Thermal sweating following spinal cord injury

Bradley Wilsmore
University of Wollongong, brw995@uow.edu.au

J D. Cotter
Dept. of Defence, Melbourne, Australia

Andrea MacDonald
University of Wollongong

A. Zeyl
University of Wollongong

Guy M. Bashford
Illawarra Rehabilitation Centre, guyb@uow.edu.au

See next page for additional authors
Thermal sweating following spinal cord injury

Abstract
A complete spinal cord injury prevents neural connections between distal sites and higher neural structures. While it has previously been demonstrated that an isolated spinal cord can elicit non-thermal sweating independently of the hypothalamus [1-3], the ability of the spinal cord to control sweating in response to thermal stimuli, without hypothalamic influence, is less clear. The majority of early literature indicates that thermal sweating is absent below a complete spinal cord injury (SCI) [4-7], yet several studies suggest otherwise [8-11]. However, invasive measures have failed to observe altered sympathetic activity when thermally stimulating insensate regions [12], which is inconsistent with the observations of sweating below a SCI.

Keywords
spinal, injury, following, thermal, sweating, cord

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Authors
Bradley Wilsmore, J D. Cotter, Andrea MacDonald, A. Zeyl, Guy M. Bashford, and Nigel Taylor

This conference paper is available at Research Online: http://ro.uow.edu.au/smhpapers/1180
Proceedings

of the

International Conference on Physiological and Cognitive Performance in Extreme Environments.

27th to 30th March 2000

Held at Australian Institute of Sport, Canberra, Australia.
Thank you
US Army Institute of Environmental Medicine
for your scientific support
and
US Army Medical Research & Materiel Command
for your financial support
to
ICPCPEE
Table of Contents

INVITED LECTURE 1: EXERCISE, HEAT STRESS AND FATIGUE
M. Hargreaves ... 1

PAPER 1: THE INFLUENCE OF WHOLE BODY VS TORSO PRE-COOLING ON PHYSIOLOGICAL STRAIN AND PERFORMANCE OF HIGH INTENSITY EXERCISE IN THE HEAT.
G.G. Sleivert, J.D. Cotter, W.S. Roberts and M.A. Febbraio 4

PAPER 2: THE INFLUENCE OF TORSO AND WHOLE-BODY PRE-COOLING ON STRAIN AND PERFORMANCE DURING ENDURANCE WORK IN THE HEAT.
J.D. Cotter, G.G. Sleivert, W.S. Roberts and M.A. Febbraio .. 8

INVITED LECTURE 2: HEAT STRESS AND EXERCISE METABOLISM
M.A. Febbraio ... 12

PAPER 3: EFFECT OF ENVIRONMENTAL TEMPERATURE ON STEADY-STATE AND MAXIMAL CYCLING
J.P. Finn, J.F. Marsden, R.J. Wood and A.L. Travar .. 17

INVITED LECTURE 3: HYDRATION EFFECTS ON THERMOREGULATION AND PERFORMANCE IN THE HEAT
M.N. Sawka .. 21

PAPER 4: THE EFFECT OF GLYCEROL HYPERHYDRATION ON OLYMPIC DISTANCE TRIATHLON PERFORMANCE IN HIGH THERMAL STRESS.
A. Coutts, P. Reaburn and K. Mummery ... 24

PAPER 5: THE MAIN FUNCTION OF THERMOREGULATION AND THE SUBJECT OF TEMPERATURE CONTROL
K.P. Ivanov .. 28

INVITED LECTURE 4: SWEATING IN EXTREME ENVIRONMENTS: HEAT LOSS, HEAT ADAPTATION, BODY-FLUID DISTRIBUTION AND THERMAL STRAIN.
N.A.S. Taylor .. 32

PAPER 6: TO WHAT EXTENT DOES THERMAL SENSATION REFLECT PHYSIOLOGICAL HEAT STRAIN
S. Baker, and J. Grice .. 36

PAPER 7: THERMAL SWEATING FOLLOWING SPINAL CORD INJURY.
B.R. Wilsmore, J.D. Cotter, A.D. MacDonald, A. Zeyl, G. Bashford, and N.A.S. Taylor .. 39

INVITED LECTURE 5: PARTICIPATION OF GASTROINTESTINAL ENDOTOXINS IN THE TOLERANCE OF HEAT AND EXERCISE
J.R.S. Hales and S. Sakurada .. 42

PAPER 8: PREVENTION AND TREATMENT OF AN EXPERIMENTAL HEAT STROKE MODEL.
M-T Lin ... 45

PAPER 9: INTER-RELATIONSHIPS BETWEEN SWEATING, CORE AND INTRAMUSCULAR TEMPERATURES.

