1984

Mine subsidence and strata control in the Newcastle district of the northern coalfield New South Wales

William Arthur Kapp

University of Wollongong

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: morgan@uow.edu.au.
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
MINE SUBSIDENCE AND STRATA CONTROL

IN THE

NEWCASTLE DISTRICT OF THE NORTHERN COALFIELD

NEW SOUTH WALES

A thesis submitted in fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

from

THE UNIVERSITY OF WOLLONGONG

by

WILLIAM ARTHUR KAPP, B.E. Syd. (Civil), M.E. Syd. (Mining)

DEPARTMENT OF CIVIL AND MINING ENGINEERING

1984
STATEMENT

The work submitted in this thesis has not been submitted for a degree to any other university or similar institution.

W.A. KAPP
Coal is being mined from seams which lie beneath urban areas around the City of Newcastle, New South Wales, under nearby Lake Macquarie and the Pacific Ocean. Subsidence occurs as a result of pillar extraction or longwall mining and homes and other structures or surface features can be affected.

Detailed field surveys commenced in the late 1960's in the coalfields north and south of Sydney. This work was developed and extended by the author in order to provide the basic information which was used to develop a method of subsidence prediction. Because of the large quantity of results, several computer programmes were designed to handle the calculations, filing and data manipulation from the field booking sheets to the presentation of calculated results from the computer.

Detailed analyses of the results of these surveys have enabled the relationship between the geometry of mine workings and the subsidence at the surface to be established for the particular geological environments. This research has shown that the massive and strong conglomerates of the Newcastle area have a significant effect on the value of the maximum subsidence. For the lower range of widths of extraction, the investigations showed that the nature of the caving of the roof strata over the mined seam influenced the magnitude of the surface subsidence.

Subsidence in Newcastle was shown to be significantly less than what would be experienced in areas of mainly argillaceous strata such as in the United Kingdom because of
their different caving properties and strata deformation characteristics.

On the basis of a theoretical subsidence prediction method developed for the Newcastle area by the author using the survey, geological and mining information, panel and pillar mining layouts are now designed for maximum coal recovery consistent with small values of maximum subsidence. With the aid of these locally established guidelines, longwall extraction is now taking place beneath the Pacific Ocean, Lake Macquarie and areas of surface development along their shorelines.

The research showed that, in the Newcastle District, subsidence develops in four stages as the ratio of the width of extraction \(w \) to the depth of cover \(h \) increases for panels of critical or supercritical length.

Extraction layouts with subcritical \(w/h \) values up to 0.55 result in a slight undulation of the surface and it is within this range that panel and pillar extraction layouts have been designed for protection of structures on the surface. Where the \(w/h \) ratio is greater than 0.55 and less than 0.65, a pronounced subcritical subsidence trough develops.

For extraction layouts where the \(w/h \) ratio is greater than 0.65 the maximum subsidence increases rapidly as the conglomerate within the strata fails to support itself over the increasingly wide panel. The subsidence reaches its maximum possible value at a critical \(w/h \) value of around 1.3. In the supercritical range above 1.3 the maximum subsidence is 0.65 of the seam height mined.

The research also revealed the factors which influenced the maximum subsidence such as the recovery of coal from the seam mined, the caving of the roof strata, whether other
seams have been mined, the presence of significant faulting and the stability of pillars which remain between or adjacent to extracted panels.

Other features of subsidence profiles in Newcastle studied in relation to the mine geometry were the shape of the subsidence profile, the various relationships between subsidence, slope change, curvature and strain, and the time-subidence relationships. It was also discovered that the travelling slopes and strains above an advancing face are significantly less than the final static values over the end of the panel. Strain triangles were used to investigate the magnitudes and directions of the maximum and minimum principal strains.

The principles developed as a result of the author’s research work are unique to the Newcastle district north of Sydney where they are now used as a predictive tool in the control of mine subsidence.
ACKNOWLEDGEMENTS

The major part of the thesis is the research based on the subsidence investigations carried out over the workings of the BHP Collieries in the Newcastle District of the Northern Coalfield. The author is grateful to The Broken Hill Proprietary Company Limited for permission to use the results of the investigations in this thesis.

