


Figure 3: Examples of coasts at different stages of evolution. (a) Surtsey Island, Iceland, a precursory island built in 1963 through emergent eruptive activity
(photo by Arctic-Images.com). (b) Shoreline expansion during the shield-building stage and through the progradation of lava-fed deltas, along the southeast coast of
Kı̄lauea Volcano (Hawai‘i) during April 2008 (USGS photo by J. Kauahikaua, courtesy of Hawaiian Volcano Observatory, USGS). (c) Southern coast of Moloka‘i
(Hawai‘i) example of a leeward, poorly dissected and low shoreline of a mature island, protected by a well developed fringing reef. (d) Northern coast of Moloka‘i
(Hawai‘i) example of windward high shoreline of a mature island, deeply dissected and created by a massive flank collapse (structurally controlled by a rift zone)
and stronger marine erosion. (e) Example of a topography-filling, post-erosional coastal lava delta on the southeastern shore of São Nicolau (Cape Verde). (f)
Example of an uplifted, terraced shoreline in the southern side of Boa Vista (Cape Verde). (g) Annular atoll, Cocos (Keeling) Islands. (h) Example of a coast of an
uplifted atoll, exhibiting a large extant sediment-free shore platform and a limestone cliff with a well-developed wavecut notch, Niue Island (photo courtesy of D.
Kennedy).
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fore the next eruptive episode takes place. If this is the case, the
subaerial shield-building lavas may cover the seamount prod-
ucts, unconformably; the products of a surtseyan phase were ei-
ther removed through erosion or never existed in the first place
and the edifice rose above the waves simply by a relative fall
of sea level. Coastal processes acting during the emergence
of such edifices are, consequently, different from those acting
upon surtseyan edifices; the former are exclusively erosive and
the coasts are rocky.

4.2. Shield-building subaerial stage
The onset of the shield-building subaerial stage is charac-

terized by a dramatic change in the nature of volcanism from
surtseyan/taalian to hawaiian/strombolian due to the complete
isolation of the eruptive vent from sea-water influx (Thorarins-
son, 1967; Kokelaar, 1983; Moore, 1985; Kokelaar, 1986).
This change in eruptive style from highly-explosive hydromag-
matic to largely effusive magmatic, allows the emission of lava
flows that will mantle the emergent cone, forming a lava-flow
cap, as it happened during the late stages of the eruption at
Surtsey during 1963-67 (Thorarinsson, 1967; Kokelaar, 1983;
Moore, 1985; Kokelaar, 1986; Schmidt and Schmincke, 2000;
Ramalho, 2011). It is precisely the sustained growth of an
erosion-resistant capping lava shield that allows an edifice to
survive above sea level in the long term, and become a sta-
ble island. The successive extrusion of lava flows from summit
vents - typically along rift zones - down the flanks of the vol-
canic edifice and towards the coast, gradually builds up to form
the large shield morphology so typical of most young oceanic
island volcanoes. The shield-building stage is generally charac-
terized by high magma-supply rates - and consequently by high
accumulation rates - and so edifices grow rapidly in height and
size. During this stage, edifice lateral growth is characterized by
rapid coastal progradation, sustained by the successive genera-
tion of coastal lava deltas as flows enter the sea along the fringes
of the subaerial edifice (Moore and Schilling, 1973; Peterson,
1976; Skilling, 2002; Umino et al., 2006). Flank growth and
the advancement of coastlines is further enhanced by the devel-
opment of lava tubes, which allow lava to be carried long dis-
tances with little cooling (Peterson, 1976; Pinkerton and Wil-
son, 1994; Orton, 1996; Umino et al., 2006). Volcanic effusive
processes dominate coastal processes during the vigorous sub-
aerial shield-building stage; ongoing erosion and sedimentation
occur alongside volcanic growth, but these processes play a mi-
nor role on coastal evolution during this stage.

Rates of coastal advancement by the formation of lava deltas
during shield-building stages may be quite rapid over the short
term. For instance, along the southern shore of Kı̄lauea dur-
ing a single growth period of 3 months in 1990, lava-fed deltas
extended the coastline seawards by 300 m, burying almost
407,000 m2 of the 5-m deep Kaimū bay with nearly 3.95 × 106

m3 of lavas at an averaged rate of 2,240-22,640 m2/day (Umino
et al., 2006). Along the same coastline, another delta was built
between 1992 and 1994 which attained a length of 2.9 km and a
width of 500 m (Mattox and Mangan, 1997). Likewise, during
1971 flows fed by lava tubes from Mauna Ulu created a 1.5 km-
wide lava delta on an adjacent stretch of coast that extended the

shoreline by 450 m (Moore and Schilling, 1973). Erosion, how-
ever, can also be quite fast in reducing newly-formed deltas.
For example, the same 1971 lava delta mentioned above was
reduced by 80 m and 100 m in length and width, respectively,
by marine erosion in about one month (Moore and Schilling,
1973). Thus, at longer terms, coastal advancement rates are
more modest, as subsidence, sea-level eustatic rises and marine
erosion all contribute to slower volcanic growth. Effectively, at
time scales of 103 − 106 years, magma-supply rates must result
in accumulation rates at coastlines that exceed subsidence and
erosion rates in order to sustain coastal advancement (Lipman
and Moore, 1996). For example, Mauna Loa must have expe-
rienced magma-supply rates in excess of 100 × 106 m3/yr in
order to sustain the coastal accumulation rates that were neces-
sary to outpace a subsidence rate of 2.6 mm/yr (Lipman, 1995;
Lipman and Moore, 1996). In a similar fashion, Mitchell et al.
(2008) suggested that for significant prograding of the subma-
rine flank of a volcanic island to occur, volcanic output must be
high enough to infill the erosional shelf and overcome the shelf
break onto the slope of the edifice, as happened on the southern
flanks of Pico (Azores) and on Kı̄lauea.

4.2.1. Lateral growth through the progradation of coastal lava
deltas

Shoreline progradation by successive generations of coastal
lava deltas is the foremost process of lateral growth in erupt-
ing oceanic island shield volcanoes such as Hawai‘i, La Re-
unión, and Isabela and Fernandina in the Galapágos (Peterson,
1976; Skilling, 2002; Umino et al., 2006) (see Figures 3b and
6a). The rate of formation of lava-fed deltas depends largely
on effusion rates/volume flux of the lava flows entering the
sea, and on the submarine bathymetry (Moore and Schilling,
1973; Hon et al., 1993; Mattox and Mangan, 1997). Likewise,
the facies architecture of the resulting lava delta sequences re-
flects the influence of several, often interdependent factors (see
Figs. 4 and 5) such as: coastal topography; offshore gradi-
ent, width and topography; water depth (and tidal variations);
lava viscosity and effusion rates; location, number and spac-
ing of feeding lava streams; and coastal orientation with re-
spect to the dominant waves (Furnes and Sturt, 1976; Walker,
1992; Gregg and Fink, 1995; Schmincke et al., 1997; Gregg
and Fornari, 1998; Kennish and Lutz, 1998; Gregg and Fink,
2000; Schmidt and Schmincke, 2002; Skilling, 2002; Gregg and
Smith, 2003). As extrusion rates increase, the generation of pil-
lows and hyaloclastites is gradually substituted by the genera-
tion of lobate lavas and megapillows, coalescent megapillows
and leveed and unleveed submarine sheet flows (Griffiths and
Fink, 1992; Gregg and Fink, 1995; Kennish and Lutz, 1998;
Gregg and Fornari, 1998; Gregg and Fink, 2000; Gregg and
Smith, 2003; Ramalho, 2011). An increase on the bottom slope
may produce a similar effect as an increase in the effusion rate,
resulting in more massive morphologies, but only to a threshold
around 10 ◦ − 15 ◦; on steeper slopes, gravitational forces pull
the lava lobes to a point at which their flow fronts disrupt and
break apart into smaller ’fingers’ of lava, thus favoring the gen-
eration of pillowed structures; on even steeper slopes (> 25 ◦)
disruption at the flow front is such that angular, blocky rubble
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and hyaloclastites become the dominant products (Gregg and
Fink, 2000; Gregg and Smith, 2003). Offshore slope or shelf
width exert some influence on the formation of lava deltas in the
sense that it controls accommodation space: gentler and wider
shelves allow a more rapid lava delta progradation than steeper
and deeper shelves because smaller volumes of erupted material
are necessary to replace the existing water column (Lipman and
Moore, 1996). Over longer time scales, other factors such as
tectonics, uplift and subsidence, and glacio-eustatic variations
also influence the architecture of lava deltas (Skilling, 2002, see
Fig. 5).

The seaward progradation of lavas under moderate effusion
rates (generally under 5-10 m3/s; Walker et al., 1973; Row-
land and Walker, 1990; Griffiths and Fink, 1992; Gregg and
Fink, 2000) and over steep offshore slopes generates lava-fed
delta structures similar to Gilbert-type river deltas (Jones and
Nelson, 1970; Cas and Wright, 1987; Porebski and Gradzinski,
1990; Skilling, 2002; Schmidt and Schmincke, 2002) (see Figs.
4a and 5). Under such conditions, the entrance of subaerial
lava flows (typically pāhoehoe) into the water body generates
quenching and fragmentation that, due to gravity-driven pro-
cesses, results in the accumulation of large quantities of coarse-
grained, poorly sorted, volcaniclastic wedges on the progra-
dational front of the advancing flows. The resulting structure
is typically composed of three units (Porebski and Gradzinski,
1990): a) a basal unit composed of a mix of marine sediments
and pebble breccias enveloped in a sandy hyaloclastite matrix;
b) a foreset unit of flow-foot breccias, comprising foresets of
seaward-thickening wedge-shaped bodies of hyaloclastites and
pillow-breccias, often intercalated with thin tube-like pillow
lavas; and c) a topset unit that caps the foresets and is composed
of flat-lying subaerial (or more rarely submarine) flows. These
sequences fill existing space (from the seabed to the water sur-
face) by progradation, rather than aggradation. The seawards
growth of such lava deltas is frequently intermittent and accom-
panied by lateral advances. As effusion rates wane, enhanced
quenching and shattering of lavas upon entering the ocean may
result in barriers of solidified lava and debris which divert later
flows laterally along the coast, promoting the alongshore em-
placement of primary flow lobes of the delta (Umino et al.,
2006). On coastlines subjected to large accumulation rates and
rapid sea-level rise, the successive superposition of Gilbert-type
lava deltas leads to the generation of coastal effusive plains be-
cause deltas tend to enlarge landwards independently of sea-
ward progradation (see Fig. 5); this happens because younger
lavas, as they flow over the flat-lying top surfaces of previous
deltas (partially flooded by sea-level rise) tend to grow upwards
by intrusive inflation before fragmenting takes place at the edge
of the new delta (Lipman and Moore, 1996). This is probably
the mechanism under which the fringing effusive coastal plains
so characteristic of very active shield volcanoes - like Kı̄lauea
and the ones on the Galápagos - were formed, i.e. by a com-
bination of high accumulation rates and rapid post-glacial sea-
level rise. Lava deltas generated under these conditions tend
to be more stable than deltas generated under stable sea level
(Lipman and Moore, 1996). However, Gilbert-type lava-fed
deltas are frequently very unstable and are prone to slumps that

quickly change the shore outline and generate large quantities
of volcaniclastic debris (Kauahikaua et al., 1993)

The entrance of lava flows (typically ‘a‘ā or pāhoehoe sheet
flows) into water under high effusion rates (generally in excess
of 5-10 m3/s; Walker et al., 1973; Rowland and Walker, 1990;
Griffiths and Fink, 1992; Gregg and Fink, 2000) and over off-
shore gently-dipping or flat-lying bottoms, in contrast, results
in the accumulation/aggradation of submarine sheet flows that
may branch out to form dendritic patterns but generally remain
coherent subaqueously (Moore and Schilling, 1973; Umino
et al., 2006; Mitchell et al., 2008; Ramalho, 2011; Steven-
son et al., 2012). Thus, sequences formed under such condi-
tions typically fill existing spaces more by aggradation rather
than simple progradation, and are normally composed of an
alternation of thick subhorizontal or gently-dipping submarine
sheet flows and marine sediments, exhibiting little syn-eruptive
hyaloclastitic material (see Fig. 4b). Such sequences are, gen-
erally, more erosion-resistant and help consolidate the island
edifice; their formation, however, is enhanced by the existence
of a previous ledge or shore platform where the pile may accu-
mulate.
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sea-level
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Figure 4: Formation of lava-fed deltas under different effusion rates. (a) Un-
der low-to-moderate effusion rates (generally under 5-10 m3/s), the entrance of
subaerial lava flows (typically pāhoehoe) into the water body generates much
quenching and shattering that, mostly by gravity-driven processes, result in
structures similar to Gilbert-type deltas with prograding foresets of pillow lavas
and hyaloclastites (proportion between pillow lavas and hyaloclastites typically
increases with increasing flow rates) capped by a topset of flat-lying subaerial
lava flows; available space is typically filled through progradation rather than
aggradation. (b) Under moderate-to-high flow rates (generally in excess of 5-10
m3/s), subaerial flows (typically ‘a‘ā) enter the water without much quenching
and fragmentation and turn into submarine sheet flows by maintaining their co-
herence subaqueously; available space is typically filled through aggradation
rather than progradation.
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Figure 5: Structural relationships and passage zone morphologies of Gilbert-type lava-fed deltas during periods of vertical movement of water level or of volcanic
pile, at different time scales. (a) General structural relationships of deltas that experienced vertical movements of water level or of volcanic pile (modified from
Jones and Nelson, 1970). (a.1) Sequence of 3 overlapped lava deltas extruded during a period of rising water level or subsiding land. (a.2) Sequence of 3 onlapping
lava deltas extruded during a period of falling water level or uplifting land. (a.3) Sequence of 3 lava deltas (exhibiting onlapping and overlapping) generated during a
period of fluctuating water level or variable land movements. (a.4) A single lava delta formed during a period of extremely rapid water level rise or land subsidence.
(a.5) Single lava delta affected by a syn-eruptive slump. (b) Morphology of passage zone for lava deltas subjected to tidal change (black arrows represent flow
directions and effusion rates) (modified from Furnes and Fridleifsson, 1974; Furnes and Sturt, 1976). (b.1) Undulating passage zone on a flat-lying lava delta that
was extruded continuously during several tidal cycles (numbered sequences each correspond to one tidal cycle). The amplitude of undulations mostly depends on
tidal range whereas the wavelength mostly depends on effusion rates. (b.2) Geometry of the passage zone for a lava delta built by higher effusion rates and one cycle
of rising tide; effusion rate is enough to cause progradation despite rising water level. (b.3) Geometry of the passage zone for a lava delta built by lower effusion
rates and one cycle of rising tide; effusion rate is not enough to cause progradation and rising water level causes overlapping of the passage zone associated with
each individual flow. (c) Overlapping of lava deltas under rapid relative sea-level rise (at centennial to millennial time scales) (modified from Lipman and Moore,
1996); successive lava deltas enlarge landward, whether or not they prograde seaward, forming coastal effusive plains.
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4.2.2. The formation of littoral cones

