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IMPROVED ROOFBOLTING METHODOLOGIES: REDUCING 

HYDRAULIC FRACTURE OF STRATA 
 

David William Evans1  
  

ABSTRACT: Induced hydraulic fracture of strata during roof bolt installation is a potentially prevalent, but 
masked phenomenon within the underground coal industry. Previously reported resin testing programs 
(McTyre et al., 2014) examined the relationship between resin mixing effectiveness and varying bore 
hole diameter. The methodology employed within this earlier test program facilitated a further critical 
area of research – the measurement of back pressures generated within the bore hole during standard 
rock bolt installation practices. Experimental data has indicated that fluid resin can be pressurised to 
levels where it exceeds the compressive strength of the strata, inducing hydraulic fracture within the 
immediate area of the bolting horizon. The routine cycle of roof bolting serves to propagate this effect, 
progressively fracturing and delaminating the roof during mine advancement. This masked phenomenon 
can lead to a perception of difficult ground conditions - mining efficiencies and costs are therefore 
affected, with increased need for additional support subsequently required to re-stabilise the 
inadvertently damaged roof. 
 
Further analysis of the parameters associated with resin bolt installation has now been conducted, 
assisting in the development of an empirical relationship between bore hole pressure, bore hole 
diameter and bolt insertion times. This relationship has been analysed for 15:1 ratio resins and 2:1 ratio 
resins, within 28 mm and 30 mm boreholes. Further to this, load transfer performance has been 
comparatively assessed for both 28 mm and 30 mm boreholes, suggesting that for 2:1 resins, 
acceptable resin mixing and load transfer can be obtained within a 30 mm bore hole. The combination of 
2:1 resins, utilised within a 30 mm bore hole, may well provide the optimal solution to reduce the risk of 
hydraulic fracture in weaker strata during resin bolt installation. 
 

INTRODUCTION 
 
A number of industry papers have previously investigated areas of concern associated with the 
performance of cartridge style resins in roof bolting, predominantly focussing on the effects of plastic film 
gloving, inadequate resin mixing and the pressurisation of resin within the bore hole. These three effects 
have a critical influence on the load transfer of the steel bolt element, through the cured resin and into 
the surrounding strata. 
 
Gloving occurs due to the plastic film of the resin cartridge partially encasing or wrapping around the 
steel roof bolt element – a known phenomenon over many years (Pettibone, 1987). The plastic film 
creates regions of discontinuity between the bolt, cured resin and borehole, reducing effective load 
transfer into the strata. Experiments conducted into the effects of bolt ends fully encased by plastic film 
(Pastars and MacGregor, 2005) revealed that load transfer can be reduced by 85 to 90% in worst-case 
occurrences. It is also known that the aggregate filler size used within the resin can assist in shredding 
and breaking up the plastic film – this effect was observed in a previous study on resin mixing 
effectiveness (McTyer et al., 2014). 
 
Beyond the immediate impact of gloving discontinuities, is the issue of poor resin component mixing – 
where sections of resin remain unmixed and uncured after bolt installation is complete. The film casing 
of a resin cartridge has two internal compartments, each respectively holding the ‘mastic’ and ‘catalyst’ 
components. Note that the referred ratios for resin cartridges are simply the volumetric ratio of mastic to 
catalyst. When the mastic and catalyst are mixed in the correct ratio, the resin will cure and harden. 
However, it has been reported that for some resin cartridge designs, the catalyst compartment is 
dimensionally too small to be fully ruptured by the rotation of the bolt in the borehole (Campbell and 
Mould, 2003). Laboratory trials within a 28.5 mm borehole indicated that under initial insertion of the bolt, 
the resin cartridge expands and the catalyst compartment is pushed against the wall of the borehole. In 
this instance, the geometrical configuration can permit the ribbed bolt profile to pass through without fully 
rupturing and dispersing the catalyst through the resin mix, causing significant areas of uncured resin. 
While the cartridge and bolt are not fully defined within the 2003 paper, given the date of publication and 
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the New Zealand origins of the experimentation, it can be assumed that the bolts were an M24 left hand 
anchor bar and that the resin cartridges were a 24 mm diameter 15:1 mastic to catalyst ratio. 
 