The author wishes to thank those of the academic staff in the Department of Civil and Mining Engineering, University of Wollongong who gave their comments and advice, especially the author's supervisors, Associate Professor R.W. Upfold and Dr. R.N. Chowdhury.

Particular acknowledgement is made of the efforts and work of the Survey Department of BHP Newcastle and BHP Central Engineering Survey (Wollongong) in establishing and surveying the various subsidence grids under sometimes very difficult field conditions. The results of these surveys and the associated subsidence and strain computations formed the basis of the subsidence work in both the Northern Coalfield as described in this thesis, and in the Southern Coalfield.

The following departments of the BHP Co. Ltd., also provided information used in the thesis. The author wishes to acknowledge the assistance of

1. the Manager and Survey staff of each of the several BHP Steel Division Collieries who provided details of mining in the areas of subsidence work,

2. officers of the BHP Coal Geology Department who provided relevant geological plans and associated information, and
3. the staff of Collieries Research who assisted with the evaluation of results, preparation of drawings and figures and with the typing of the manuscript.

The subsidence investigations in Newcastle and the application of the results require the cooperation of the Department of Industrial Relations and the Department of Mineral Resources. The encouragement of the Senior Inspector of Collieries, Newcastle, enabled early progress to be made in the use of the panel and pillar method for mining beneath residential areas. Liaison with the Department's Inspectors of Collieries assisted in establishing the subsidence work. This continuing liaison, together with the cooperation of the Department's Subsidence Engineer and officers of the Mines Subsidence Board, Newcastle, is contributing to the progress of the current investigations.

Acknowledgement is made of the assistance of the Hunter District Water Board who made available the results of their surveys carried out around the sewerage treatment works at Belmont.

Special acknowledgement is made of the encouragement through correspondence and personal discussion with the late Mr. R.J. Orchard who was then the Chief Surveyor and Minerals Manager with the National Coal Board (United Kingdom). His comments were very beneficial as the subsidence work progressed.

The cooperation of all those associated with the subsidence work has made these investigations possible and enables the work to continue and develop in the Northern and Southern Coalfields. Their assistance is gratefully acknowledged.
CONTENTS

VOLUME I

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ACKNOWLEDGEMENTS</th>
<th>CONTENTS</th>
<th>FIGURES</th>
<th>LIST OF SYMBOLS</th>
<th>LIST OF ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1 - INTRODUCTION

1.1 Statement of problem and objectives 1

1.2 Methodology .. 2

1.3 Application of the results of the research programme 4

CHAPTER 2 - STRATA BEHAVIOUR AND SURFACE SUBSIDENCE

2.1 Strata disturbances due to coal extraction 6

2.1.1 General description 6

2.1.2 Caving and strata movement 7

2.1.3 Stability of coal pillars 12

2.1.4 Effects of mining in a second seam 15

2.2 Surface effects from coal mining 18

2.2.1 Maximum subsidence 18

2.2.2 Limit angle .. 20

2.2.3 Slope, curvature and strain 21

2.2.4 Aspects of strain measurement 22

2.2.5 Strain triangles .. 23

2.2.6 Effect of natural ground slope 26

2.2.7 Subsidence related to time and face advance 28

2.3 Prediction of subsidence 30

2.3.1 Introduction ... 30

2.3.2 National Coal Board method 32

2.3.3 Empirical method of Bals 34

2.3.4 Mathematical approaches 36

2.3.5 Model studies .. 39

2.3.6 Summary .. 41
CHAPTER 3 - SUBSIDENCE INVESTIGATIONS IN THE NEWCASTLE DISTRICT

3.1 Introduction ... 43
3.2 Background details 44
 3.2.1 Geographical setting 44
 3.2.2 Geological setting 46
 3.2.3 Historical review 47
 3.2.4 Mining and associated subsidence work 49
3.3 Development of the programme 51
 3.3.1 Mining in unprotected areas 51
 3.3.2 Panel and pillar mining 53
 3.3.3 Discussion of results 54
 3.3.4 Longwall mining in a surface sensitive area 58