INVITED LECTURE 6: TIME COURSE OF HEAT ACCLIMATION AND ITS RETENTION
K.B. Pandolf ... 51
PAPER 10: URINALYSES AND BODY MASS CHANGES DURING AN ULTRA-
DISTANCE ENDURANCE EVENT: THE SIMPSON DESERT CYCLE CHALLENGE
F. Reaburn and A. Coutts ... 56

INVITED LECTURE 7: HUMAN HEAT ACCLIMATION: WHAT IS THE BEST
METHOD?
R. Withey .. 60

PAPER 11: THE THERMOREGULATORY STRAIN PRODUCED BY PROTECTIVE
PVC SUITS DURING SIMULATED CHEMICAL SPILL CLEAN-UP OPERATIONS IN
A HOT ENVIRONMENT IS NOT REDUCED BY PASSIVE COOLING VESTS.
R. Holdsworth and M. Crowe .. 61

PAPER 12: ENHANCEMENT OF PERFORMANCE THROUGH HEAT
ACCLIMATION AND RACE SIMULATION AMONGST MOTORSPORT ATHLETES
S.M. Walker, B. Dawson and T.R. Ackland .. 65

INVITED LECTURE 8: THE IMPORTANCE OF AEROBIC FITNESS IN
DETERMINING TOLERANCE TO UNCOMPENSABLE HEAT STRESS
T.M. McLellan ... 68

PAPER 13: THE EFFECTS OF WEARING SUNSCREEN LOTION ON
THERMOREGULATORY RESPONSES DURING EXERCISE IN THE HEAT IN
ADULT AND ADOLESCENT MALES.
G. Naughton, J. Carlson, M. Gibbs and R. Snow 72

PAPER 14: WHOLE-BODY PRE-COOLING: THERMAL, CARDIOVASCULAR AND
METABOLIC CONSEQUENCES.
A.D. MacDonald, J. Booth, A.L. Fogarty, K.A. Armstrong, H. Groeller, A. Hahn,
L.H. Storlien and N.A.S. Taylor ... 76

PAPER 15: ENHANCED CUTANEOUS BLOOD FLOW AND HEAT OF SORPTION
AFTER THE ONSET OF SWEATING DURING HEAT LOAD
K. Tanaka and K. Hirata ... 80

INVITED LECTURE 9: NUTRITIONAL NEEDS IN THE HEAT
L. Burke .. 83

PAPER 16: EXERCISE NORTHERN AWAKENING: NUTRITION STUDY
C. Booth, R. Coad, C. Forbes-Ewan, G. Thomson, P. Davies and P. Niro 86

PAPER 17: DO CAFFEINE AND EphEDRINE HAVE A BENEFICIAL IMPACT ON
HUMAN PERFORMANCE DURING PROLONGED EXPOSURE TO A COLD, WET
AND WINDY ENVIRONMENT?
A.S. Weller, E.M. O'Connor, V.R. Nevola, and M.H. Harrison 89

INVITED LECTURE 10: AN EVALUATION OF THE CONCEPT OF LIVING AT
MODERATE ALTITUDE AND TRAINING NEAR SEA LEVEL

PAPER 18: CLOTHING INSULATION AND THERMAL COMFORT OF TENT
OCCUPANTS AT HIGH ALTITUDE
K. Cena and P. Tapsell ... 98

PAPER 19: EFFECTS OF COLD ON MANUAL PERFORMANCE IN SUBJECTS
WITH RAYNAUD'S PHENOMENON
S. Rissanen, J. Hassi, K. Juopperi and H. Rintamäki 102

INVITED LECTURE 11: EXERTION-INDUCED FATIGUE AND
THERMOREGULATION IN THE COLD
A.J. Young and J.W. Castellani .. 105
PAPER 20: RELATIONSHIP BETWEEN MANUAL PERFORMANCE, EXTREMITY TEMPERATURES, AND RATE OF BODY HEAT STORAGE DURING COLD EXPOSURE
 M.B. Ducharme, D. Brajkovic and J. Frim .. 109

PAPER 21: THE EFFECTS OF WIND ON THERMAL RESPONSES DURING LIGHT AND MODERATE EXERCISE IN THE COLD
 T. Mäkinen, D. Gavhed, I. Holmér, H. Rintamäki .. 112

PAPER 22: EVIDENCE OF SHIVERING FATIGUE: VERIFICATION OF A PREDICTION MODEL
 P. Tikuisis, D.A. Eyolfson, X. Xu, and G.G. Giesbrecht 115