Pressurisation of fluid resin within boreholes has also been an area of investigation. Earlier research 
focussed on the relationship between resin pressurisation and gloving, with theorisation that the plastic 
film cartridge may radially expand under the initial thrust of the bolt, then rupture and slip over the bolt 
end – hence the derivation of the term ‘gloving’. Resin pressurisation was also associated with the loss 
of resin volumes into strata voids, reducing resin encapsulation of the bolt and weakening of the 
corresponding load transfer. (Giraldo et al., 2006) proposes a mathematical model for the burst pressure 
associated with rupture of resin cartridges. However, as seen from the derived pressure verses 
displacement curves, while the point of cartridge rupture provides an initial pressure increase, it is 
certainly not associated with the peak pressures that are measured on full bolt insertion. Pressures 
observed by Giraldo, for different bolting systems, ranged from 3,500 psi (24.13 MPa) up to 7,000 psi 
(48.26 MPa). It was also observed that bolting systems with greater annulus around the bolt, as well as 
slower installation speeds, produced lower insertion pressures. While pressures of this magnitude have 
been measured, the exact modes that lead to the generation of such elevated pressures have not been 
fully explored. 
 

THE DEVELOPMENT OF AN EMPIRICAL MODEL 
 
The determination of internal borehole pressures due to resin flow presents a highly complex fluid 
mechanics model, involving numerous parameters. These parameters can be compiled under three 
main groupings, being the fluid characteristics of the resin, the dimensional geometry of the resin, 
borehole and bolt, as well as the rate of insertion of the bolt. These parameters are outlined below: 
 

 Fluid characteristics of the resin 

o Dynamic Viscosity (N.sec.m-2 ) 

o Density (kg.m-3) 

 Dimensional geometry – resin, borehole and bolt 

o Resin cartridge diameter (m) 

o Resin cartridge length (m) 

o Bore hole diameter (m) 

o Bolt core diameter (m) 

o Bolt rib profile (various dimensions) – height, width, flank angles, radial profile, pitch spacing (m, 
degrees)        

o Relative surface roughness of the borehole (dimensionless) 

 Rate of insertion of bolt 

o Bolt insertion velocity (m.s-1) 

o Bolt rotational speed (rad.s-1) 

Two points are worthwhile noting in regards to these parameters. The first is that for a mining resin, 
viscosity is only a notional concept. The resin is actually a suspension of solids in liquids – it is not a 
uniform, homogenous fluid. Further to this, resin cartridges are of course a two component system – a 
chemical reaction transforms the properties of the resin during bolt installation. Therefore, a true 
measurement of viscosity is actually indeterminate. Similarly, the measurement of true density values is 
also difficult. 
 
The second key point relates to bolt insertion velocity. It is the velocity of the bolt through the resin that 
generates the flow of the liquid and the corresponding back pressures in the bore hole. The insertion 
force (N) of the bolt will of course influence the bolt velocity – a greater thrust force will insert the bolt 
faster – however it is the velocity of the rockbolt that determines the velocity of the resin flow and 
associated borehole pressures. This is schematically shown below in Figure 1. 
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Where:   Pb = Borehole internal pressure (kg.m-1.s-2) 
      Va = Fluid velocity in annulus (m.s-1) 
      ƒ = functional correlation between pressure and resin fluid velocity 
 
Excluding minor and indeterminate parameters, the thesis is that this empirical relationship holds true at 
the point of peak pressure and annulus velocity – when measured at full bolt insertion. At the peak of 
insertion and specific to individual resin types, a ratio can then be assumed between peak pressure and 
velocity - and the equation becomes: 
 
Pb = Rpv ( Va

2 / 2)                                               (2) 
 
Where:   Rpv = pressure-velocity ratio, at peak pressure (kg.m-3) 

 
EXPERIMENTAL METHODOLOGY 

 
The experimental method utilised for this report was documented in an earlier publication (McTyre et al., 
2014). This involved internally sleeving the borehole utilising a PVC pipe of specific diameter, contained 
within and structurally supported by an external, heavy walled steel pipe to prevent swelling of the inner 
PVC pipe. The PVC pipe was capped at the top end to prevent resin loss and constrained at each end to 
prevent internal slipping and rotation. The internal PVC pipe could be readily removed after each 
installation test was completed, permitting quick changeover and multiple tests to be conducted. The 
PVC pipe could also be easily cut open and peeled away, to fully view and inspect the entire resin 
annulus. Various pipe combinations could be utilised to simulate both a 28 mm and a 30 mm borehole. 
This sleeving method was further supported with calibrated instrumentation on the drill rig, including a 
toroidal load cell, linear displacement transducer and tachometer. For every bolt installation, a data 
logger was utilised to capture force (kN), displacement (mm) and rotational speed (rpm) against time 
(sec) to a resolution of 0.1 sec per data event. Figure 2 outlines the experimental arrangement. 
 