Littoral cones are structures formed by violent steam explo-
sions resulting from some subaerially erupted lava flows enter-
ing the sea (Moore and Ault, 1965). Observations by Mattox
and Mangan (1997) on Hawai‘i suggest that explosive inter-
actions between molten lava and water to form littoral cones
require high entrance fluxes of lava flows into water and are
frequently (but not exclusively) initiated by collapse of a devel-
oping coastal lava delta. When pāhoehoe lava flows reach the
ocean for the first time, the reaction may be relatively quiescent
with lava dripping over older seacliffs or mantling established
beaches. However, as lava deltas gradually develop and flow-
foot breccias are formed by quenching and shattering of lavas
on the progradation front of the deltas, the tube systems at the
seaward edges of deltas are often established at or below sea
level, increasing the chances for sudden water/magma mixing.
If subsidence or collapse of the unstable front of the delta takes
place, then favorable conditions for littoral hydrovolcanic ex-
plosions may be established. Explosive mixing of seawater and
lava may occur under confined or unconfined (open) conditions
according to the geometry of the mixing region (Mattox and
Mangan, 1997). Unconfined mixing characteristically leads to
the generation of tephra jets and steam rock blasts (see Figs.
6b and 6c), particularly, but not exclusively, when a complete
delta collapse severs an active lava tube and waves interact with
a streaming cascade of lava; resulting structures are typically
small unconsolidated semi-circular littoral cones and fields of
blocks built on the landward side of the delta (Mattox and Man-
gan, 1997) (e.g. on the southern shore of Hawai‘i, see Figs. 6b
and 6c). In contrast, confined mixing normally occurs when a
partial collapse, subsidence or receding flow rates allow water
to enter active lava tubes, causing steam expansion that gen-
erates lava bubble bursts and littoral lava fountains (continu-
ous uprush explosions); resulting structures typically are low-
profile spatter-dominated circular littoral cones and mounds, lo-
cated at some distance inland from the delta front (Mattox and
Mangan, 1997). Littoral lava fountains and bubble bursts may
also occur when ‘a‘ā lavas reach the ocean (Moore and Ault,
1965). In this case the fragmentation is induced by the trapping
and confinement of water/steam by the cooler (and more brittle)
mantling ‘a‘ā flow (Moore and Ault, 1965).

The explosive interaction of seawater and molten lava along
coastlines is also responsible for the production of small quan-
tities of mobile volcaniclastic sediment. Furthermore, because
of their location on the coast, littoral cones are very transient
features and are rapidly eroded by waves, further contributing
to sediment supply (Moore and Ault, 1965). Thus, the ”instant
production” of small pocket sandy beaches on the margins of
advancing coastal lava deltas occurs alongside the effusive pro-
cesses that so prominently create the low rocky coasts typical of
young island shield volcanoes (e.g. Moore and Schilling, 1973).
Notwithstanding their small expression, these sandy beaches
may constitute the substratum and pathway for the biological
colonization of the edifice.

4.2.3. Rift-edge explosive hydromagmatic volcanism
During the shield-building stage, vents are generally concen-

trated along well-defined to diffuse rift zones that typically de-
velop in large oceanic island volcanoes. Thus, fissure-fed effu-
sive subaerial eruptions constitute the prevailing extrusion style
during this stage. This means that volcanic coastal morpholo-
gies are dominantly effusive structures (lava deltas) that origi-
nate when remotely-fed lava flows enter the sea, and that large
hydromagmatic eruptions seldom occur. This is not always the
case, however, in coastal areas where rift systems meet the sea
(Németh and Cronin, 2009a). Here, due to the interaction be-
tween active rift zones and seawater, vigorous hydromagmatic
volcanism may occur and form explosive morphologies and
structures. The morphologies will vary from maars to tuff rings
and to tuff cones, depending on the water/magma mixing mass
ratio, i.e. depending on the relative position of the vent with
respect to sea level; in onshore areas maars and tuff rings are
more common while in offshore shallow-water areas tuff cones
prevail. The development of syn-eruptive shorelines near rift
systems may thus be characterized by explosive hydroclastic
and associated epiclastic processes, acting alongside effusive
processes, as suggested by the examples of Upolu on Western
Samoa and Ambae Island on Vanuatu (the latter in an island-arc
setting) (Németh and Cronin, 2009a,b).

4.3. Late stage coastal volcanism

Late stage or post-shield volcanism is generally character-
ized by a drastic reduction in eruption rates and by a change in
magma composition (Macdonald et al., 1983; Clague and Dal-
rymple, 1987; Schmincke, 2004). In Hawaiian volcanoes (and
other Pacific hotspots) this change is typically from very fluid
tholeiitic basaltic magmas to more viscous alkali basaltic mag-
mas, consequently changing the dominant eruption style from
hawaiian to strombolian. This change in eruptive style is also
frequently accompanied by a change in the distribution of vol-
canic centers, from fissure-fed rift zones to a more diffuse field
of monogenic edifices, dotting the surface of the large shield
volcano with numerous small cinder cones as on Mauna Kea
(Hawai‘i) and Isla Santa Cruz (Galápagos) (Macdonald et al.,
1983; Clague and Dalrymple, 1989; White et al., 1993; Clague
et al., 2000). If these eruptive vents are located near or at coast-
lines, surtseyan or taalian eruptions may take place, producing
explosive hydromagmatic structures and products (e.g. on the
western shore of Darwin Volcano, Isabela Island, Galápagos).
In other settings, such as in many Atlantic hotspots (e.g. Cape
Verde, the Canaries), the change in magma composition is of-
ten from alkali basaltic magmas to more evolved magmas such
as phonolites and trachytes (Schmincke, 2004). This implies
an even more dramatic change in the dominant eruption style
from strombolian to plinian (or other highly explosive eruptive
styles), enabling the generation of pyroclastic density currents
that may reach coastal areas. On coastlines exposed to such
eruptions, deposits of such density currents instantly cover ex-
isting deposits (beach, fringing reefs etc) and morphologies,
frequently preserving their original architecture.
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Figure 6: Examples of coastline expansion through volcanic activity. (a) Formation of an effusive lava-fed delta along the southeast coast of Kı̄lauea (Hawai‘i)
during March 2005 (USGS photo by R. Hoblitt). (b) Unconfined explosive interaction between an active severed lava tube (skylight visible on the foreground) and
the ocean, forming a small crescent shape littoral cone (on the background) on the landward side, southeast coast of Kı̄lauea (Hawai‘i) during July 2008 (USGS
photo by Tim Orr). (c) Unconfined explosive interaction between active lava flows and the ocean, causing a tephra jet, southeast coast of Kı̄lauea (Hawai‘i) during
September 2006 (USGS photo by A. Doherty). (d) constructional volcanic processes (lava delta formation) occurring alongside destructive processes (quarrying of
joint blocks by wave action) along the southeast coast of Kı̄lauea (Hawai‘i) during August 2006 (USGS photo by C. Heliker).

4.4. Post-erosional stages

On most oceanic island volcanoes, an episode (or episodes)
of rejuvenated volcanism may take place after a long quies-
cence period that follows the shield-building stage, and after
the island edifices have been significantly eroded (Macdonald
et al., 1983; Clague and Dalrymple, 1987; Carracedo, 1999;
Schmincke, 2004; Ramalho, 2011). Rejuvenated volcanism
typically involves small volumes of alkalic magmas erupted
from a set of small monogenetic edifices (Schmincke, 2004).
Because insular edifices at this stage are already deeply in-
cised by marine and fluvial erosion and by large flank col-
lapses, the geometry of the newly erupted structures and se-
quences is somewhat conditioned by the pre-existing topog-
raphy. Thus, rejuvenated volcanism typically generates com-
plex volcano-sedimentary, topography-filling sequences. Struc-
tures such as effusive valley-filling sequences, steep coastal
lava fans/deltas, and cliff-edge effusive morphologies are com-
mon and contacts between rejuvenated products and the pre-
ceding units are typically irregular erosive unconformities or
conformable transitions between overlying lavas and underly-

ing sediments and biogenic structures such as coral reefs. As
rejuvenated volcanic products are superimposed over mature
and well developed coasts - with established shore platforms,
beaches, cliffs and biogenic structures - resulting sequences
frequently incorporate sharp transitions between subaerial and
submarine volcanic products and marine/coastal sediments, re-
flecting rapid changes in shore morphology. The generation
of complex coastal volcano-sedimentary sequences and mor-
phologies is thus characteristic of edifices in a post-erosional
stage.

4.4.1. Post-erosional coastal volcanism
Because rejuvenated volcanism normally erupts through a

diffuse set of vents, explosive hydromagmatic volcanism may
occur when vents are located along coastlines. Resulting struc-
tures will mostly vary from tuff cones to tuff rings and maars
according to the water/magma mixing mass ratio. Volcanic
processes acting upon coasts subjected to explosive hydrovol-
canism will thus vary from proximal to distal hydroclastic, py-
roclastic and effusive, working simultaneously with sedimen-
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tary processes. As vents may erupt through considerable sed-
imentary bodies or biogenic structures (e.g Diamond Head on
O‘ahu, Hawai‘i), it is not uncommon to find sedimentary lithic
fragments and even individual fossils mixed with fine juvenile
tephra, as these were transported and deposited by explosive
volcanic processes (e.g Hickman and Lipps, 1985).

4.4.2. The generation of post-erosional lava deltas
Inland rejuvenated volcanism may generate varying amounts

of lava flows that typically move down the existing drainage
network; lava deltas form when flows reach the sea. Post-
erosional lava deltas are, typically, steep effusive fan-like mor-
phologies that either form at the mouth of the valleys that served
as channels for lava flows, or at the base of seacliffs when vol-
canism takes place at or close to cliff edges. Good examples of
such lava deltas include Keāna Point on Maui (Hawai‘i), Seixal
on Madeira Island, Ponta da Ferraria on São Miguel (Azores),
and those on the eastern and southeastern shore of São Nicolau
(Cape Verde, see Fig. 3e). The architecture and morphology of
such structures, however, may vary depending on extruded vol-
umes, flow rates, channel steepness and width, and the height
of the river mouth or cliff edge relative to sea level. The forma-
tion of littoral cones at the edges of post-erosional lava deltas
is, however, rare, because the steepness of such structures gen-
erally prevents sea-water invading lava tubes to produce the
necessary water/magma mixing ratio for explosive volcanism.
A rare example of a littoral cone at a margin of a steep post-
erosional lava delta can be seen at Ponta da Ferraria on São
Miguel (Azores).

During post-erosional stages, shoreline morphology typi-
cally increases in complexity as focused formation of lava
deltas create protruding headlands and contributes to more
ragged coastal outlines. This, in turn, may create lesser ener-
getic conditions for sediment deposition, leading to the genera-
tion of small gravel and sand beaches in sheltered bays and in-
creasing diversity of shoreline facies. Sheltered bays may also
constitute preferential areas for the accumulation of skeletal re-
mains of marine life.

5. Coastal erosion

Oceanic island volcanoes are exposed to the destructive
forces of the ocean from the moment they breach the sea surface
until they (eventually) are drowned. The relative importance
of marine erosion processes in shaping oceanic island coasts
greatly depends upon the role and character of the other agents
(e.g. volcanism, coral reef growth, etc). Marine erosion is the
dominant agent (or at least an important one) of coastal evolu-
tion during: the emergent island stage of any island, especially
when volcanic activity is dormant (see section 4.1); during all
the post-shield stages on reefless islands; and eventually during
the erosional and rejuvenated stages of islands with coral reefs.
On the latter edifices, however, marine erosion is transferred
seaward to where the protecting barrier reef is located, and it is
only felt during storms.

