2009

Thermodynamic modelling of high temperature systems

Winny Wulandari
Swinburne University of Technology, Melbourne

Geoffrey A. Brooks
Swinburne University of Technology, Melbourne

M Akbar Rhamdhani
Swinburne University of Technology, Melbourne

Brian J. Monaghan
University of Wollongong, monaghan@uow.edu.au

Publication Details
Thermodynamic Modelling of High Temperature System

Chemeca 2009

Winny Wulandari1, Geoff Brooks1,
M. Akbar Rhamdhani1, and Brian J. Monaghan2

1Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Melbourne, VIC
2School of Mechanical, Materials, and Mechatronics, University of Wollongong, Wollongong, NSW
Content

- Introduction
- Gibbs Energy Minimisation
- Thermodynamic Modelling Development
- Thermochemical Packages
- Application
Introduction

- Thermodynamic modelling?
 - 2nd law thermodynamic:
 predict composition at equilibrium

- Purpose of thermodynamic modelling:
 - Predict chemical composition
 - Constructing phase diagram
 - Tool for process development

Bale et al, 2008

Brooks et al, 2006

© Swinburne University of Technology
Gibbs Energy Minimisation

- Based on Second Law Thermodynamics

\[G = \sum_{i=1}^{p} n_i G_i^\phi = \text{total free energy system} = \text{minimum}; \]

\[\sum_{i=1}^{p} n_i a_{ji} = b_j; \text{mass balance constraint} \]

- Gibbs energy for real solution:

\[G^\phi = G^o + G^{\text{ideal}} + G^{\text{ex}} \]

\[G^{\text{ideal}} = RT \sum x_i \ln x_i \]

\[G^{\text{ex}} = RT \sum x_i \ln \gamma_i \]

- \(\gamma_i \), activity coefficient = f(x,T)
Development of Thermodynamic Modelling

1. Define System, Phase, Species
2. Define Database
3. Initial Species, Quantities, Operating Condition
4. Solution Models, Activity Coefficient
5. Equilibrium Calculation

© Swinburne University of Technology
Database

- Thermodynamic data: Enthalpy (H), Entropy (S), Heat Capacity (Cp), activity coefficient (γ)
 - Data taken from calorimetric measurement, Differential Thermal Analysis (DTA)
 - Activity coefficient data can be taken from Electromotive Force (EMF), Knudsen Cell, vapor pressure measurement

- Experimental data are assessed and modelled as function of temperature
 - \(G = a + bT + cT\ln T + \Sigma dT^n \)
 - \(H = a -cT - \Sigma (n-1)dT^n \)

- Example of database: SGTE (Scientific Group Thermodata Europe), FACT (Facility on Analysis of Chemical Thermodynamic)
Solution Models

In high temperature systems, it is common for species to dissolve and form multi-component phases: e.g. slags, matte, alloys

Solution models have been developed to describe interactions in solutions

Some of example of solution model:

1. Ideal Solution Model
 - No interaction between molecules, $a = x$
 - Starting points to calculate thermodynamic modelling
Solution Models (continue)

2. Dilute Solution Model
 - Henry’s law: \(a = \gamma_i x_i \)
 - \(\gamma_i \): Henrian activity coefficient

3. Regular Solution Model
 - Interaction parameter independent of \(P \) and \(T \)
 \[
 ex \ G^\phi = x_i x_j L
 \]

4. Random Mixing Solution Model
 - For disorder substitutional solution
 - Interaction between species is called excess term
 - Redlich-Kister equation:
 \[
 ex \ G^\phi = x_i x_j \sum_{n=0}^{n=m} L_{i,j}^\phi (x_i - x_j)^n
 \]
5. Compound Energy Formalism (Hillert, 2001)

- For crystalline that have 2 or more lattice structures.
- Can describe thermodynamic properties with interstitial and vacancy
- Basic formula:

\[
G^{xs} = y_i y_j \sum_{k=0}^{n} L_{ij}^S (y_i - y_j)^k \quad y_i^s = \frac{n_i^s}{N^s} \quad x_i = \frac{\sum_s N^s y_i^s}{\sum_s N^s (1 - y_{va}^s)}
\]