INVITED LECTURE 12: PSYCHOPHYSIOLOGICAL ASPECTS OF COGNITION: TOWARDS AN UNDERSTANDING OF PERFORMANCE IN EXTREME ENVIRONMENTS
 R.J. Barry .. 118

PAPER 23: ANS AND CNS EFFECTS OF LIMB IMMERSION IN ICE COLD WATER
 R.D. O'Donohue, R.J. Barry and B.P. Corless .. 122

PAPER 24: HEART RATE VARIABILITY AS A MEASURE OF COGNITIVE WORKLOAD
 D. Foran, M. Skinner and S. Smith .. 126

PAPER 25: PSYCHOMETRIC ASSESSMENT OF THE EFFECTS OF THERMAL STRAIN ON COGNITION
 C. Hocking, R. Silberstein, W.M. Lau, W. Roberts, C. Stough and D. Amos 130

INVITED LECTURE 13: MARKSMANSHIP AND SENTRY DUTY PERFORMANCE UNDER EXTREME ENVIRONMENTS
 R.F. Johnson .. 133

PAPER 26: COGNITIVE PERFORMANCE AND PHYSICAL STRESSORS IN EXTREME ENVIRONMENTS
 R. Brandeis .. 137

PAPER 27: BRAIN ELECTRICAL ACTIVITY MAPPING AND THE EFFECTS OF THERMAL STRAIN ON A SPATIAL WORKING MEMORY TASK

INVITED LECTURE 14: THE MEASUREMENT OF THERMAL STRAIN IN SOLDIERS OPERATING IN NORTHERN AUSTRALIA
 D. Amos .. 144

PAPER 28: THERMAL STRESS AND PERSONAL COOLING SYSTEM
 P. Bandopadhayay, W.M. Lau and D. Amos .. 152

PAPER 29: EVALUATION ON THE COOLING SYSTEMS OF AIRTIGHT SUITS USED IN THE CLOSED ECOLOGY EXPERIMENTAL FACILITIES
 N. Kakitsuba, N. Watanabe and Y. Shirane .. 155

INVITED LECTURE 15: PREDICTIVE MODELING: ITS USE IN FORECASTING HUMAN RESPONSES TO THE ENVIRONMENT
 R.R. Gonzalez ... 159

PAPER 30: THE CONTRIBUTION OF SOLAR RADIATION TO HEAT STRESS AND HEAT STRAIN DURING WORK IN ENCAPSULATING PROTECTIVE SUITS
 S.E. Atkinson and G.V. Coles .. 163

PAPER 31: THE DISCOMFORT INDEX PREDICTS THE PHYSIOLOGICAL STRAIN ASSOCIATED WITH INDOOR SPORTS HEAT STRESS
 R.D. Hansen ... 167
PAPER 32: OCCUPATIONAL HEAT ILLNESS: AN INTERVENTIONAL STUDY
R.J. Brake and G.P. Bates ... 170

POSTER 1: NECK MUSCLE FATIGUE ISSUES RELATED TO NIGHT VISION GOGGLE USE
C. Brady and V. Demczuk .. 173

POSTER 2: HEAT STRAIN DURING COMBAT FITNESS ASSESSMENT OF SOLDIERS IN NORTHERN AUSTRALIA.

POSTER 3: THE EFFECTIVENESS OF AN ICE VEST OR INTRAVENOUS ADMINISTRATION OF FLUID ON RECOVERY FROM HIGH HEAT STRAIN.
J.D. Cotter, G.G. Sleivert and W.S. Roberts 179

POSTER 4: EFFECT OF ENVIRONMENTAL TEMPERATURE ON THE ANAEROBIC CAPACITY OF HEAT ACCLIMATISED ATHLETES
J.P. Finn, J.F. Marsden, R.J. Wood and A.L. Travar 183

POSTER 5: COMPARISON OF TWO SYSTEMS OF WATER DELIVERY FOR USE ON MILITARY OPERATIONS
C.H. Forbes-Ewan, J.D. Cotter, D. Amos and W.M. Lau 186

POSTER 6: USE OF SENSORS TO STUDY THE MICROCLIMATE WITHIN A CLOTHING ENSEMBLE
P. Forshaw .. 189

POSTER 7: IMPACT OF PERSONAL COOLING SUITS ON AN INFANTRY ATTACK SCENARIO
W. Hobbs, T. Castles and M. French ... 191