5.1. Marine erosion and the development of shore platforms

The evolution and morphology of volcanically inactive
oceanic island coastlines vary according to the structure, lithol-
ogy, and mineralogy of the rock. The physical and chemical
characteristics of the materials partly determine: the intensity
and efficacy of the erosional processes; the amount, type, and
mobility of loose material at the cliff foot, and consequently
whether it plays a significant abrasive or protective role; sur-
face irregularity in the intertidal and subtidal zones, which in-
fluences rates of wave attenuation; and because of the effect
of rock resistance on erosional efficacy, the degree to which a
coast retains vestiges of former sea levels and climates.

Frost, wetting and drying, salt and chemical weathering, and
bioerosion can be dominant erosional mechanisms in some re-
gions where there are suitable climates and weak wave activity
but may be inhibited in places by the presence of coral reefs
or sea ice (Guilcher et al., 1962; Guilcher and Bodere, 1975).
Weathering also prepares rocks for eventual dislodgment and
removal by waves in the more vigorous environments of the
middle latitudes (Porter et al., 2010). Nevertheless, mechanical
wave erosion usually dominates on volcanic islands with nar-
row shelves in exposed, oceanic regions (Quartau et al., 2010),
and despite rapid attenuation, waves still play an important role
in removing the products of weathering and mass movements
where there are very wide shelves.

Mechanical wave erosion is accomplished by a number of
processes, including the quarrying or dislodgment of joint
blocks and other rock fragments by water impact (wave ham-
mer), high shock pressures generated by breaking waves, and,
probably most importantly, by air compression in joints and
other rock crevices. As these processes depend upon the alter-
nate presence of air and water they are most effective in a nar-
row zone extending from the wave crest to just below the still
water level. The vast majority of coastlines on oceanic islands
correspond to effusive sequences, to piles of shallow-dipping
subaerial lava flows. These flows usually exhibit columnar and
slab jointing that, together with the contacts between the flows,
promote wave quarrying and the dislodgment of joint blocks
(see Figs. 6d and 7a). Likewise, clinker and pyroclastic lay-
ers between flows are also easily eroded, facilitating quarrying
processes. This explains how marine erosion can carve met-
ric to decametric cliffs on young effusive structures in a mat-
ter of months or years, e.g. on the southeast coast of Kı̄lauea
(Hawai‘i) where lava deltas from 2010-2011 eruptions already
exhibit a 3-4 m cliff. As a consequence of effective quarry-
ing processes - that produce substantial amounts of very large
blocks (Fig. 7a) - boulder accumulations at the base of cliffs
are common (either at or below the intertidal zone), further
contributing to marine abrasion. Abrasion occurs where wave-
generated currents sweep rock fragments and sand back and
forth or swirl them around within potholes. Although abrasion
is not as closely associated with the water level as other wave
erosional processes, its efficacy rapidly decreases with increas-
ing depth.

Effective erosion of sea cliffs by waves and weathering (with
removal of the weathered debris) produces shore platforms
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Figure 7: Examples of marine and biological erosion features on oceanic islands. (a) Wave quarrying of recent lava flows (erupted during 1990) along the southeast
coast of Kı̄lauea (Hawai‘i) and resultant boulder beach (USGS photo by T. Orr, courtesy of Hawaiian Volcano Observatory, USGS). (b) Shore platform carved on
pillow lavas, north coast of Fogo Island (Cape Verde). (c) Shore platform carved on subaerial tuffs, western coast of Sal Island (Cape Verde; photo courtesy of C.
M. da Silva). (d) Cave, littoral arch and wavecut notch in plunging cliff on the southern coast of Santa Maria Island (Azores). (e) Modern and MIS5e (ca. 130 ka)
wavecut notches on plunging cliff on the northern coast of Santa Maria Island (Azores). (f) Bioerosion (sea-urchin holes) on a shore platform (carved on tuffs) on
the western coast of Sal Island (Cape Verde).
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(previously known as wave-cut or abrasion platforms), horizon-
tal to gently sloping rock surfaces extending between the high
and low tidal levels (Trenhaile, 1987, 2011). The gradient of
intertidal shore platforms - and consequently erosional rocky
shelves - is determined by the tidal range, rock resistance, and
the wave regime (Trenhaile, 1987, 2000, 2011). The absolute
and relative efficacy of these process suites varies spatially and
temporally, so that wave erosion or weathering can be dominant
at a particular time or in a particular place on a platform surface.
Shore platforms on oceanic islands are typically irregular when
carved on subaerial flows, bulbous when carved in submarine
volcanic units rich in pillow lavas (due to the rheological con-
trast between the pillows and the hyaloclastite matrix; Fig 7b)
and smoother when carved in tuffs (Fig. 7c), hyaloclastitic de-
posits poor in pillows and pillow debris, fine terrigenous sedi-
ments, and carbonates.

There is usually a shore platform, boulder deposit, or beach
at the foot of a cliff, but some cliffs plunge directly into deep
water (Cotton, 1974). Plunging cliffs develop because of slow
wave erosion, the small size of the islands, which prevents large
amounts of material from being transported alongshore and de-
posited at the cliff foot, and relative sea level that rose much
faster than sediment could accumulate. Plunging cliffs are par-
ticularly common around basaltic volcanic islands in the South-
ern Hemisphere, where these factors are often met. Despite
approximately constant sea level, erosion is inhibited today by
resistant rocks, the lack of abrasives at the water level, and the
reflection of incoming, non-breaking waves. Nevertheless, hy-
draulic quarrying by the rise and fall of standing waves and the
compression of air in rock clefts produce caves, notches (Figs.
7d and 7e), and narrow platforms which will eventually allow
more erosive, breaking waves to attack the cliffs and destroy the
plunging condition (Cotton, 1974; Trenhaile, 1987).

The depth to which waves are able to planate submarine sur-
faces has important implications for the development of shore
platforms and insular shelves. It was once thought that erosion
could occur at considerable depths, and this was reflected in the
first conceptual models for shore platform and erosional shelf
development, which assumed that very wide shelves could de-
velop under constant sea-level conditions (Davis, 1896; John-
son, 1919; Challinor, 1949). Estimates of the maximum depth
of erosion have diminished through time, however, from 183
m by Johnson (1919), 90 m by Barrell (1920), 46 to 92 m
by Rode (1930), to 9 to 10 m by Dietz and Menard (1951).
Menard and Ladd (1963) proposed that wave erosional surfaces
are produced at sea level, although they can extend a little be-
low that level under stable sea-level conditions. The corollary
to modern acceptance of shallow water erosion is that wide ero-
sional rocky shelves develop as intertidal zones migrate land-
wards with rising relative sea level, thereby maintaining water
depths that allow sufficient wave energy to be expended at the
cliff foot to undermine the slope and remove the resulting debris
(Trenhaile, 1989, 2001). Thus, shore platforms become subma-
rine terraces and island shelves after a relative sea-level rise,
and subaerial terraces following a relative sea-level lowering.
Erosional terraces, which must be distinguished from morpho-
logically similar structures consisting of former beaches, coral

reefs, and effusive coastal structures, can develop during Qua-
ternary sea-level stillstands when the waves operate at essen-
tially constant levels, but they are subsequently truncated or
eliminated by erosion at lower elevations.

5.2. The development of insular shelves
Insular shelves develop from shore platforms that are pro-

duced within intertidal zones that migrate landwards and sea-
wards with changing sea level (see Fig. 8). Therefore, an insu-
lar shelf corresponds to the low-lying submarine zones around
island edifices extending from the coastline to the depth at
which there is a marked increase in gradient to the submarine
slopes of the volcanic edifice. In the absence of major verti-
cal movements and on islands that have experienced at least
one glacial/interglacial eustatic cycle, shelf depths should range
from 0 to 130 m (Quartau et al., 2010). Earlier researchers
(e.g. Menard, 1983) have suggested that the growth of insular
shelves reflects the long-term competition between processes
infilling the shelf (e.g. progradation of lava deltas) and those en-
larging it (e.g. shoreline erosion). During early growth stages,
large-scale landsliding can remove sections of islands and their
associated shelves. Following the phase of active volcanism,
shelves widen progressively, so that shelf widths increase with
edifice age; the width increase, however, does not follow a
linear relationship as the rate of wave erosion decreases with
increasing shelf width and decreasing shelf gradient (Menard,
1983, 1986; Ablay and Hürlimann, 2000; Mitchell et al., 2003;
Llanes et al., 2009; Quartau et al., 2010). Also, complicating
this simple picture are the effects of sea-level oscillations, var-
ied substrate resistance, sediment deposition, tectonics and sub-
sidence or uplift of the island (Quartau et al., 2010).

Sea-level oscillations mostly affect the shelf profile. Theory
and modeling suggest that changes in the amplitude of sea-level
oscillations have little effect on shelf gradient - this depends
mostly on tidal range, rock resistance, and wave regime - un-
less there are concomitant changes in the geological or mor-
phogenic conditions (Trenhaile, 1989, 2001). However, shelf
width and maximum depth increase with the amplitude of the
eustatic oscillations. Thus, an increase in the amplitude of
eustatic change results in adjustments to the shelf profile and
lead to larger amounts of coastal retreat. Modeling also sug-
gests that shelves become progressively wider and more gently
sloping when subjected to eustatic sea-level cycles of approxi-
mately constant amplitude, resulting in increasing wave attenu-
ation and slower shore erosion. These shelves trend towards a
state of static equilibrium, which is attained when, because of
low bottom gradients, wave stresses at or close to the water sur-
face, at each point along their profiles, are less than the thresh-
old or minimum (critical) stresses to erode the rock (Sunamura,
1978; Trenhaile, 1989, 2001). Erosion continues today at the
shore not only because there has not been enough time for static
equilibrium to be attained in hard rocks, variations in rock resis-
tance, and changes in wave regime and other factors over time,
but also because differences between sea-level oscillations re-
quire adjustments to the offshore profile. Erosion may also con-
tinue on coasts where weak waves remove fine-grained, weath-
ered material in suspension, so that the effect of progressively
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gentler bottom slopes on wave attenuation rates is of little im-
portance.

Wave attenuation rates, the distance that waves break from
the shoreline, and the width of the turbulent surf zone increase
as shelves become wider and more gently sloping. Assuming
that tidal range is 3 m and that the minimum slope for an inter-
tidal shore platform cut by waves is from 0.5 to 1◦, the corre-
sponding maximum width would be from about 170 to 340 m.
Therefore, only very narrow islands could be reduced to shal-
low banks or guyots under constant sea-level conditions. The
formation of shelves ranging up to 10 km or more in width,
and in some cases the abrasion of entire islands is the result of
Quaternary or earlier changes in sea level and subsidence of the
island edifice. Nevertheless, even with these changes in relative
sea level, the ability of waves to level entire volcanic islands de-
pends upon such factors as island width and material strength,
wave climate and tidal range, and the inherited morphology of
the shelf.

5.3. The windward/leeward asymmetry

Oceanic islands are frequently exposed to dominant winds
such as low latitude trade winds, the mid-latitude westerlies, or
the polar easterlies. This exposure to a dominant wind typically
imprints a hydrological, erosional and biological asymmetry to
island edifices and their coastal regions. This is particularly
dramatic at lower latitudes, where the relative exposure to the
trade winds has a profound effect on precipitation.

Precipitation on oceanic islands generally follows a circu-
lar pattern with rainfall closely related to elevation, size and
morphology of the edifice; rainfall is greater on larger islands
with higher topography than on islands with similar areas but
lower orography (Nullet and Mcgranaghan, 1988; Yang and
Chen, 2008; Sobel et al., 2011). Small and low islands - es-
pecially those located in tropical and subtropical regions - do
not generate enough diurnal cycling of elevated surface heat-
ing and mechanically forced upslope flow (from topographic
barrier effects to trade-winds) to significantly enhance rainfall
(e.g. Sobel et al. (2011) suggested the threshold of 315 km2 for
tropical islands to be able to generate significant enhanced rain-
fall). However, on tropical and subtropical high islands (e.g.
the Hawaiian Islands), topography intersects the trade-winds
enhancing total rainfall by a factor of up to 3-4 times when
compared to oceanic rainfall values (Nullet and Mcgranaghan,
1988). The elevation threshold for orographic cloud bands and
enhanced rainfall on oceanic islands is generally controlled by
the altitude of the lifting condensation level and whether or not
this level is below the trade wind inversion (Cao et al., 2007;
Smith et al., 2009). This elevation threshold depends on many
climatic factors and is regionally, locally and seasonably vari-
able. Notwithstanding these variations, it is typically located
around 600-800 m in elevation (Garrett, 1980; Giambelluca and
Nullet, 1991; Barcelo and Coudray, 1996; Prada and da Silva,
2001; Garcı́a-Santos et al., 2004; Cao et al., 2007; Smith et al.,
2009). For islands with peaks above the trade wind inversion
(frequently at 2000-2500 m in tropical and subtropical regions
and usually lower at higher latitudes), maximum rainfall occurs

on the windward slopes; conversely, for islands with moun-
taintops below the trade wind inversion (but above the lifting
condensation level), maximum rainfall occurs on the moun-
taintops and rainfall is less asymmetrically distributed (Barcelo
and Coudray, 1996; Yang and Chen, 2008). Consequently, the
windward sides of high islands are more dissected, eroding 30
to 40 times faster than the leeward sides (Wentworth, 1927;
Menard, 1986). Erosion by running water progressively dis-
sect the volcanic terrain, giving rise to deep valleys, box-head
ravines, and the sharply dissected topography that is character-
istic of the Hāmākua coast in Hawai‘i or the Nā Pali coast of
Kaua‘i. The dissection leads to a process that Cotton (1969) has
called skeletonisation and has a direct impact on the retreat of
windward coastal regions of prominent islands.

