2010

Terahertz emission from InP

Stuart Hargreaves
University of Wollongong, stuarth@uow.edu.au

Roger A. Lewis
University of Wollongong, roger@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation
https://ro.uow.edu.au/aiimpapers/1219

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Terahertz emission from InP

Abstract
We investigate the generation of THz radiation by the application of ultra-short near-infrared optical pulses to bulk unbiased InP. The THz radiation is detected in the direction of the specular reflection. While the overall emission characteristics are similar to those displayed by InAs under similar excitation conditions, in contrast to InAs, a single-cycle only variation in THz signal, of about ±20%, is observed as the sample is rotated through 360° around the surface normal.

Keywords
terahertz, emission, inp

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This conference paper is available at Research Online: https://ro.uow.edu.au/aiimpapers/1219
Terahertz emission from InP

S. Hargreaves and R. A. Lewis

Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong NSW 2522, Australia

Abstract. We investigate the generation of THz radiation by the application of ultra-short near-infrared optical pulses to bulk unbiased InP. The THz radiation is detected in the direction of the specular reflection. While the overall emission characteristics are similar to those displayed by InAs under similar excitation conditions, in contrast to InAs, a single-cycle only variation in THz signal, of about ±20%, is observed as the sample is rotated through 360° around the surface normal.

Keywords: THz, terahertz, InP
PACS: 78.20.-e

INTRODUCTION

Semiconductors exhibit many diverse phenomena under terahertz-frequency electromagnetic radiation (THz) due to the energy of the THz photons corresponding to significant energy scales in bulk and low-dimensional materials and devices [1]. Semiconductors also serve as emitters of THz radiation when excited by ultra-short optical pulses, such as provided by femtosecond lasers. Surface field emitters, exemplified by InAs, emit in reflection, optimized at the Brewster angle [2]. The emission from photoconductors, such as GaAs, depends strongly on the incident pump power and the applied bias [3].

RESULTS AND DISCUSSION

Time-domain spectrum

Employing the delay stage to vary the arrival time of the probe beam relative to the THz pulse at the detector crystal (Fig. 1), a time-domain spectrum is obtained. The time-domain spectrum for InP is given in Fig. 2. In comparison with InAs, also shown, the THz electric field signal is approximately an order of magnitude less.

Frequency-domain spectrum

The frequency-domain spectra for InP and InAs, as calculated from the data in Fig. 2, are given in Fig. 3. The vertical axes are uncalibrated but correct relative to each other. The ranges have been chosen so that the maxima

FIGURE 1. Main components of the experimental arrangement. The optical pump power was about 300 mW.

FIGURE 2. Time-domain spectra of THz emission from InP (red) and InAs (blue) under identical conditions of excitation.

FIGURE 3. Frequency-domain spectra for InP and InAs.
correspond. It may be observed that, while the spectral density from InP is much less than that from InAs, the signal-to-noise ratios are similar, and that InP displays relatively more strength at higher frequencies.

Azimuthal angle dependence

The sample was rotated around the surface normal and the THz field strength measured as a function of the azimuthal angle. The data (dots) are given in Fig. 4 and fitted with a sine curve (full line).

The azimuthal angle dependence is used to distinguish the contribution from surface-field effects, which are expected to be independent of the angle, and optical rectification effects, which are strongly orientation dependent [4]. Our data gives evidence that both effects are involved. The larger contribution is from phenomena that do not depend on the crystal orientation (surface-field effects). Imposed on this is a variation of ±20% which may be attributed to the optical rectification effect. Further studies are planned in which the optical pump power will be varied and a magnetic field applied in the plane of the crystal to fully explicate these mechanisms.

Previously when an azimuthal dependence is observed it usually displays a three-fold repetition through 360° rotation, associated with a <111> surface normal [5], or two-fold symmetry, associated with a <100> surface normal [6]. To our knowledge, this is the first report of a one-fold symmetry.

CONCLUSION

Coherent THz emission from InP has been observed and compared to that from InAs under identical conditions of excitation. Rotating the emitter crystal has indicated that the optical rectification effect plays a significant role, but that the main contribution is from surface-field effects. To put the THz emission from InP in context, when compared with other classes of emitters in our laboratory, under equivalent excitation conditions, InP is not as powerful as photoconductive antenna devices fabricated on GaAs, but is a stronger source of THz radiation than conventional optical rectification emitters such as ZnTe.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council and by the University of Wollongong.

REFERENCES