CHAPTER 4 - CHARACTERISTICS OF SUBSIDENCE AND THE DEVELOPMENT OF A PREDICTION TECHNIQUE

4.1 Introduction ... 61
4.2 Shapes of subsidence profiles 62
 4.2.1 Maximum subsidence related to mine geometry 62
 4.2.2 Influence of various factors on maximum subsidence 68
 4.2.2.1 Length of extracted panel 69
 4.2.2.2 Overlapping subsidence profiles 70
 4.2.2.3 Nature of roof strata 72
 4.2.2.4 Geological anomalies 73
 4.2.2.5 Coal recovery 75
 4.2.2.6 Stability of pillars 78
 4.2.2.7 Mining of other seams 83
 4.2.3 Definition of profile shape 84
 4.2.3.1 Non dimensional profiles 85
 4.2.3.2 Location of transition point 87
 4.2.3.3 Examination of limit angle 89
4.3 Elements of subsidence profiles 92
 4.3.1 Maximum developed slopes and strains 92
 4.3.2 Inverse curvature related to maximum strain 98
 4.3.3 Effect of bay length on calculated strain 99
 4.3.4 Strain triangles 100
 4.3.5 Subsidence related to time and face advance 102
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Prediction of subsidence</td>
<td>104</td>
</tr>
<tr>
<td>4.5</td>
<td>Mathematical modelling of subsidence</td>
<td>107</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Finite element analysis</td>
<td>107</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Applicability to subsidence modelling and associated problems</td>
<td>109</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>Input data</td>
<td>110</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>Software</td>
<td>111</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Use of finite element programmes for subsidence modelling</td>
<td>112</td>
</tr>
<tr>
<td>4.5.3.1</td>
<td>Pennsylvania State University</td>
<td>113</td>
</tr>
<tr>
<td>4.5.3.2</td>
<td>CANMET, Canada</td>
<td>114</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Summary</td>
<td>115</td>
</tr>
<tr>
<td>CHAPTER 5 - CONCLUSIONS</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>5.1</td>
<td>Maximum subsidence related to mine geometry</td>
<td>117</td>
</tr>
<tr>
<td>5.2</td>
<td>Influence of mining and geological factors on subsidence</td>
<td>120</td>
</tr>
<tr>
<td>5.3</td>
<td>Profile shape and associated relationships</td>
<td>122</td>
</tr>
<tr>
<td>5.4</td>
<td>Supplementary investigations</td>
<td>123</td>
</tr>
<tr>
<td>5.5</td>
<td>Final comments</td>
<td>126</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>128</td>
</tr>
</tbody>
</table>
APPENDIX A - BACKGROUND TO THE STUDY OF SUBSIDENCE
IN THE NEWCASTLE DISTRICT

A.1 Geographical setting A-1
 1.1 Introduction A-1
 1.2 Physiography A-2
 1.3 Land use A-3

A.2 Geological setting A-5
 2.1 History of coal formation A-5
 2.2 Structure A-5
 2.3 Stratigraphy A-6
 2.4 Conglomerate units A-7

A.3 Coal resources A-8
 3.1 Wallarah Seam A-9
 3.2 Great Northern Seam A-9
 3.3 Seams of minor significance A-10
 3.4 Australasian Seam A-10
 3.5 Victoria Tunnel Seam A-10
 3.6 Dudley Seam A-11
 3.7 Yard Seam A-11
 3.8 Borehole Seam A-12
 3.9 Reserves and coal use A-12

A.4 Mining and subsidence A-13
 4.1 General historical review A-13
 4.2 Early subsidence A-15
 4.3 Mining methods A-17
 4.4 Current subsidence studies A-18
 4.5 Application of subsidence studies A-19

A.5 Survey procedures A-21
 5.1 Introduction A-21
 5.2 Layout of grids A-21
 5.3 Levelling and distance measuring A-22
 5.4 Data processing A-23
APPENDIX B - NEWCASTLE SUBSIDENCE INVESTIGATIONS