Waves also reinforce erosion on the windward sides since
stronger and/or more frequent winds increase wave height and
frequency, resulting in higher erosion rates, as on Prince Ed-
ward island in the Indian Ocean, Madeira Island in the Atlantic,
and Hawai‘i in the Pacific (Menard, 1986; Mitchell et al., 2003;
Brum da Silveira et al., 2010). Thus, large and high islands
at latitudes subjected to trade-winds are frequently asymmet-
rical, with higher, more dissected coasts and wider shelves on
the windward side (see Fig.3d). This is generally not the case,
however, for very young and active volcanoes because either
coastal topography is constantly renewed by volcanic activity
(extending coastlines and infilling incipient valleys) or because
in younger, more porous edifices rainwater tends to become
groundwater (Menard, 1986).

In contrast with islands with enhanced windward fluvial ero-
sion, on small and low islands waves are more effective ero-
sional agents than streams because precipitation is low and
rivers do not have space to develop. On these islands, shelf
width and cliff height are generally related to the amount of time
that coastal sectors have been exposed to wave action, and to the
frequency and significant height of the waves, which may be
different according to the windward/leeward exposure (Quartau
et al., 2010).

5.4. Coastal erosion during extreme-wave events
Extreme-wave events such as large storms and tsunamis

have the potential to cause great damage to coastal regions of
oceanic islands, constituting major geomorphic crises (Paris
et al., 2009). Storm surges and tsunamis have immense ero-
sive power and are capable of quarrying and transporting enor-
mous blocks from the shoreface (which adds to their abrasive
capability) to the inshore. These megaclasts and boulders are
typically derived from the surface and edges of adjacent reefs
or rocky platforms (when these are present), or from the up-
per seaward edge of the adjacent seacliffs; the quarrying of the
these megaclasts from both the shore platform edge and surface
is facilitated by partial detachment along joints and cracks in
the limestone or basaltic bedrock by marine erosion processes
(Noormets et al., 2002, 2004; Richmond et al., 2011; Paris et al.,
2011; Etienne et al., 2011). Storm- and tsunami-induced ero-
sion, coupled with mass wasting, is, in fact, the main agent
of change along volcanically-quiescent rocky shorelines of is-
lands that are frequently impacted by extreme-wave events (e.g
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Figure 8: Schematic cross-section of a volcanic island showing the generation of a marine erosional shelf as a function of time during a single glacio-eustatic
oscillation, and in the absence of uplift and subsidence (comparative profiles on the right-hand side). (1) Formation of a juvenile coast by volcanic processes.
(2) Rapid incision of shore platforms, essentially within the intertidal zone and at the same mean sea level. To improve visibility at this scale, erosion appears
exaggerated below sea level, although it occurs essentially within the intertidal zone. (3-5) Gradual sea-level fall, causing the seaward migration of shore platforms
and onsetting the generation of an insular shelf; decelerating regression of seacliffs by backwearing and/or downwearing and essentially through processes of mass
wasting and subaerial erosion. (5) Sea-level lowstand is reached during glacial maximum and seaward migration of the shore platforms ceases. (6-8) Gradual
sea-level rise to present or interglacial level (a highstand), causing the landward migration of the shore platforms and increasing coastal recession; initial, previous,
and lowstand sea levels also shown on (8) for comparison. Figures not to scale and topographical decay by subaerial processes is not represented.
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the northern shore of O‘ahu). Shoreline evolution in such set-
tings is, thus, mostly an event-driven process (Noormets et al.,
2002). The erosive impact of storms and tsunamis is also very
dramatic on clastic coasts, as mobile sediments are very easily
transported by the high-energy waves and currents generated
during these events. Along these coasts, extreme-wave events
breach beach barriers, shift sand and infill coastal lagoons, and
can even erode away entire beaches (since many of them are
small and perched). This is particularly evident on shorelines
of archipelagos with high storminess and exposure to local and
far-field tsunamis like the Azores or Hawai‘i. In the Azores, for
example, the return period of storms capable of generating sig-
nificant waves (Hs) of 12 m is just 5 years (Carvalho, 2003) and
the islands have been impacted by tsunamis at least 23 times
within the last 500 years (Andrade et al., 2006).

6. The role of biogenic processes

Living organisms established on coastlines may act as ero-
sive agents (e.g. lithophagous organisms), constructors of large
lithic structures that further enlarge and protect coasts from
erosion (e.g. coral reefs, coralline algae), or sediment suppli-
ers (e.g. organisms with mineral shells, such as mollusks and
crustaceans); they may also simultaneously assume a combina-
tion of any of these functions (e.g. echinoderms) (Taylor and
Wilson, 2003; Wilson, 2007; Wisshak et al., 2010; Davidson,
2011). Thus, it is not surprising that biogenic processes fre-
quently play a significant role in island coastal evolution (e.g.
in atolls). This is especially true for islands subjected to geo-
graphic or oceanographic conditions favorable to biogenic pro-
duction, such as in tropical waters away from upwelling or
freshwater and dust inputs. The relative importance of bio-
logical and biogenic processes in coastal evolution of remote
oceanic island systems is, however, not only related to the pre-
vailing environmental conditions, but also to the processes and
patterns of dispersal and successful colonization, including ar-
rivals by chance (Carlquist, 1966; Jokiel, 1990; Parker and Tun-
nicliffe, 1994; Scheltema et al., 1996; Ávila et al., 2009b), and
to the assembly rules for ecological communities (Diamond,
1975; Connor and Simberloff, 1979).

6.1. Biological colonization

Fresh lava flows are easily and rapidly colonized even on
such isolated oceanic islands as the Azores, Ascension Island
or Tristan da Cunha in the Atlantic Ocean, and Easter Island
in the Pacific Ocean (Ávila, 2006). The geographical location
of the island is an important factor that will constrain the fu-
ture biodiversity of the island. Usually, high-latitude or iso-
lated islands will have fewer species over the long term when
compared to low-latitude islands or islands located near source
populations (Fridriksson and Magnússon, 1992). Also, the ex-
istence of favorable winds and ocean currents, as well as ani-
mal (e.g. birds) migration routes, are key factors that strongly
influence the chances of dispersal. Birds play a key role on
both seed dispersal and fertilization of soils by their excretions
(Fridriksson, 1987). On the marine realm, algae propagules

and planctotrophic larvae of several invertebrate phyla (e.g.,
gastropod mollusks, Balanidae and Chthamalidae crustaceans,
sponges, echinoderms) are usually amongst the first settlers of
these empty habitats (Carlquist, 1966), whereas on the terres-
trial realm the pioneer colonizers are usually vascular plants
on volcanic ash, and mosses and lichens on hard substrates
(Brock, 1973; Fridriksson and Magnússon, 1992). On thermal
habitats, located in the vicinities of fumaroles, blue-green al-
gae are dominant (Brock, 1973). As these pioneering species
settle, successfully reproduce, and spread along island coasts
and inland, conditions may slowly arise for a viable coloniza-
tion by other species that arrive later, and are typically depen-
dent on the shelter and/or nutrients provided by the first set-
tlers. One of the biggest problems these first colonizers have
to cope with is the frequent shortage of water, as rainwater is
rapidly lost by percolation through tuff, sand and juvenile lava
onto deeper levels (Fridriksson and Magnússon, 1992). Gradu-
ally, with time, cumulative successful arrivals and colonization
lead to more evolved, complex and diverse ecosystems (Dia-
mond, 1975; Thornton, 1997; Fattorini, 2011). Thus, on re-
mote islands, time plays a crucial role in the assembly of in-
sular communities (Drake, 1990). Usually, in such isolated
ecosystems, the probability of success of chance events of long-
distance dispersal is quite low and the number of colonizers is
usually small - the well-known ”founder effect” (Mayr, 1954);
as a consequence, a high variability is expected in species com-
position from archipelago to archipelago, and sometimes even
between islands belonging to the same archipelago. Addition-
ally, the profound isolation to which some of these populations
are subjected may lead to genetic drift, speciation processes
and the rise of endemisms by adaptive and non-adaptive ra-
diation (Grant, 1981; Gittenberger, 1991; Vasconcelos et al.,
2010), further contributing to this variability. The extreme iso-
lation of many oceanic islands also subjects many populations
to intense pressure, often on the verge of collapse, so when
environmental conditions change rapidly many of these pop-
ulations experience bottleneck effects, local disappearances, or
even extinction (Carson, 1992; Ávila et al., 2008a,b). Even on
less remote islands such as Surtsey, many pioneers did not sur-
vive, and 25 years after the emergence of the island, only 14%
of the recorded species were successful colonizers (Fridriks-
son, 1989). Consequently, when compared to continents, most
oceanic islands are usually characterized by a depauperate and
disharmonic fauna and flora, in the sense that common species
on continents are frequently absent in insular habitats (Whit-
taker et al., 1997; Ávila, 2006).

Biological colonization of the coasts of young oceanic island
volcanoes is, thus, strongly influenced by the geometry and age
of the archipelago (i.e. the history of emergence above sea level
over space and time) (Fernández-Palacios et al., 2011), the pat-
terns of ocean currents and winds that affect the newly-built
edifices (Ávila et al., 2009a), the geographical location, and the
distance to other well-established biological communities that
may constitute the source of potential colonizers (MacArthur
and Wilson, 1967; Fridriksson and Magnússon, 1992; Whit-
taker et al., 1997, 2008; Whittaker and Triantis, 2012). In linear,
age-progressive island chains with small inter-island spacing -
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like Hawai‘i, Galápagos or the Society Islands - the process of
biological colonization of younger volcanoes is typically facil-
itated by the existence of more solidly established communi-
ties in nearby older edifices - geologically ”downstream” from
the hotspot but biologically ”upstream” - that serve as potential
sources of colonizers. In these archipelagos, the linear array
of island edifices serves as ”stepping stones” for organisms to
expand their geographic range, thus promoting the process of
internal colonization (i.e. within the same archipelago) - a pro-
cess that explains how some species are apparently older than
the geological age estimates of the islands they inhabit (Rass-
mann, 1997; Sequeira et al., 2000). On smaller, more remote
archipelagos in which islands are arranged in clusters instead of
linear chains and where the history of edifice emergence above
sea level is typically non-linear, the process of biological colo-
nization of new edifices is generally more complex and some-
what more erratic. On single islands or small clusters of islands
in extreme isolation - like the Azores or Easter Island and ad-
jacent islets - the process of colonization is totally dependent
on new arrivals from outside the archipelago and by resistant
long-distance travelers (Scheltema et al., 1996), resulting in less
diverse communities. After successful colonization of these is-
lands, their extreme isolation usually promotes the genetic and
morphological differentiation that ultimately leads to speciation
(Rosenzweig, 1985; Carson, 1992).

6.2. Bioerosion

Bioerosion also begins almost immediately after the settling
by algae that attack the rocky substrate by chemical dissolution
(biocorrosion), by patellid gastropods that graze on biofilms,
by sea-urchins (Fig. 7f) that scrape and burrow the basalts by
mechanical means (bioabrasion), and by boring sponges, prob-
ably the most effective of the endolithic bioeroders (Neumann,
1966). Sponge bioerosion is a twofold mechanism: it is me-
diated by enzimes (carbonic anhydrase and acid phosphatase)
that are responsible for mineral dissolution and digestion of
organic components (Schönberg, 2008); and the chemical at-
tack is aided by mechanical displacement of fragments of the
substratum and their later transport out of the sponge galleries
(Hatch, 1980). Sponge bioerosion rates and bioerosion sponge
abundances are dependent on a large variety of environmen-
tal parameters, the most important are water flow, nutrient or
sewage concentration and substrate density; salinity and tem-
perature of the water, light conditions, water depth, and age and
size of the sponge play a minor role (Schönberg, 2008). The
boring of hard substrates such as basalts, by bivalve mollusks
is also documented in the scientific literature for both the fossil
record and the recent. For example, in the Atlantic islands, bi-
valve basalt borers are known from the Miocene of Porto Santo
Island, Madeira archipelago (Santos et al., 2011a,b), from the
Late Miocene of Santa Maria Island, Azores (Ávila, unpub-
lished data) and from the Plio-Pleistocene of Santiago Island,
Cape Verde (Santos et al., 2011b). Such species are also known
from the geological record of volcanic islands on island-arc set-
tings (e.g. Japan) as well as from their modern shorelines (Ma-
suda, 1968; Masuda and Matsushima, 1969; McHuron, 1976;

Fang and Shen, 1988; Haga et al., 2010), suggesting that bi-
valves capable of boring hard basalt substrates are quite com-
mon. Wisshak et al. (2010) showed that as bioerosion by pho-
toautotrophic endoliths and grazers (that feed upon them) is
a function of light, bioerosion rates are stronger in the photic
zone and rapidly decrease towards deeper waters. In tropi-
cal latitudes, some littoral species of echinoids have impres-
sive rates of bioerosion, as suggested by examples from anal-
ogous settings (e.g. the Caribbean). For example, Echinome-
tra lucunter - a species that is common in the Bahamas and
Bermuda but also on many Atlantic hotspot islands such as the
Cape Verdes (see Fig. 7f) - is capable of eroding 6670 to 7000
g/m2/yr (Hunt, 1969; Hoskin et al., 1986). Another good ex-
ample is Paracentrotus lividus, which is the most conspicuous
bioeroding echinoderm in the Azores, Madeira, the Canaries
and the Cape Verdes, being especially abundant at 1-2 m depth
(Madeira et al., 2011). On these basaltic rocky shores, this echi-
noid actively uses its Aristotles lantern to bore cup-shaped to
deep-pocket depressions, with a narrow entrance opening (As-
gaard and Bromley, 2008).

