increased in the prefrontal 

cortex of the adult PCP treated rats compared to control rats in our neurodevelopmental rat model. 

In support of this finding, WNK1 gene expression has been consistently reported to be upregulated 

in the prefrontal cortex of schizophrenia sufferers in genome-wide expression profiling studies 

(69,70), thus providing support for a dysregulation of WNK1 in schizophrenia. 

Cortical levels of the Lingo-1 co-receptors NgR and p75 were not significantly altered by PCP 

treatment at any of the three developmental time-points (Figure 2), this is in accordance with two 

previous studies showing that NgR mRNA expression is not altered following PCP treatment in 

rats (73), and that p75 protein expression is not altered by PCP treatment in cortical cultured 

neurons (74).

Limitations

Owing to the limited quantities of prefrontal cortex tissue obtained from these rats, it was not 

possible to perform any histological testing to examine the cellular locations (i.e. neurons vs.

oligodendrocytes) of Lingo-1 or its signaling partners to support our proposed hypotheses 

regarding the effect of Lingo-1 depending on its cellular location, or to examine the structural 

integrity of the myelin sheaths in this model (e.g. using transmission electron microscopy). Further 

studies will be necessary to better characterize these protein-protein interactions under the 

influence of PCP at a molecular level. -actin loading control was found to 

be significantly affected by age in this study, the results pertaining to protein expression alterations 

across developmental time-points must be considered with caution.

Conclusions

In summary, we report for the first time alterations in Lingo-1 signaling pathway proteins in the 

prefrontal cortex of rats from a neurodevelopmental PCP model of schizophrenia. We have 

shown an altered developmental trajectory of Lingo-1 and a number of its signaling partner 

proteins after PCP treatment, predominantly during the adult stage of life. Our results in concert 

with current literature validate the PCP rodent model for use in the study of Lingo-1 signaling 

proteins in the context of schizophrenia. Furthermore, due to the role of the many Lingo-1

pathways as a negative regulator of myelination and neurite outgrowth, and considering the 

implication of both of these central processes in cognitive performance, antagonists of Lingo-1
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may be potential candidates for novel therapeutic agents for the treatment of the cognitive 

dysfunction in schizophrenia. The present study demonstrates that the PCP rodent model is a 

suitable preclinical model to assess such novel therapeutic agents targeting Lingo-1 signaling 

pathways to potentially combat the dysregulation of myelination and neurite outgrowth resulting 

in the cognitive deficits seen in schizophrenia.
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Figure Legends 

Figure 1: Timeline of experimental procedures. Day of birth was denoted postnatal day (PN)0. 
Male rat pups received subcutaneous injections of phencyclidine (PCP; 10 mg/kg) or saline 
(0.9%, 1ml/kg) at PN7, 9 and 11. Rats were sacrificed and brains were collected for processing at 
PN12, 5 weeks of age, and 14 weeks of age, representing juvenile, adolescent and adult stages of 
life respectively. 

 

Figure 2: Relative levels of expression of Lingo-1 signaling proteins in the prefrontal cortex of 
rats at juvenile (postnatal day [PN] 12), adolescent (5 weeks) and adult (14 weeks) stages of life 
following perinatal administration of phencyclidine (PCP; 10 mg/kg) or saline (control; 1 ml/kg, 
0.9% NaCl) at PN 7, 9 and 11. Graphs depict levels of protein expression normalized to β-actin 
same lane loading controls from control (white bars) and PCP treated rats (black bars). 
Representative immunoblot bands for all proteins of interest and β-actin bands are depicted 
below; n=6 rats per treatment per time-point. #Statistical trend, *p<0.05, and **p<0.01. 

 

Figure 3: Developmental expression profile of Lingo-1, NgR, p75, TROY, WNK1 and Myt1 
proteins in the prefrontal cortex of control (saline) and phencyclidine (PCP) treated rats at PN12 
(light grey), 5 week (medium grey), and 14 week (dark grey) time-points (n=6 rats per time-
point). *p<0.05, **p<0.01, and ***p<0.001. 
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Abbreviations List 

Akt  protein kinase B (PKB) 
DLPFC  dorsolateral prefrontal cortex 
EGFR  epidermal growth factor receptor 
Lingo-1  leucine-rich repeat and immunoglobulin domain-containing protein 
MBP  myelin basic protein 
MEK1  mitogen activated protein kinase-1 
MOG  myelin oligodendrocyte glycoprotein 
Myt1  myelin transcription factor 1 
Myt1l  myelin transcription factor 1-like 
NgR  nogo receptor 
NMDAR N-methyl-D-aspartate receptor 
p75  p75 neurotrophin receptor 
PCP  phencyclidine 
PI3K  phosphatidylinositide 3-kinase 
PN  postnatal day 
RhoA  ras homolog gene family, member A 
TROY  tumor necrosis factor receptor super family, member 19 
WNK1  With No Lysine (K) 



Table 1: Pearson’s correlations for associations between levels of expression of Lingo-1 and 
myelin and oligodendrocyte related proteins - myelin basic protein (MBP) and myelin 
oligodendrocyte glycoprotein (MOG), in the prefrontal cortex of perinatal phencyclidine 
(PCP; 10 mg/kg) and saline treated rats at postnatal day (PN12), 5 weeks and 14 weeks. 
There was a significant negative correlation between Lingo-1 and MOG protein expression in 
PCP treated rats at 14 weeks (r=-0.885, p=0.019; highlighted in bold). 

 PN12 5 Weeks 14 Weeks 
Control PCP Control PCP Control PCP 

MBP r = 0.763 r = 0.728 r = 0.464 r = 0.656 r = 0.108 r = -0.728 
p = 0.078 p = 0.101 p = 0.355 p = 0.157 p = 0.838 p = 0.102 

MOG r = 0.311 r = 0.474 r = 0.652 r = 0.060 r = 0.568 r = -0.885 
p = 0.548 p = 0.343 p = 0.161 p = 0.911 p = 0.240 p = 0.019 

 








	Perinatal administration of phencyclidine alters expression of Lingo-1 signaling pathway proteins in the prefrontal cortex of juvenile and adult rats
	Recommended Citation

	Perinatal administration of phencyclidine alters expression of Lingo-1 signaling pathway proteins in the prefrontal cortex of juvenile and adult rats
	Abstract
	Keywords
	Disciplines
	Publication Details

	10741_1_merged_1529278952.pdf