B.1 Descriptions of areas studied

1.1 Introduction and location plans

1.2 Development of the programme of subsidence investigations

B.2 Details of study areas

Study 1 - Subsidence effects of static and travelling profiles

1.1 Introduction

1.2 Geology and mining details

1.3 Subsidence over 2 N Panel

1.4 Subsidence related to mine geometry

1.5 Travelling and final subsidence and strain profiles.

1.6 Shape of the subsidence profile

1.7 Subsidence of the railway line

1.8 Strain triangles

1.9 Subsidence related to time and face advance

Study 2 - Subsidence over two shortwalls

2.1 Introduction

2.2 Mining and geological aspects

2.3 Elements of subsidence longitudinally over Shortwall 1 and pillar extraction

2.4 Elements of subsidence in a lateral direction across shortwalls

2.5 Features of subsidence profiles

2.6 Subsidence related to time and face advance

Study 3 - Subsidence over an extensive pillar extraction area

3.1 Introduction

3.2 Mining details

3.3 Development of subsidence over lateral lines

3.4 Development of subsidence over longitudinal lines

3.5 Subsidence along Redhead Road and railway line

3.6 Subsidence contours and strain triangles

3.7 Subsidence profile characteristics

3.8 Subsidence and damage at the Convent building

3.9 Influence of bay length on calculated strains
Study 4 - Panel and pillar system using both pillar extraction and shortwalls to control subsidence

4.1 Introduction B-36
4.2 Geographical and geological setting B-36
4.3 Mining procedures B-37
4.4 Subsidence monitoring B-39
4.5 Features of subsidence profiles B-41
4.6 Subsidence over Q Panel and Gateshead Panel B-42
4.7 Increase in subsidence with time B-44
4.8 Subsidence related to time and face position B-46
4.9 Calculation of stability of pillars B-48

Study 5 - Subsidence in Gateshead and related surface damages

5.1 Introduction B-51
5.2 Subsidence over the first Belt Headings extraction B-51
5.3 Subsidence over the Waratah and Gateshead Panels B-51
5.4 Excessive subsidence over the second Belt Headings extraction B-52
5.5 Evidence of pillar instability B-53
5.6 Damages to homes and services B-54

Study 6 - Subsidence over various mine layouts in the Victoria Tunnel Seam

6.1 Introduction B-59
6.2 Study 6A - L Panel B-60
6.3 Study 6B - Shortwall 9 B-61
6.4 Study 6C - Macquarie Panel B-63
6.5 Study 6D - Subsidence damages over F Panel B-65
6.6 Summary B-68

Study 7 - Subsidence along Bulls Garden Road over Dudley Seam extraction, Whitebridge

7.1 Introduction B-70
7.2 Subsidence in Whitebridge over NW and X Panels B-70
7.3 Increase in subsidence in Whitebridge due to Y Panel extraction B-71
7.4 Subsidence along Bulls Garden Road over Y, Z and O Panels B-72
7.5 Subsidence in Green Valley Road, Charlestown B-75
7.6 Summary B-76
Study 8 - Use of the panel and pillar system to control subsidence in residential and light industrial areas

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>B-78</td>
</tr>
<tr>
<td>8.2 Mining details</td>
<td>B-78</td>
</tr>
<tr>
<td>8.3 Subsidence over 3, 4 and 5 NW Panels</td>
<td>B-79</td>
</tr>
<tr>
<td>8.4 Subsidence over 6 NW and 4 NW Left pillar extraction</td>
<td>B-81</td>
</tr>
<tr>
<td>8.5 Summary</td>
<td>B-82</td>
</tr>
</tbody>
</table>

Study 9 - Subsidence over pillar extraction in the Victoria Tunnel Seam, over a longwall in the underlying Borehole Seam and its effect on a sewerage treatment works