6.3. Reef development and evolution
If a volcanic island occurs in seas that are suitable for coral

growth then it is likely to rapidly develop a reef around it.
Coral reefs cover more than 250,000 km2 of the Earth’s sur-
face largely within the tropics where sea surface temperatures
exceed 18 ◦C (Spalding and Grenfell, 1997). The greatest di-
versity of corals occurs in the Indo-Pacific with a second re-
gion centered on the western Atlantic; reefs are absent in the
Mediterranean and reef development is limited in the eastern
Atlantic and eastern Pacific Oceans. For example, corals are
frequently stressed by El Niño-Southern Oscillation (ENSO)
extremes in the Galápagos Islands where reefs are poorly de-
veloped, and reef development is also limited in the Marquesas
Islands.

Mid-ocean reefs are typically classified into fringing reefs,
barrier reefs and atolls. This distinction was first adopted by
Charles Darwin (1842) who postulated that these represented
successive stages in the development of reefs. Darwin real-
ized that coral reefs could grow upwards fast enough to remain
in shallow waters as the underlying basement subsides. His
insight was to realize that these three types of reef represent
stages in an evolutionary sequence, driven by gradual subsi-
dence of the volcanic island around which the reef had initially
formed. The Darwinian view involves prolonged subsidence
of mid-ocean volcanoes and can now be integrated within the
plate-tectonic framework to explain the relative location of dif-
ferent island types (Scott and Rotondo, 1983), particularly in
the context of linear island chains in the Pacific Ocean. In such
age-progressive island chains, the long-term subsidence trend
that facilitates reef development is essentially driven by plate
cooling and hotspot swell decay as the plate rapidly moves
away from the hotspot (Morgan et al., 1995; Scott and Ro-
tondo, 1983; Ramalho et al., 2010b). The Darwinian model
is still generally accepted as a valid framework for reef evo-
lution, and the classification of reef morphologies is still use-
ful. However, at a finer scale, subsidence alone cannot explain
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the entire variety of modern and preserved reef morphologies
present in the oceans (Toomey et al., 2013). These morpholo-
gies range from actively accreting fringing and barrier reefs to
terraces preserved by drowning or subaerial exposure, and other
effects need to be considered in order to fully explain their dif-
ferences (Scott and Rotondo, 1983; Toomey et al., 2013). For
instance, different subsidence rates may lead to different reef
morphologies. Additionally, the effects of eustasy need to be
integrated, because sea-level changes have had an important ef-
fect on the establishment, growth and renewal of reefs (Daly,
1934; Paulay and McEdward, 1990; Woodroffe et al., 1999;
Woodroffe, 2008), and a sequence of interglacial reef lime-
stones have been recognized with depth beneath atolls (McLean
and Woodroffe, 1994). In a similar fashion, accretion rates may
differ according to environmental and oceanographic conditions
and will have a profound effect on reef morphology. Local up-
lift - whose origins are still poorly understood or are the focus of
hot debate (see Scott and Rotondo, 1983; McNutt and Menard,
1978; McMurtry et al., 2010; Ramalho et al., 2010b) - may fur-
ther contribute to the variability in reef morphology. It is now
perceived that the diversity of modern reef morphology essen-
tially arises from the combined effects of island subsidence (or
sometimes uplift), coral accretion rates, and Pleistocene glacio-
eustatic cycles (Woodroffe et al., 1999; Toomey et al., 2013).
This modern perspective somewhat reconciles the competing
models proposed by Daly and Darwin, in that reef profiles and
the formation of barrier reefs are controlled by subsidence and
vertical coral accretion (Darwin’s hypothesis), yet the morphol-
ogy of modern reefs bears the strong imprint of Pleistocene eu-
static variations (Daly’s hypothesis) (Toomey et al., 2013). At
an even finer scale, wave energy may also contribute to shape
reef morphology (Storlazzi et al., 2003).

The development of coral reefs around volcanic islands and
over the timescales of glacio-eustatic cycles is essentially con-
trolled by the vertical rate of reef accretion, which is the inte-
grated result of coral growth, local production of detritus, and
lithification (Dullo, 2005; Montaggioni, 2005; Toomey et al.,
2013). Reef accretion rates typically decrease with increas-
ing water depths, mostly because reduced light intensity lim-
its coral growth (Bosscher and Schlager, 1992); as light inten-
sity reduces with depth, it limits photosynthesis by the zoox-
anthellae algae that live in symbiosis with corals and on which
they depend. Coral growth is thus dependent on water depth,
with maximum growth values close to sea level, at the reef
crest, and no growth below a critical depth. However, other
environmental factors such as temperature, salinity, oxygena-
tion levels etc, and, equally importantly, the availability of ac-
commodation space, also control coral growth. Accommoda-
tion space (and consequently accretion rate) is, in its turn, typ-
ically maximized on particular conditions of relative sea-level
rise, i.e. at particular rates of reef submergence. This means
that, on longer geological timescales, accommodation space is
normally controlled by tectonic subsidence of the substrate on
which coral reefs grow. At smaller timescales, however, rapid
glacio-eustatic oscillations - that typically happen at a much
faster pace than tectonic vertical motions - have a strong impact
on reef accretion (Paulay and McEdward, 1990). It is precisely

the integration of these several factors controlling coral growth
and reef accretion, at different timescales, that will shape reef
development (see Fig. 9). At smaller timescales, and particu-
larly during a postglacial transgressive period (as today), reef
behavior is typically classified as ”keep-up”, ”catch-up” and
”give-up” (Neumann, 1985). Under slow to moderate rates
of relative sea-level rise, and when accretion rates are able to
match submergence, reefs can keep up with sea level, maintain-
ing their crests close to this interface. However, during glacial
terminations, sea-level rise happens at much faster rates (> 25
mm/yr) and can significantly outpace maximum reef accretion
rates (typically < 10 mm/yr), submerging the reef (Neumann,
1985; Toomey et al., 2013). Then, when sea-level rise slows to-
wards the peak of the interglacial highstand, two scenarios may
happen: either the reef remained shallower than the drowning
depth and eventually catches up with sea level, or the reef is
submerged to depths beyond which accretion is not possible
and is forced to ”give up” (Neumann, 1985). Present-day reef
morphologies are, of course, the result of reef development over
longer geological timescales, i.e. they result from the integrated
effects of multiple glacio-eustatic cycles, and long-term vertical
motion. The impact of fast glacio-eustatic oscillations on reef
development is, in general terms, to limit fringing reef growth,
to make drowning more likely, and to generate structures that
are typical of either sea-level lowstands or highstands (Toomey
et al., 2013). With these insights in mind, it is now possible
to refine the Darwinian model of atoll formation, with a higher
level of detail than previously.

The first stage in atoll formation is the development of a
fringing reef. Under favorable conditions, reefs are able to
grow rapidly around the perimeter of young volcanic islands,
until they completely or partially surround the volcanic edifice
(see Figs. 3c and 3g). In some cases, reefs form on volcanic
substrates that are still active; for example, coral establishment
has been observed on recent lava flows around the Island of
Hawai‘i (Grigg et al., 1981). The evolution of a small fringing
reef into the next stages of reef development, over timescales
greater than a single glacio-eustatic cycle, will depend greatly
on vertical motion rates (see Fig. 9 and Toomey et al., 2013).
With low subsidence or slight uplift, accommodation space is
very limited (more so because of sediment infill) thus con-
straining reef accretion; under these circumstances, reefs typi-
cally retain their fringing morphology (albeit some slow lateral
growth or migration) or, if slight uplift occurs, become emer-
gent single reefs or terraces. On the other hand, under slow-to-
moderate subsidence rates (0.05 to 0.4 mm/yr), reef accretion is
generally able to keep up with relative sea level; slowly, as is-
land edifices subside, upward coral accretion maintains the reef
near the sea surface and, gradually, fringing reefs convert into
lagoon-bounding barrier reefs. This transition, however, bears
the imprint of recent rapid sea-level rise through the (typically
temporary) drowning of the reef and by stimulating accretion
at the reef crest, either by a ”keep-up” or ”catch-up” process;
thus, lagoon-bounding barrier reefs are typical highstand fea-
tures (Woodroffe, 2008; Toomey et al., 2013). In the long term,
however, as subsidence continues and reefs keep up with sea
level, any trace of the volcano disappears below the sea sur-
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Figure 9: Model for reef development as a function of uplift rates and maximum
reef growth, using a proxy eustatic curve. Modified from Toomey et al. (2013)

face, leaving the reef as an annular atoll (Darwin, 1842). Under
more moderate subsidence rates (0.4 to 1 mm/yr), the reef may
behave differently. Under these circumstances, reefs struggle to
keep up with sea level, and a single drowned lagoon or terrace is
produced during the postglacial sea-level rise; single drowned
terraces, where the reef crest is still struggling to keep-up with
sea level, are also typical highstand features. In extreme situ-
ations where islands are subjected to fast subsidence rates (in
excess of 1 mm/yr), reefs do not have time to develop beyond
fringing structures, and when they eventually submerge beyond
the critical depth for coral accretion, they give up, and turn
into drowned terraces; permanent drowning (give-up) generally
occurs during lowstands and consequently multiple drowned
terraces are typical lowstand features. The transition between
atoll and guyot occurs when environmental conditions restrict,
or when subsidence is fast enough to restrict, ”keep-up” and
”catch-up” of the reef crest, causing a definitive ”give-up” of
the reef system, at the so called Darwin Point (Grigg, 1982). In
uplifting systems, by contrast, and under moderate-to-fast up-
lift rates (> 1 mm/yr), a staircase of wide raised terraces is gen-
erated when successive highstand reef structures get stranded
subaerially.

The Society Islands demonstrate well the stages of reef de-
velopment and of erosion of the volcanic core; in this chain it
is possible to observe successively smaller subaerial remnants
from Moorea along the chain to Huahine, Taha‘a and Bora Bora
culminating in the atoll of Tupai. The Hawaiian Island chain,
including Hawai‘i Island on which Kı̄lauea is active, exhibits
the successive stages of dissection, particularly by fluvial pro-
cesses, of volcanic islands of increasing age, as the chain moves
to the northwest with migration of the Pacific plate; atolls are
found to the northwest, and the chain continues with the sub-
merged Emperor seamounts. The northern limit to coral growth
sets a threshold beyond which this chain extends, which has
been called the Darwin Point (Grigg, 1982). At the southern
limit to reef development in the Pacific, the Lord Howe Island
chain represents the opposite extreme, with Balls Pyramid, a
spectacular erosional remnant 562 m high, beyond those seas

in which reefs can form, but with an incipient fringing reef
around Lord Howe Island itself, and atoll-like reefs to its north
(Woodroffe et al., 2006).

The formation of a coral reef around a volcanic island has a
profound effect on the relative rates of erosion of the island’s
shoreline (Menard, 1986). Cliff erosion, which is described
elsewhere in this paper, is very effective at eroding volcanic
islands, except where they are protected by a reef. The reef
attenuates wave energy; swell breaks on the reef crest, and
smaller secondary waves prevail in backreef environments (see
Fig. 3c). Between 70 and 90% of wave energy is expended
on the reef crest, ensuring that the shallow lagoon or reef flat
behind it is comparatively sheltered (Hopley et al., 2007).

6.4. The role of biogenic sediment production
Living communities may contribute various amounts of bio-

genic sediment (typically of carbonate composition), depend-
ing mainly on local biological productivity levels. Biogenic
sediments are mostly composed of the skeletons of calcareous
organisms (such as corals and foraminifera), the broken-down
products of abraded calcareous organisms (such as coral boul-
der and shingle, or shell hash) or the erosional products of bio-
eroders (such as the fine sediment excreted by parrotfish).