Experimental results – pressure / flow relationships 
 
Utilising this experimental method, a series of bolt installations were conducted and average data sets 
were compiled. Two resin types were investigated - a 2:1 resin and a 15:1 resin. Two bore holes were 
also investigated, 28 mm and 30 mm. A single bolt type was used across all installations, being standard 
left hand anchor bar with a nominal core diameter of 21.7 mm. The bolt steel grade was HSAC840, 
commonly available on the Australian market. The following installation graphs shown in Figures 3 to 6 
provide the experimental data derived from this test program – each graph represents the average data 
set from multiple tests for each experimental combination. 
 

 

Figure 2: The ‘Borehole Sleeving’ experimental method, including instrumentation features 
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Figure 3

 
 

Figure 4

 

Figure 5
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For each experiment, the average insertion time was determined - this was used to calculate the flow 
rate of resin through the annulus. The total resin volume is of course known, simply by measurement of 
the cartridge dimensions. Upon full insertion of the bolt into the resin, the flow rate into the annulus, Qa, 
is then the total resin volume divided by the full insertion time. The peak velocity of resin in the annulus, 
upon full bolt insertion, is therefore the flow rate divided by the annulus area. This is expressed in the 
following equations: 
 
Qa = vc / tf             and           Va = Qa /Aa                                (3) 
 
Where:   Qa = volumetric flow rate of resin into annulus (m3.s-1) 
       vc = volume of Resin Cartridge (m3) 
     tf  = time for full insertion through the resin cartridge (s) 
     Va = velocity of resin within the annulus (m.s-1) 
     Aa = annulus area (m2) 
 
Referring to Figure 1, the internal pressure of the bore hole is determined by the measured output force, 
divided by the area of the borehole, calculated simply as:  
  
Pb = Fo / Ab                                                                    (4) 
 
Where:   Pb = Borehole Internal Pressure (kg.m-1.s-2) 
      Fo = Output Force (N) 
      Ab = borehole area (m2) 
 
Utilising the experimental methodology as described and the mathematical relationships defined above, 
data sets were compiled for each experimental combination, provided in Table 1 - this permitted 
calculation of the Peak Pressure-Velocity Ratio, Rpv. 
 

Table 1: Calculation of Peak Pressure-Velocity Ratio (Rpv), based on the various 
experimental data sets 

Resin Type 15:1 Resin, 1000 mm Long 2:1 Resin, 1000 mm Long 

Borehole Diameter (mm) 28 30 28 30 

Bolt Type / Core Diameter (mm) AT / 21.7 AT / 21.7 AT / 21.7 AT / 21.7 

Cartridge Diameter (mm) 23.7 23.7 23.4 23.4 

Cartridge Volume (mm3) 441,208 441,208 430,108 430,108 

Annulus Area (mm2) 245.95 337.07 245.95 337.07 

Bolt Full Insertion Time (s) 7.5 5.7 9 5.7 

Effective Resin Flow Rate (mm3.s-1) 58,828 77,405 47,790 75,458 

Annulus Flow Velocity (mm.s-1) 239 230 194 224 

Peak Load (N) 6,600 4,300 6,500 4,700 

Peak Pressure (Pa) 10.717 x 106 6.082 x 106 10.555 x 106 6.648 x 106 

Peak Pressure-Velocity Ratio (kg.m-3) 3.747 x 108 2.307 x 108 5.591 x 108 2.653 x 108 
 
Derivation of peak pressure installation curves 
 
Given that the Peak Pressure-Velocity Ratio is determined for each experimental data set, this 
relationship can now be used to mathematically determine the Peak Pressure for varying flow velocities 
within the annulus. The annulus flow velocity correlates to bolt insertion velocity and bolt insertion time, 
pushing through 1000 mm of resin. Note that these empirical relationships are only assumed for each 
individual resin type and length – the Rpv value is assumed to be different for different resin types and 
fluid characteristics. The following charts of predicted peak pressure in Figures 7 and 8 have been 
determined by individual resin type and borehole size. Also, the Rpv value for the 27 mm borehole is a 
linear extrapolation, based on the Rpv values determined from the 28 mm and 30 mm data sets. 
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between borehole size, bolt insertion velocity and peak borehole pressure is useful in determining the 
risk of hydraulic fracture of strata and resin loss during bolt installation - this risk is seen to substantially 
reduce with the utilisation of boreholes 30 mm in diameter. Further to this, 2:1 resins are observed to mix 
well within a 30 mm borehole, providing load transfer results that appear to exceed that of 15:1 resins 
within a 28 mm borehole. Taking all factors into account, the combination of 2:1 resins, utilised within a 
30 mm bore hole, may well provide the optimal resin bolting solution - reducing the risk of hydraulic 
fracture and resin loss in weaker strata, while maintaining adequate load transfer performance 
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