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>B-83</td>
</tr>
<tr>
<td>9.2 Geology and mining</td>
<td>B-83</td>
</tr>
<tr>
<td>9.3 Subsidence due to V.T. Seam longwalls</td>
<td>B-85</td>
</tr>
<tr>
<td>9.4 Failure of pillars and pillar remnants</td>
<td>B-86</td>
</tr>
<tr>
<td>9.5 Subsidence over the Borehole Seam longwall</td>
<td>B-87</td>
</tr>
<tr>
<td>9.6 Effects of early V.T. Seam workings</td>
<td>B-89</td>
</tr>
<tr>
<td>9.7 Rate of subsidence development</td>
<td>B-90</td>
</tr>
<tr>
<td>9.8 Summary</td>
<td>B-92</td>
</tr>
</tbody>
</table>
FIGURES

VOLUME 1

Fig. 1. 1 Sydney Coal Basin
Fig. 1. 2 Plan of the Newcastle-Sydney-Wollongong area

Fig. 2. 1 Movement of strata
Fig. 2. 2 Stability of pillars
Fig. 2. 3 Multiple seam mining
Fig. 2. 4 Trough subsidence
Fig. 2. 5 Panel and pillar mining layout
Fig. 2. 6 Curvature of subsidence profile
Fig. 2. 7 Strain triangle principle
Fig. 2. 8 Effect of ground slope on strain
Fig. 2. 9 Development of subsidence
Fig. 2.10 Travelling and final profiles
Fig. 2.11 Relationship between subsidence and geometry of workings.
Fig. 2.12 Bals' method of subsidence prediction
Fig. 2.13 Analysis by Hackett

Fig. 3. 1 Part of Newcastle District showing BHP Collieries
Fig. 3. 2 Geology of Newcastle District
Fig. 3. 3 Supercritical extraction profiles
Fig. 3. 4 Subcritical extraction profiles
Fig. 3. 5 Panel and pillar profiles
Fig. 3. 6 Subsidence and contour plan, longwall and treatment works
Fig. 3. 7 Strata section

Fig. 4. 1 Subsidence and subcritical mine geometry
Fig. 4. 2 Subsidence and mine geometry, Newcastle District
Fig. 4.3 Effect of extraction length and coal recovery on maximum subsidence
Fig. 4.4 Geometries of long rows of coal pillars
Fig. 4.5 Supercritical non dimensional profiles
Fig. 4.6 Subcritical ($0.5 < \frac{w}{h} < 0.65$) non dimensional profiles
Fig. 4.7 Subcritical ($\frac{w}{h} = 0.28$) non dimensional profiles
Fig. 4.8 Non-dimensional subsidence profiles
Fig. 4.9 Locus of transition point
Fig. 4.10 Increase in slope change with subsidence
Fig. 4.11 'k' factors for maximum strain
Fig. 4.12 Location of maximum tension and compression
Fig. 4.13 Inverse curvature related to strain
Fig. 4.14 Influence of bay length on strain
Fig. 4.15 Principal strains
Fig. 4.16 Subsidence related to face position
Fig. 4.17 Finite element mesh
Fig. 4.18 Mesh showing major stratigraphic horizons
Fig. 4.19 Schematic representation of the finite element model
Fig. 4.20 CANMET finite element flow diagram
FIGURES