Reef growth is rapid on islands in reefal seas, particularly at
the reef crest. The nature of the benthic habitats associated with
the coral reef that surrounds such islands is a function of sev-
eral environmental factors (Chappell, 1980). Behind the reef
crest, which is often an intertidal rim veneered with coralline
algae, backreef environments comprise either a shallow lagoon,
which acts as a trap for sediments as at Lord Howe Island, or a
near-horizontal reef flat that can be exposed by the lowest tides,
the upper surface of which is often veneered with coralline al-
gae or a thin sediment cover. Carbonate production is rapid;
rates of vertical reef accretion, as distinct from coral growth,
have been determined from coring and dating, and are often
up to 8 mm/yr (Hopley et al., 2007). Higher maximum accre-
tion rates, however, have been recorded at analogous settings,
including 12 mm/yr on the Alacran Reef off the northern Yu-
catan Peninsula, 15 mm/yr on St. Croix, and 14.3 and 20.8
mm/yr on a fringing reef on the Pacific coast of Panama (Adey,
1975; Macintyre et al., 1977; Glynn, 1977). The smaller sec-
ondary waves and solitons formed behind the reef crest are di-
rected landwards and deliver biogenic skeletal sediments, dom-
inated by coral, foraminifera, coralline algae and mollusks, to
the beaches that surround the island. On basaltic oceanic is-
lands encircled by reefs, carbonate production typically exceeds
the supply of sediment from the island itself and beaches are
overwhelmingly carbonate in composition. For example, Lord
Howe Island, at the southern limit of reef development, has a
fringing reef along only 6 km of its perimeter, the remainder
primarily comprising steep cliffs cut in basalt. However, corals
grow at rates comparable to those in more tropical locations
(Harriott, 1999), and the lagoon consists of reef-derived carbon-
ate sediments several meters thick, with the beaches on its land-
ward margin also > 95% carbonate (Kennedy and Woodroffe,
2000). Reef environments do undergo a range of erosional pro-
cesses, through the action of borers and grazers; however, the
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net outcome is generally the accumulation of further carbonate,
and through the aggregation of these processes, the reef gets
larger and is cemented into the limestone structures that have
been preserved around the tropics as reef limestone. Neverthe-
less, about 20 − 25% of the produced carbonate ends up being
exported (e.g. transported offshore by storms) or lost to natural
dissolution (Harney and Fletcher, 2003).

On reefless islands, where biogenic production is limited, the
principal living organisms that contribute significantly to sedi-
ment production in terms of biogenic skeletal remains are mol-
lusks and calcareous algae. These organisms are mostly sand-
dwelling, and so their presence depends largely on the avail-
ability of suitable substrate. Truncation of volcanic edifices
because of their exposure to wave abrasion in the absence of
reefs, results in the formation of broad shelves around many
such reefless islands. For example, Balls Pyramid lies near the
centre of a planated shelf that is > 10 km in diameter. Lord
Howe Island, which must have been reefless for much of the
6 million years since eruption until plate migration brought it
into reefal seas, is surrounded by a shelf at least 8 km wide on
all sides around the island, but dominated by sediments derived
from algal material (Woodroffe et al., 2006). As reefless island
coasts evolve and mature, insular shelves progressively widen
and become veneered by increasing amounts of volcaniclas-
tic sediments transported from shallower levels during storms.
However, the continuous productivity of the calcifying organ-
isms results in increasing contributions of skeletal remains over
time. As a consequence, the biogenic content of sandy deposits
in reefless islands increases as a function of time, as the edifices
and coasts themselves evolve. This is especially true in uplifted
old islands, where the possibility for sediment recycling is en-
hanced (e.g. in Santa Maria Island, Azores, or in Sal, Boa Vista
and Maio Islands, Cape Verde, see Fig. 10h). The relative pro-
portion of skeletal remains in sedimentary bodies of reefless
islands may thus represent a qualitative way to determine the
age of the edifice and its stage of development.

7. Sedimentation along coastlines and insular shelves

Oceanic islands are, by nature, exposed to wave action and
thus sediment dynamics along their coasts and insular shelves
are typically wave- to storm-dominated. The presence of reefs,
however, as we previously argued, changes sediment dynam-
ics considerably. When coral reefs are present, carbonate sed-
imentation increases significantly, either from erosion of the
reef framework or from direct deposition as skeletal compo-
nents on islands with fringing (Calhoun et al., 2002; Harney
and Fletcher, 2003) or barrier reefs (Gischler, 2011), and on
atolls (McLean and Woodroffe, 1994). Sandy beaches can thus
rapidly form on embayed coasts protected by reefs, especially
in places less exposed to wave energy (Bochicchio et al., 2009;
Conger et al., 2009) (Fig. 10a). Hence, it becomes necessary to
treat islands differently, according to the stage of development
of their reefs.

7.1. Reefless volcanic islands
On reefless volcanic islands or on sections of an island that

are not shielded by fringing reefs, sediment generation, trans-
port and deposition along the coast typically vary according to
the island’s size and orientation relative to the trade-winds. On
small, intermediate or low-lying reefless islands wave erosion is
the dominant process contributing to shelf sedimentation with
decreasing contributions from subaerial erosion, explosive vol-
canism, lava quenching when entering the sea and biological
productivity (Quartau et al., 2012). This is the case on the Sel-
vagens Islands, Corvo, Graciosa and Santa Maria in the Azores,
and Prince Edward Island in the Indian Ocean. On these is-
lands, the majority of coastal sediments derive from cliff ero-
sion and/or from small, incipient reefs if present. Sediments
are normally produced in small amounts, and on more energetic
stretches of coast they are transported offshore by downwelling
currents that develop during storms, stripping these coasts of
sandy sediment. Conversely, large and prominent islands like
the Hawaiian Islands, Madeira, Tenerife and Gran Canaria in
the Canaries, Santo Antão and Santiago in the Cape Verdes,
and La Reunión, tend to be eroded by fluvial processes and
mass wasting rather than by waves (Wentworth, 1927; Menard,
1983, 1986; Salvany et al., 2012). On these islands, partic-
ularly on their windward sides, enhanced rainfall permits the
development of large rivers that carry substantial amounts of
sediments that are delivered to, and redistributed along, coastal
areas (Fig. 10b) (Wentworth, 1927; Draut et al., 2009; Ferrier
et al., 2013). In fact these rivers, which have very steep pro-
files, are extremely potent eroding agents, exhibiting some of
the highest erosion rates on the planet despite their very limited
catchment areas, lengths and seasonality (Louvat and Allègre,,
1997; Louvat and Allègre, 1998; Terry et al., 2006; Ferrier
et al., 2013). For example, the Hanalei river basin on Kaua‘i
experienced a million-year averaged erosion rate of 545 ± 128
t/km2/yr and discharged up to 690 t/km2/yr (with a mean of
369 ± 114 t/km2/yr for the period between 2003-2009) of sus-
pended sediments to the adjacent coastline (Ferrier et al., 2013).
Likewise, streams on São Miguel Island in the Azores erode
about 184-525 t/km2/yr and may discharge (individually) up to
495 ± 153 t/km2/yr of suspended sediment load (Louvat and
Allègre, 1998). Mechanical erosion rates at La Reunión are
amongst the highest in the world, corresponding to 1200-9100
t/km2/yr with peak erosion and discharge occurring during or
immediately after cyclones, and amounting to a total denuda-
tion rate of 470-3430 mm/kyr (Louvat and Allègre,, 1997). It is
not surprising, thus, that along the coasts of such prominent is-
lands sediment contribution from subaerial erosion significantly
increases relatively to that from other sources, a fact that fur-
ther inhibits the development of coral reefs (Draut et al., 2009).
On such coasts, sediments tend to accumulate nearshore in em-
bayed gravel and sandy beach systems adjacent to river mouths
(Fig. 10c). Along cliffed coasts, and away from riverine dis-
charge, sediments can accumulate as narrow and steep boul-
der/gravel beaches on top of shore platforms mainly sourced
from cliff erosion (Felton, 2002)(see Fig. 10d); on these shores,
cliff mass wasting is a main contributor of very coarse sedi-
ments, and responsible for creating large boulder accumulations
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Figure 10: Examples of sediment accumulation along oceanic island coastlines. (a) Perched coral sand beach in an area of high biogenic productivity and low wave
energy - a coastal lagoon created by young lava flows - along the virtually uneroded coast at Puerto Villamil on Isabella Island, Galápagos. (b) Large boulder beach
in the vicinity of a river mouth on Flores Island (Azores). High (torrential) riverine discharge supplies large amounts of coarse sediment that is redistributed and
reworked by marine erosion along the adjacent coastline. (c) Sand and gravel beach at the mouth of Hālawa valley, NE Moloka‘i. (d) Linear boulder beach on
the windward side of Madeira Island, derived from cliff erosion and failure, and wave action (photo courtesy of P. E. Fonseca). (e) Pocket perched boulder beach
bounded by rocky promontories, on the leeward side of Pico Island (Azores). (f) Pocket sand beach at Ribeira da Prata, a protected bay on the leeward side of
Santiago Island (Cape Verde); riverine solid discharge from valleys in the vicinity contribute fine sediment to this stretch of coast. (g) Bioclastic coastal shoulder
sand dunes on the windward side of São Vicente Island (Cape Verde); local high biogenic productivity coupled with windy conditions promote the creation of
bioclastic sandy beaches that are deflated, producing littoral sand dunes. (h) Large bioclastic sandy beach on the leeward side of Maio Island (Cape Verde) created
by local high biogenic productivity and recycling of biogenic sediments from uplifted Pleistocene carbonate marine terraces (in the foreground); the high availability
of fine bioclastic sediments, the leeward conditions, and a wide and shallow insular shelf allow the development of very large sandy beaches and supratidal salt pans
(in the background) (photo courtesy of C. M. da Silva).
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that temporarily extend coastlines seawards (see Fig. 11d-g).
Additionally, on protected bays or other sites with locally high
biogenic productivity, small bioclastic-rich beaches may form
and even sustain coastal sand dune systems (e.g. Johnson et al.,
2013) (see Fig. 10g).

Pocket beaches composed of boulders, gravel or sand may
form between headlands or lava flows that confine and pro-
tect the deposits from currents and waves, allowing their sta-
bilization (Figs. 10d and 10e). These are frequently perched,
i.e. they are underlain or fronted seaward by more rigid struc-
tures such as reefs, lava flows or dykes exposed by differen-
tial erosion (Gallop et al., 2013). Sediment dynamics on ex-
posed beaches is generally variable - with cells of erosion and
accretion spaced within scales of hundreds of meters (Romine
and Fletcher, 2013) - but is generally characterized by signif-
icant cross-shore movements of sand that reshape the beach-
face during large swell events such as storms; subsequent beach
recovery begins rapidly following such events when weak to
moderate fair-weather wave conditions favor onshore sediment
transport (Dail et al., 2000). Along-shore currents are com-
mon along insular coasts and are mainly generated by the in-
teraction between trade-winds and coastal morphology; trade-
winds are capable of resuspending bottom sediment through
the combined effect of wind-driven currents and wave-orbital
velocities (Ogston et al., 2004; Calhoun et al., 2002). Along-
shore currents further add to sediment transport, shifting fine
sediment from bay to bay, particularly during more energetic
seasons when much of the fine sediment may be transported
in suspension (Norcross et al., 2002). The resulting sediment
dynamics, with strong cross- and along-shore currents, means
that sediments constantly shift along and across the shelf. In
fact, in all these settings, sediments (especially fine ones like
small gravel, sand or silt) tend to have a short residence time
nearshore since high storm waves effectively remove coastal
sediments and transport them offshore (Tsutsui et al., 1987;
Quartau et al., 2012; Romine and Fletcher, 2013; Meireles
et al., 2013). These sediments are typically deposited further
offshore to form clinoform bodies on the deeper parts of the
shelf (Chiocci and Romagnoli, 2004; Quartau et al., 2012). The
accumulation of sediments within the island shelf is, however,
transient, since most sediments end up being transported over
the shelf break to the surrounding seafloor; sediment accumu-
lations on the steep and narrow insular shelves are very prone
to submarine mass wasting, producing turbidity currents that
contribute to the formation of deep-sea volcaniclastic aprons
(Menard, 1956, 1983; Schmincke et al., 1995; Schneider et al.,
1998; Ávila et al., 2008a; Carey et al., 2011). The transport of
sediments over the shelf break is generally episodic (seasonal
or occasional), occurring mostly during major storms (Tsut-
sui et al., 1987; Saint-Ange et al., 2011) or as result of earth-
quakes, and are more frequent during sea level lowstands when
island shelves are reduced in size (Ávila et al., 2008a; Quartau
et al., 2012). Transport is greatly enhanced when submarine
canyons cut through the shelf break (Saint-Ange et al., 2011;
Sisavath et al., 2011; Romine and Fletcher, 2013). As result of
offshore transport, volcaniclastic aprons accumulate in the pe-
riphery of island edifices and gradually infill the surrounding

flexural moat induced by volcanic loading; they are composed
of pyroclastic, hydroclastic and epiclastic sediments (mixed or
interbedded with biogenic sediments) that often reflect the evo-
lutionary stages of island building (Schmincke et al., 1995;
Schneider et al., 1998; Carey et al., 2011). The transport of
shelf sediments offshore, however, may be significantly lim-
ited on very wide shelves (Trenhaile, 2000, 2001), along small
stretches of coast protected by reefs (Woodroffe, 2002; Harney
and Fletcher, 2003; Storlazzi et al., 2004; Romine and Fletcher,
2013) or where specific coastal morphologies dissipate wave
energy. In a similar fashion, on tropical, subtropical or even on
temperate environments, sediment dynamics may be affected
by the formation of beachrock. The cementation of beach sed-
iments onto beachrock reduces the volume of available littoral
mobile sediment, may make coasts more resilient to erosion,
and change coastal morphology (Meyers, 1987; Cooper, 1991;
Calvet et al., 2003). In the medium to long term, beachrock
formation on stretches of coast that lack significant sediment
input from riverine sources may induce a change from a sandy
to a rocky shore, during multiple Pleistocene transgressions and
regressions (Cooper, 1991)

7.2. Islands with fringing and barrier reefs

When a fringing reef forms around volcanic islands, it pro-
tects the shoreline, substantially reducing the rate of cliff reces-
sion. In addition to its protective role, the surrounding reefs
also serve as sediment traps that retain the eroded volcanic ma-
terial in the lagoon behind the reef, but the rate of terrestrial
erosion and sediment delivery is almost always small in com-
parison to the prolific sediment production by calcareous or-
ganisms. Thus, large sandy beaches, dominantly composed of
carbonate-rich sediments, are ubiquitous along shores protected
by coral reef. As subsidence continues, the fringing reef be-
comes a larger barrier reef farther from the shore with a bigger
and deeper lagoon inside. The lagoon fills in with eroded mate-
rial from both the reef and the island, i.e., with both calcare-
ous and lesser terrigenous sediment. Trade-wind-driven and
tide-driven processes are the dominant control for circulation
and sediment dispersal on the shallow, broad reef flats of fring-
ing reefs; along-shore transport is mainly induced by the in-
fluence of trade-winds whereas across-shore transport is essen-
tially controlled by tides and large swell (Ogston et al., 2004;
Storlazzi et al., 2004; Presto et al., 2006). Sediment dynamics
may alter significantly during storms. Sediments can be trans-
ported offshore to the top of the wave-eroded fore reef (Fletcher
et al., 2008; Grossman et al., 2006) with an increase in the ter-
rigenous component of the sediments due to high riverine dis-
charge (Bothner et al., 2006).