- For short-range ordering solutions: molten slags, matte
- Formula:

\[
G^{\text{liq}} = n_i^o G_i^{\text{liq}} + n_j^o G_j^{\text{liq}} - T \Delta S_c + \frac{n_{ij}}{2} G^{\text{ex,liq}}
\]

- \(\Delta G_{ij} \) is noted as \((\omega - \eta T)\)
Thermochemical Packages

Chemix (CSIRO-SGTE Thermodata System)

FactSage (ThermFact Canada)

HSC Chemistry (Outokumpu Finland)

MTDATA (NPL UK)
Comparison between Thermochemical Packages

<table>
<thead>
<tr>
<th>Packages</th>
<th>Chemix</th>
<th>HSC</th>
<th>FactSage 6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>SGTE, JANAF, NPL</td>
<td>Barin, JANAF</td>
<td>SGTE 2009, FACT 2009</td>
</tr>
<tr>
<td>Solution Models</td>
<td>Fixed, Polynomial, Debye-Huckel, Interpolation, Virial, Bethelot, Subregular, Redlich, Margules, Redlich-Kister, Lupis-Elliot, Virial Full, Pitzer, Redlich-Kister, Regular</td>
<td>-</td>
<td>Quasichemical, Sublattice, Pitzer, Polynomial (Muggianu), Polynomial (Kohler/Toop), CEF</td>
</tr>
<tr>
<td>Modules</td>
<td>Reaction, Equilibrium</td>
<td>Reaction, Equilibrium</td>
<td>Equilibrium, Phase Diagram, optimisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Equilibrium, Phase Diagram, optimisation, solidification</td>
</tr>
<tr>
<td>Application</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>interface</td>
<td></td>
<td></td>
<td>Yes (Matlab, Comsol)</td>
</tr>
<tr>
<td>Own solution</td>
<td>Possible</td>
<td>-</td>
<td>Possible</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td></td>
<td>Possible</td>
</tr>
</tbody>
</table>

© Swinburne University of Technology
Magnesium oxide is reduced by ferrosilicon to produce Mg vapour at 1160 °C and 7 Pa

Reaction: \(2 \text{CaO.MgO + FeSi = 2 Mg} _{(g)} + \text{Ca}_2\text{SiO}_4 + \text{Fe}\)

Magnesium vapor condensed in condenser
Phases and Solution Models in the Pidgeon Process

<table>
<thead>
<tr>
<th>Phase</th>
<th>Solution Model</th>
<th>γ, activity Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Phase: (Mg, Ca, SiO, Fe, Al)</td>
<td>Ideal Solution</td>
<td>$\gamma = 1$</td>
</tr>
<tr>
<td>Monoxide Phase: (CaO, MgO, FeO, SiO$_2$)</td>
<td>Regular solution for MgO-FeO system</td>
<td>$\ln \gamma_i = L$</td>
</tr>
<tr>
<td></td>
<td>Sub-regular for CaO-MgO system</td>
<td></td>
</tr>
<tr>
<td>Dicalcium silicate: (Ca$_2$SiO$_4$, Mg$_2$SiO$_4$)</td>
<td>Random mixing Solution model for Ca$_2$SiO$_4$ and Mg$_2$SiO$_4$</td>
<td>$\sum_{n=0}^{\infty} L_{i,j} \left(x_i - x_j\right)^n$</td>
</tr>
<tr>
<td>Metal Phase: (Mg; Ca, Al, Fe, Si impurities)</td>
<td>First Assumption: Ideal Solution</td>
<td>$\sum_{n=0}^{\infty} L_{i,j} \left(x_i - x_j\right)^n$</td>
</tr>
<tr>
<td></td>
<td>Second assumption: Random mixing solution model for fcc, bcc, and hcp solid solution.</td>
<td></td>
</tr>
</tbody>
</table>

There are formation of solid impurities at temperature range between reaction zone and condenser zone.

- Ideal Solution: 98.33%
- Random Mixing Solution: 99.98%
Conclusion

- Thermodynamic modeling is a valuable tool to predict phase equilibria in high temperature metals processing.
- Thermochemical packages make modeling easier, but the fundamental knowledge such as how we determine the phase, species, and activity behaviour are the intellectual aspects.
- An example in magnesium impurities illustrate both the predictive power of thermodynamic modelling and the dilemmas associated with solution behaviour.
Thank You