VOLUME II

Fig. A. 1 Coalfields of the Main Coal Province
Fig. A. 2 Coastal strip of the Newcastle Coal District
Fig. A. 3 Locations of collieries, Newcastle District
Fig. A. 4 Production graph of NSW coal districts
Fig. A. 5 Geology of Newcastle District
Fig. A. 6 Upper Permian and Triassic stratigraphic units
Fig. A. 7 Views of South Belmont and Redhead Beach
Fig. A. 8 Views of the Central Coast lakes and the Hawkesbury River
Fig. A. 9 Environment of coal formation, Borehole Seam
Fig. A.10 Structures in the Northern part of the coal measures
Fig. A.11 Base of the Newcastle coal measures
Fig. A.12 North East part of geological cross-section
Fig. A.13 South West part of geological cross-section
Fig. A.14 Areas affected by Belmont and Charlestown Conglomerates
Fig. A.15 Isopachs of the Charlestown Conglomerate
Fig. A.16 Seam sections and areas of investigation
Fig. A.17 Seam sections and areas of investigation
Fig. A.18 Seam sections and areas of investigation
Fig. A.19 Isoash map showing combinations of the Dudley Seam
Fig. A.20 Early coal mines in Newcastle
Fig. A.21 Burwood Colliery workings, 1886
Fig. A.22 Newcastle collieries, 1887
Fig. A.23 Bord and pillar mining operations
Fig. A.24 Examples of recent mining layouts
Fig. A.25 Computer printout of calculated subsidence
Fig. A.26 Computer printout of calculated strain
Fig. A.27 Computer printout of calculated strain triangle results
There are 136 figures which apply to Studies 1 to 9. These are included with the relevant studies and are not listed here.
SYMBOLS

The symbols used by the National Coal Board (1975) were adopted where applicable. There are three self contained sections in Chapter 2 each of which includes a list of symbols used only in that section.

a subsidence factor
b bay length
d horizontal distance from a point on a subsidence profile to the goaf edge
f face advance distance in relation to surface point
h depth of cover from the seam to the surface
k_1 tensile strain factor
k_2 compressive strain factor
l length of an extracted area
m thickness of extraction
m_E effective mining height
r radius of curvature
s subsidence of a point
s_o observed subsidence at a station
s_{LW} subsidence due to the underlying longwall
s_{SW} subsidence due to the underlying shortwall
t_n distance of transition point from goaf edge
w width of an extracted area
E maximum strain (tensile or compressive)
E_n distance of point of maximum strain from goaf edge
G maximum slope along a subsidence trough
S maximum subsidence of a point along a profile
S_m maximum subsidence over a subcritical length panel
S_{max} maximum measured subsidence over an extraction
S_{LW} maximum subsidence due to the underlying longwall
S_{SW} maximum subsidence due to the underlying shortwall
W width of solid coal pillar
a limit angle from the vertical
LIST OF ABBREVIATIONS

The following is a list of abbreviations of titles and names used throughout the thesis.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA Company</td>
<td>Australian Agricultural Company</td>
</tr>
<tr>
<td>ACIRL</td>
<td>Australian Coal Industries Research Laboratories</td>
</tr>
<tr>
<td>AGL</td>
<td>Australian Gas Light Company</td>
</tr>
<tr>
<td>AHD</td>
<td>Australian Height Datum</td>
</tr>
<tr>
<td>B</td>
<td>Burwood Colliery</td>
</tr>
<tr>
<td>BH</td>
<td>Borehole Seam</td>
</tr>
<tr>
<td>BHP</td>
<td>The Broken Hill Proprietary Company Limited</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>D</td>
<td>Dudley Seam</td>
</tr>
<tr>
<td>DIR</td>
<td>Department of Industrial Relations</td>
</tr>
<tr>
<td>DMR</td>
<td>New South Wales Department of Main Roads</td>
</tr>
<tr>
<td>DMRes</td>
<td>Department of Mineral Resources</td>
</tr>
<tr>
<td>DSC</td>
<td>Dams Safety Committee</td>
</tr>
<tr>
<td>HDWB</td>
<td>Hunter District Water Board</td>
</tr>
<tr>
<td>JCB</td>
<td>Joint Coal Board</td>
</tr>
<tr>
<td>JD</td>
<td>John Darling Colliery</td>
</tr>
<tr>
<td>L</td>
<td>Lambton Colliery</td>
</tr>
<tr>
<td>MWSDB</td>
<td>Metropolitan Water Sewerage and Drainage Board</td>
</tr>
<tr>
<td>NCB</td>
<td>National Coal Board (United Kingdom)</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>RL</td>
<td>Reduced Level</td>
</tr>
<tr>
<td>VT</td>
<td>Victoria Tunnel Seam</td>
</tr>
<tr>
<td>YW</td>
<td>Young Wallsend Seam</td>
</tr>
</tbody>
</table>