7.3. Annular atolls

Ultimately, the volcanic edifice sinks below sea level but the
barrier reef displaying an outer rim consisting of corals keeps
growing and accreting producing a typical coral atoll (e.g. the
Tuamotus, the Maldives, etc) . The outer reef encloses an open
lagoon partially filled by fine-grained carbonate sediments that
bury the volcanic basement. The production of carbonate on, or
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adjacent to, the reef crest is typically supplemented by localized
accretion on patch reefs, and from other epibiotic organisms in
the lagoon; this has been likened to the infill of a leaky bucket,
which progressively fills (Purdy and Gischler, 2005). Finally,
when subsidence outpaces coral accretion, the island becomes
a guyot (Grigg, 1982; Thomas et al., 2011).

Atolls and almost-atolls (islands with only small volcanic
outcrops remaining, like Aitutaki in the Southern Cooks or
Bora Bora in the Society Islands) constitute circular to ellip-
tical isolated carbonate platforms, reef-rimmed and aggraded
to sea level (Guilcher, 1988; McLean and Woodroffe, 1994;
Woodroffe et al., 1999). Margins are generally steep, with
an outer escarpment, and exhibit facies belts, typically with a
windward/leeward asymmetry (Mullins and Neumann, 1979;
Guilcher, 1988). Inner lagoons are generally 30-90 m deep
and are floored by carbonate muds and sands that are inter-
rupted by high submerged reef knolls and patch reefs (McLean
and Woodroffe, 1994; Woodroffe et al., 1999). Towards the
rim, sediments typically consist of back-reef sand and cemented
reef rubble, dotted by patch reefs and isolated coral heads, and
sometimes forming small sandy islands that are made more re-
silient due to beachrock consolidation. The rim is constituted
by reefal boundstones that extend a few tens of meters downs-
lope on the seaward side until coral and algal sands can be found
again, fining into skeletal sands and silts with loose reef blocks
(McLean and Woodroffe, 1994; Woodroffe et al., 1999). Wind-
ward margins differ from leeward ones in the amount of loose
sediment available; windward margins, due to higher wave en-
ergy, typically have less sediment (Guilcher, 1988; Woodroffe
et al., 1999). On atolls, windward rim islands are generally
sandy with shingle ridges, and are referred to as ’motu’, a
Polynesian term for island (Newell, 1961; Woodroffe et al.,
1999; Woodroffe, 2008); conversely, reef islands composed en-
tirely of sand are more common on the leeward rim and are
known as ’cays’ (Stoddart and Steers, 1977; Woodroffe et al.,
1999; Woodroffe, 2008). Sediment dynamics are also essen-
tially driven by trade-wind related processes, tides and storms.

7.4. Uplifted atolls and razed islands
Edifices such as uplifting coral atolls or uplifting razed is-

lands typically experience a change in coastal morphology. Up-
lifting atolls tend to change from a sand and reef barrier facies
to one more typical of rocky coasts, with near vertical limestone
cliffs and wide, sediment-free shore platforms, as on Makatea,
Rurutu and Niue in the Pacific, or Aldabra in the western Indian
Ocean (see Fig. 3h) (Montaggioni et al., 1985; Menard, 1986;
Stoddart and Spencer, 1987; Stoddart et al., 1990). Erosion of
those limestones often occurs through mechanical and biologi-
cal processes which lead to the development of a distinct inter-
tidal notch (Trudgill, 1976), or a sequence of notches at differ-
ent heights which implies little overall retreat of the limestone
between successive sea-level stands. In contrast, uplifting razed
islands such as Sal, Boa Vista and Maio in the Cape Verdes,
may experience a more subtle change that typically involves an
increase in sediment accumulation along the coast, either from
recycling of previous marine terraces or simply from the expo-
sure of flat shore platforms that favor sedimentation (Fig. 10h);

these platforms, in their turn, facilitate the generation of large
coastal alluvial fan-deltas and of aeolian coastal dune systems
by the deflation of sandy beaches (see Fig. 10g).

7.5. Sediment fluxes during extreme-wave events
On oceanic islands, extreme-wave events are the main agents

of rapid across-shore and across-shelf mass sediment trans-
port (both offshore- and inshore-directed) and provide the only
means for significant inshore transport of coarse sediments to
supratidal zones and inland areas. On rocky coasts, overwash
from tsunami and storm surges typically result in supratidal de-
posits that include solitary coarse clasts, pockets and clusters
of coarse clasts, thin sand sheets in topographic depressions,
and incipient development of low ridges (Noormets et al., 2002,
2004; Richmond et al., 2011). Deposits from large storm and/or
swell waves are generally more confined to areas closer to
the shoreline and typically correspond to prominent and multi-
generational shore-parallel ridges of sediment and other pos-
itive relief features that mask the underlying topography and
are regularly modified (Richmond et al., 2011). In contrast,
tsunamis typically generate boulder-strewn gravel fields with
megaclasts and thin sediment accumulations with blankets of
sand and gravel in topographic lows, and frequently extend
several hundreds of meters inland and even upslope. They re-
sult in a mixing of offshore, coastal and subaerial sediments,
in a range of different sizes. Storms and tsunamis are also re-
sponsible for inland inundation of river valleys and overwash
of littoral regions, dumping marine sediments on fluvial sys-
tems, coastal lagoons and coastal flats (e.g. Chagué-Goff et al.,
2012). Well-studied examples of insular rocky coastlines im-
pacted by storms and tsunamis include the Kohala and Kı̄lauea
shores in Hawai‘i, the northern shore of O‘ahu, the Agaëte val-
ley in Gran Canaria, and at Tarrafal of Santiago in the Cape
Verdes (Noormets et al., 2002; McMurtry et al., 2004; Felton
et al., 2006; Pérez-Torrado et al., 2006; Richmond et al., 2011;
Paris et al., 2011; Chagué-Goff et al., 2012).

Low islands such as atolls and almost-atolls are particu-
larly vulnerable to storms and tsunamis. On these islands,
extreme-wave events can be both constructional and erosional
agents that can affect considerably shoreline morphodynamics
(Bayliss-Smith, 1988; Woodroffe, 2008). According to Bayliss-
Smith (1988), extreme-wave events are the only marine pro-
cesses capable of emplacing large-volume ridges of coral rub-
ble, while more frequent but less intense fair-weather waves
are important for reworking storm deposits into stable features.
Storms and tsunamis both affect sediment transport but storms
also affect diagenesis as a result of the enormous volume of
freshwater carried and discharged along their paths; the pro-
cesses of lithification-solution (karstification) acting upon the
carbonate rim are directly influenced by storms and sea-level
fluctuations (Bourrouilh-Le, 1998). Effectively, hurricanes, ty-
phoons and tropical cyclones frequently play a very important
role on the modulation of the surface morphology of the atoll
rim and the supply of sediment to the lagoon (Bourrouilh-Le,
1984; Bourrouilh-Le et al., 1985; Woodroffe, 2008). Hurricane-
stricken atolls may experience several changes such as: the
build-up of seaward ridges and banks (made of coral rubble)
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that may add to the accretion of shorelines; a general drop of
beach tops due to sand removal; the appearance of new ’hoa’
(storm-induced passage of marine waters over the rim) result-
ing in washover fans behind breached barriers; and the migra-
tion of sandy islands (Bourrouilh-Le, 1998; Woodroffe, 2008).
On atolls exposed to hurricanes, ’motus’ may even experience
storm-induced lagoonward movements of up to 30 m in a single
season, or up to 100 m in about 25 cyclonic periods, as in the
case of Mataı̈va atoll (Bourrouilh-Le, 1998). Atolls exposed to
storms, like the Tuamotus, consequently exhibit more abundant
conglomeratic platforms and seaward ridges; conversely, those
atolls that are relatively free of storms, such as the Maldives or
the Gilbert chain in Kiribati, comprise reef islands largely built
from sand (Woodroffe, 2008). Tsunamis have similar effects
on coral atolls, with both erosional scarps and overwash de-
posits concentrated on the tsunami-exposed side of the islands
and accretionary structures such as spit and cuspate foreland
extensions on the tsunami-leeward side (Kench et al., 2008).

8. Edifice slope failure (landsliding)

A distinction is made here between massive failure and lava
delta collapse, both of which typically occur during the shield-
building stage, and seacliff failures occurring wherever surf ero-
sion generates unstable cliffs.

8.1. Massive failure

Systematic surveying using side-scan and multibeam sonars
around the submarine slopes of volcanic oceanic islands has al-
lowed the identification of widespread deposits of giant land-
slides and confirmed that many deep embayments in the to-
pography of such islands are actually landslide headwalls (Hol-
comb and Searle, 1991; Moore et al., 1989) (see Fig.3d). Before
this discovery, embayments could still be argued to be the result
of caldera-collapse, other volcano-tectonics or perhaps even ex-
treme coastal erosion, depending on the physiography. The Nu-
uanu landslide complex north of Oahu is one of the largest de-
posits with a total volume of around 2000 km3 and includes
the 1.8-km high Tuscaloosa Seamount, which is a giant slide
block (Moore, 1964; Moore et al., 1989; Lipman et al., 1988).
The discovery of these features has spawned debate over the
origins of oceanic volcano flank collapse, which has been well
summarized by Keating and McGuire (2000). The large vari-
ety of proposed causes of failure summarized in their review
arises because we have very poor knowledge of the conditions
at the time of failure, hence there is considerable uncertainty.
Dominating the factors leading to instability is the volcanic con-
structional process itself, which produces steep slopes prone to
failure. Those steep slopes are then acted on by a variety of pro-
cesses that can push the slope to failure, including ground accel-
erations and shaking associated with earthquakes (either plate-
tectonic if near a plate boundary or volcano-tectonic), elevated
pore-fluid pressures associated with rainfall and groundwater
heating by intrusions, hydrothermal alteration leading to weak-
ening of rock bodies and stresses caused by dense intrusions.
An example of a magnitude 7.1 earthquake possibly involved

in movement of the Hilina slump system of Hawai‘i occurred in
1975 (Crosson and Endo, 1982). An aseismic movement of the
Hilinia Slump system has been recorded with continuous GPS
measurements and linked with a major rainfall event (Cervelli
et al., 2002) so pore pressures are clearly important. Also sug-
gesting links with pore pressure, Quidelleur et al. (2008) put
forward evidence for incidences of landslides occurring during
glacial-induced eustatic sea-level change and Mitchell (2001,
2003) outlined a transition in the morphology of edifices at
> 2000 m height that may have a pore-pressure origin amongst
other possibilites. Concerning links to intrusions, Clague and
Denlinger (1994) suggested that the high density and weak rhe-
ology of hot olivine cumulates may contribute to the movement
of the Hilina slump. In the Canary Islands, Hurlimann et al.
(1999, 2000) suggested that failure can be promoted by weak
palaeosoil horizons buried beneath later lavas and loss of sup-
port because of strong coastal erosion at the base of terrestrial
slopes and deeply entrenched canyons that subsequently form
the sidewalls of landslide valleys. Failure of slopes could also
be linked to caldera collapse (Martı́ et al., 1997).

