Steady state visually evoked potential (SSVEP) phase change as an index of Spatial Working Memory task performance: The influence of nootropic supplementation

David A. Camfield
University of Wollongong, camfield@uow.edu.au

Andrew Scholey
Swinburne University of Technology, andrew@scholeylab.com

Richard B. Silberstein
Swinburne University

Andrew Pipingas
Swinburne University of Technology, apipingas@swin.edu.au

Con Stough
Swinburne University of Technology, cstough@swin.edu.au

Follow this and additional works at: https://ro.uow.edu.au/sspapers

Part of the Education Commons, and the Social and Behavioral Sciences Commons
Steady state visually evoked potential (SSVEP) phase change as an index of Spatial Working Memory task performance: The influence of nootropic supplementation

Abstract
Abstract presented at the 17th World Congress of Psychophysiology (IOP2014) of the International Organization of Psychophysiology (IOP) Hiroshima, Japan, September 23rd to 27th, 2014

Keywords
influence, nootropic, supplementation, task, memory, working, spatial, index, change, performance, phase, steady, ssvep, potential, evoked, visually, state

Disciplines
Education | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/sspapers/1273
Steady state visually evoked potential (SSVEP) phase change as an index of Spatial Working Memory task performance: The influence of nootropic supplementation

David A. Camfielda, b,
Andrew Scholeyb,
Richard Silbersteinb,
Andrew Pipingasb,
Con Stoughb

a School of Psychology, University of Wollongong, Australia
b Centre for Human Psychopharmacology, Swinburne University of Technology, Australia

Background: Spatial Working Memory (SWM) is a cognitive domain that has a high degree of sensitivity to pharmaceutical intervention and is one of the first domains to be adversely impacted by age-related cognitive decline. Steady State Probe Topography (SST) at a frequency of 13 Hz is a novel electrophysiological technique that enables investigation into SSVEP amplitude and phase change with a precise temporal resolution of < 80 ms.

Methods: The following presentation will detail a program of research conducted at the Centre for Human Psychopharmacology since 2009 which has involved randomized placebo-controlled nootropic intervention studies of SSVEP changes during SWM task performance (with a combined N of 200 people). Nootropic substances that have been administered include Cocoa Polyphenols, Panax quinquefolius (American ginseng), Ginkgo biloba, Hypericum perforatum, Guarana and B-vitamins.

Results: SSVEP phase lag in posterior-parietal and prefrontal brain regions during the online maintenance of spatial locations in WM has been found to be increased in response to nootropic supplementation.

Conclusions: These studies provide preliminary evidence to suggest that the typical SSVEP phase advance observed under conditions of increased WM load may be ameliorated by nootropic intervention — a finding that may be explained by increases in inhibitory neural processes.