The immediate effect of massive failure is commonly to
produce a major indentation of the coastline associated with
deep landslide headwalls and chutes. Mass-movements al-
most certainly generate tsunamis affecting adjacent coasts of
an archipelago, as reviewed by McMurtry et al. (2004) for the
Hawaiian islands. Although predicting the exact impact of
tsunamis with modeling depends on accurate reconstruction of
the mobile volume and its displacement history (Satake et al.,
2002), there are clear examples of marine deposits now on land
interpretable as tsunami deposits, showing that, as described
earlier in this work, tsunamis are capable of moving significant
quantities of sedimentary material from the shelf and coast of
islands. Tsunamis are shallow-water type waves so they are re-
fracted by bathymetry and may therefore affect other coasts in
ways that may not seem immediately obvious without modeling
of wave propagation.

The effect of the entrenchment of the edifice is well illus-
trated, for example, in the morphology of guyots in the Pa-
cific Ocean (Vogt and Smoot, 1984). Modern examples include
those on Madeira Island (Brum da Silveira et al., 2010), El Hi-
erro in the Canaries (Masson, 1996), Guadalupe off Mexico,
and Isabela in the Galápagos (Mitchell, 2003). However, failure
may not always generate embayments; the westerly flank of La
Palma shows more of a convex-seawards coastline and a debris
cone on the submarine slope of the island (Urgeles et al., 1999)
and the slump system of Kı̄lauea (Hilina) has been continually
overlain by new lavas (e.g. Smith et al., 1999). The amount of
material moved during these events can appear to be quite large
(exceeding 103 km3 in some instances (Lipman et al., 1988),
but they are usually minor compared with the volume of the
edifice. Their isostatic effects are therefore also usually minor;
Smith and Wessel (2000) estimated by modeling that even the
effect of unloading the island of Oahu by the 1200-5000 km3

of the Nuuanu slide probably caused uplift of 10-109 m (the
extreme value perhaps sufficient to expose much of the island
shelf).

Post-failure lavas commonly fill the embayment, leaving
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Figure 11: Examples of coastal mass wasting on oceanic islands. (a) Multi-stage rotational (slump) massive flank collapse of Fajãzinha - Fajã Grande, on Flores
Island (Azores)(yellow line represents approximate maximum headwall). (b) and (c) Lava delta before and after the slump of 28 November 2005, Lae‘apuki
(Hawai‘i) (USGS photos by R. Hoblitt and T. Orr, courtesy of Hawaiian Volcano Observatory, USGS). (d) Landslide (debris avalanche) of 30th October 2012 on the
NW coast of Corvo Island (Azores); this debris avalanche occurred during a storm and created an islet some distance from the coastline, made of boulders, gravel
and sand (photo was taken a few days after the collapse, photo courtesy of F. Cardigos, SIARAM). (e) Detail of the previous landslide deposit (photo courtesy of F.
Cardigos, SIARAM); note the quantity of fine sediment in suspension in the water; about 20 days after the event, current and wave dynamics remobilized sand and
gravel and created a sand bar connecting the islet to land. (f) Fajã dos Cúberes (on the foreground) and Fajã de Santo Cristo (on the background) on São Jorge Island
(Azores), two large debris avalanche deposits that created coastal lagoons; their origin is probably associated with slips in the fault that controls this portion of the
island’s coastline (photo courtesy of F. Cardigos, SIARAM). (g) Ponta da Fajã, on Flores Island (Azores), a large debris avalanche deposit that has been mostly
eroded by wave action.
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lower-relief sea cliffs than elsewhere along the coasts. This is
observed on parts of Madeira Island (Brum da Silveira et al.,
2010), the Canary Islands (Masson et al., 2002), the Kı̄lauea
coast of Hawai‘i (Umino et al., 2006) and south-east Pico island
of the Azores (Mitchell et al., 2012). Until strongly modified by
coastal erosion, construction of lava deltas typically produces a
coastline that is convex-seawards in plan-view. The combina-
tion of both the failure and subsequent building out by lavas
usually leaves a reduced or even missing shelf over those seg-
ments.

In contrast to large, deep-seated island flank collapses,
smaller (but still large) collapses with shallower detachment
surfaces may have a different immediate effect on coastal mor-
phology. In these cases, because detachment surfaces are shal-
lower, the mass-movement can itself extend the coastline by
the seaward mass transfer caused by collapsed debris or rotated
slump blocks. This type of collapse typically creates low-lying,
seaward-convex swaths of land with irregular or hummocky to-
pography, with a steep inland concave headwall - the collapse
scar. A good example of such feature is Ponta Delgada on
Madeira Island, a peninsula that still extends > 1 km into the
sea (Brum da Silveira et al., 2010). These protrusions, how-
ever, are generally composed of incoherent collapsed material,
which may be easily eroded so that shorelines rapidly recede
back to their previous position, as in the case of Fajãzinha -
Fajã Grande collapse on Flores Island, Azores (see Fig. 11a).
With continued erosion, and when collapsed material has been
completely cleared away, shorelines may recede to the base of
the collapse headwall leaving large embayments with shallow
water depths. These, although similar in morphology (above
sea level) to large embayments created by deep-seated massive
collapses, differ in the sense that they typically exhibit a large,
shallow adjacent marine shelf.

8.2. Lava delta collapse
Large lava-fed deltas, with a structure resembling Gilbert-

type river deltas (Jones, 1966), involve the building out of
lava flows over flow-foot hyaloclastitic and pillow-lava brec-
cias. Loading by the advancing lava flows on these poorly con-
solidated slopes makes them prone to collapse (see Figs. 11b
and 11c) (Kauahikaua et al., 1993; Mattox and Mangan, 1997).
The collapses involve small rotational or translational slumps,
which generate benches (when a partial collapse/subsidence oc-
curs) and instantaneous cliffs. As they are formed in recently
erupted sequences, they erode rapidly in surf and produce fur-
ther volcaniclastic sediment.

8.3. Cliff failure
Wave erosional processes operate on the lower part of sea-

cliffs whereas subaerial mechanisms, including weathering and
mass movement, dominate higher up, as in rocky cliffs in
other environments. Areas of dominantly large significant wave
height tend to produce steep or undercut cliffs, whereas strong
weathering produces more gentle, convex slopes. Coastal cliff
slopes are therefore generally steeper in vigorous, storm wave
environments than in other environments where frost and chem-
ical weathering are more important. Cliff undercutting by

waves, solution and other weathering, or bioerosion, promotes
various types of mass movement which reflect the structure,
lithology, and other characteristics of the rock, and the absolute
and relative efficacy of subaerial and marine processes (Tren-
haile, 1987; Sunamura, 1992; Hampton et al., 2004). Basal ero-
sion and hydrostatic pressures exerted by water entering rock
clefts can generate a variety of essentially surficial failures on
cliffs in well fractured rocks, including rock and slab falls,
sags, and topples. Other falls can develop through pressure re-
lease and the formation of tension cracks parallel to the ero-
sion surface following cliff erosion and retreat. Deep-seated
movements are larger but less frequent than falls. They in-
clude translational slides in seaward-dipping rocks (e.g steeply-
dipping piles of lava flows), alternations of permeable and
impermeable strata (e.g. alternation between lava flows and
weathered tuffs), massive rocks overlying incompetent mate-
rials (e.g. massive flows above palaeosoils), and argillaceous
and other easily sheared rocks with low bearing strength (e.g.
weathered tuffs, palagonitic tuffs, etc). Rotational slides, or
slumps, usually occur in thick, fairly homogeneous deposits of
tuffs, palagonitic tuffs, hydrothermally altered volcanic units,
and other weak and weathered/altered substrates. Thick effu-
sive sequences of prominent and mature shield volcanoes (in
the erosional or post-erosional stage), due to their compaction,
groundwater alteration or weathering, may be subjected to large
slumps that somewhat resemble the massive flank collapses typ-
ical of the shield-building stage; these rotational slides may in-
volve large volumes and be responsible for reshaping extensive
swaths of coastline, e.g. on the northern coast of Madeira Island
(Brum da Silveira et al., 2010).

Recession of cliffed coastlines essentially takes place through
episodes/cycles of marine under-cutting, cliff failure, erosion
and removal of collapsed material; this is particularly evident
on the windward side of many islands or on locally very ener-
getic stretches of coast (compare Figs. 11f and 11g). This pro-
cess is thus recurrent and is characterized by successive local
shoreline advances (when collapse takes place and collapsed
material accumulates at the base of cliffs) and retreats (when
marine erosion removes collapsed material) resulting, in the
long term, in a net retreat of the coastline. Coastal retreat is
consequently the net result of a continuous horizontal erosive
component (marine erosion) and an episodic vertical erosive
component (mass wasting).

Coastal cliff failures (rockfalls and topples and, more rarely,
slumps) are responsible for creating (often temporarily) large
accumulations of collapsed material (boulders) at the base of
cliffs, typically with low profiles and flat or hummocky surfaces
and occasionally forming small islets or coastal lagoons (see
Figs. 11d-f). Examples of such features are well-known in the
Azores, Madeira and Cape Verde archipelagos, where they are
locally called coastal (detritic) ”fajãs” (Figs. 11d-g). In these
archipelagos, such morphologies are very common because of
the highly energetic wave regime and the lack of reef protection
that characterize their coasts.
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9. Structural and tectonic control on coastline evolution

On many oceanic island volcanoes, coastal morphology is
partly controlled by active or inherited tectonic features and/or
volcano-tectonic structures. These result from either regional
tectonic stresses or local volcano-tectonic and/or gravitational
stresses affecting the edifices (Fiske and Jackson, 1972; Di-
eterich, 1988; Walker, 1993). Structural control on coastal mor-
phology is especially evident on island edifices that are located
at or near plate boundaries, i.e. island edifices built by fissure
volcanism along major tectonic features such as leaky trans-
forms or spreading ridges (e.g. Azores, Iceland). On these edi-
fices, coastlines may directly correspond to active fault scarps,
and their evolution is frequently influenced by tectonic activ-
ity (e.g. earthquake-triggered mass wasting). Examples of
coasts that are structurally controlled by active faults associ-
ated with a regional stress field include São Jorge in the Azores
(see Fig. 11f) (Walker, 1993; Madeira and Brum da Silveira,
2003; Hildenbrand et al., 2008; Silva et al., 2012); the geometry
of this island edifice is tectonically controlled (through fissure
volcanism), most of its northern cliff corresponding to a fault
scarp(s) and many of the large cliff failure events that occurred
in historical times were probably earthquake triggered (Madeira
and Brum da Silveira, 2003). In mid-plate island systems, the
structural control on coastline morphology is probably less ev-
ident, but is also common. On these islands, structures are
typically controlled by volcano-tectonic stresses coupled with
gravitational stresses (Walker, 1999; Carracedo, 1999; Klügel
et al., 2005b; Walter et al., 2006). Many oceanic island volca-
noes exhibit rift zones defined by swarms of dykes, and these
may influence coastal morphology in a direct or indirect way.
Dyke wedging along rift zones may, together with gravitational
stresses, trigger giant landslides that reshape coastlines (Car-
racedo, 1999). Likewise, inactive rift zones also constitute
structural discontinuities that influence differential erosion and
mass wasting, leading to linear stretches of coast composed of
high cliffs, e.g. on Madeira and Desertas (Schwarz et al., 2005;
Klügel et al., 2009; Brum da Silveira et al., 2010), and Moloka‘i
(Hawai‘i) (Fig. 3d).

10. Conclusions

Oceanic island volcanoes are very dynamic landscape sys-
tems and they constitute prime localities to look at how differ-
ent processes and agents of change interact in a complex ways
to shape coastal evolution. Volcanic island coasts are also one
of the few places where constructional processes can be ob-
served over short time scales, frequently occurring side by side
with destructive processes. Coastal processes typically oper-
ate more rapidly on islands than on their continental counter-
parts. Additionally, oceanic islands constitute a confined en-
vironment where boundary conditions are more easily under-
stood, making them excellent natural laboratories to study on-
going coastal processes. The islands’ rapid emergence above
sea level, as well as their extreme isolation, make insular shores
ideal locations to investigate the mechanisms and patterns of
biological dispersion and colonization of virgin environments

and the evolution of young, pioneering ecosystems. In a similar
fashion, the morphological evolution of islands with increas-
ing age (especially in age-progressive, linear island chains) also
makes insular edifices ideal places to look at how coastlines and
coastal processes respond to external factors such as uplift and
subsidence, eustasy, mass wasting, biological activity, climate
change etc. Additionnally, the diversity in types of shore mor-
phology - rocky (basaltic and limestone), clastic (either young
volcaniclastic or erosional and bioclastic), or reefal - in a rela-
tively small area (sometimes even within the same island edi-
fice) offers excellent opportunities for academically and logis-
tically easier comparisons than coasts on continents. Finally, it
should be emphasized that the present work focuses on oceanic
island volcanoes, i.e. hotspot-related volcanic islands; never-
theless, many of the processes here described may operate in
a very similar fashion at other types of oceanic islands, like
those on subduction-related volcanic island arc settings. This
is particularly true for island edifices that are overwhelmingly
basaltic in nature, as on Jejudo in the Korea Strait or Ambae
Island in Vanuatu Archipelago. Many aspects of the present
review are relevant to other oceanic island settings and even
continental coastlines of volcanic nature.
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Klügel, A., Schwarz, S., van den Bogaard, P., Hoernle, K., Wohlgemuth-
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C., De Voogd, B., Savoye, B., 2011. Morphology and sedimentary architec-
ture of a modern volcaniclastic turbidite system: The Cilaos fan, offshore La
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