POSTER 8: ORIGIN AND REGULATION OF METABOLIC HEAT
K.P. Ivanov .. 195

POSTER 9: RESTORATION OF PHYSIOLOGICAL FUNCTIONS IN A COOLED ORGANISM WITHOUT REWARMING THE BODY
K.P. Ivanov .. 199

POSTER 10: THE EFFECT OF AIR GAP ON THE FABRIC SURFACE APPARENT TEMPERATURE AND ITS THERMAL RESISTANCE
B. Lee .. 203

POSTER 11: MICROCLIMATE OF THE SMI TANK IN STATIONARY CONDITION
L.C. Leong, E. Song and S.B. Kee .. 207

POSTER 12: IMPROVING THE MILITARY’S WET WEATHER GARMENT
D.J. Robinson and G.T. Egglestone .. 210

POSTER 13: PREDICTION OF THERMAL STRAIN USING NEURAL NETWORKS
P.J. Sanders and W.M. Lau .. 213

POSTER 14: THE COMBINED EFFECT OF HEAT AND CARBON MONOXIDE ON THE PERFORMANCE OF THE MOTORSPORT ATHLETE
A complete spinal cord injury prevents neural connections between distal sites and higher neural structures. While it has previously been demonstrated that an isolated spinal cord can elicit non-thermal sweating independently of the hypothalamus [1-3], the ability of the spinal cord to control sweating in response to thermal stimuli, without hypothalamic influence, is less clear. The majority of early literature indicates that thermal sweating is absent below a complete spinal cord injury (SCI) [4-7], yet several studies suggest otherwise [8-11]. However, invasive measures have failed to observe altered sympathetic activity when thermally stimulating insensate regions [12], which is inconsistent with the observations of sweating below a SCI.

There are two main limitations within many of the above studies. Firstly, for the spinal cord to be deemed to have initiated sweating independently of the hypothalamus, it must be confirmed that neural connections are absent. Since most clinical verifications of SCI completeness do not evaluate autonomic completeness, and since sweat glands are sympathetically innervated, it is imperative to evaluate the integrity of autonomic function. In several cases, where sweating was observed below a SCI [9-11], autonomic completeness was not reported, and presumably not tested. Indeed, it has been demonstrated that complete somatosensory separation can exist while residual autonomic function remains [1, 13]. Hence, we are unable to determine whether sweating below a SCI is the result of surviving or regenerated neural connections, or whether it is spinally mediated. In those studies reporting sweating below a SCI, sweat rate is substantially reduced [8-10]. Such a pattern may occur in the presence of a massive, but incomplete disruption of the neural pathways. Thus, such sweating may have been initiated by the hypothalamus.

Secondly, if sweating is present below a confirmed complete SCI, it must be confirmed whether or not its origin is thermal, or resulting from other afferent feedback (e.g. pain or localised pressure). Autonomic dysreflexia and muscle spasms are the major cause of non-thermal sweating in spinal patients. Such sweating, both above and below the SCI, is a common clinical observation [1-3]. However, since sweat rate is directly affected by local temperature [14], non-thermal sweating may be similarly altered, despite being initiated by non-thermal factors. Therefore, the aim of the current project was to investigate the possible existence of thermally-induced sudomotor control in subjects with a complete SCI, using measures of sweat rate (m_{sw}), and sweat expulsion frequency (f_{sw}).

MATERIALS AND METHODS

Eight subjects with clinically complete SCI (C5-L1) and 10 non-injured controls were studied. Clinical examination, performed by an experienced medical practitioner, verified somatosensory completeness. Since several studies have shown residual sensory and motor innervation despite clinically-verified complete SCI [13, 15-17], additional verification was achieved by clamping mean body temperature above the sweat threshold, while the leg blood flow was occluded and the leg was cooled with 7.9°C water. A concomitant decrease in forehead m_{sw} in SCI subjects was interpreted to have resulted from intact sensory
connections. Such subjects were classified as physiologically incomplete SCI, and are not reported herein.

Subjects rested supine in a climate-controlled chamber at 38.5°C (38.5% r.h.). Mean body temperature was clamped using a water-perfusion suit (T_w 38.8°C, SD 0.5). Core temperature was measured from the oesophagus, rectum and auditory canal, and skin temperatures from 14 sites. The m_sw was measured at six sites simultaneously, using ventilated sweat capsules (3.16 ±0.05 cm^2: Multi-Site Sweat Monitor, Clinical Engineering Solutions, Australia). Two capsules, attached to the forehead and foot, were modified to yield f_sw data. These data were used to determine whether sweating at the forehead was of the same rhythm as that below the SCI (if present). This was essential for determining whether or not sweat below the SCI was under hypothalamic control, and thereby having a synchronous f_sw pattern.

Since major causes of non-thermal sweating below a SCI are bladder and bowel distension, and local tissue ischaemia, subjects emptied their bladder and bowel prior to a trial. To limit pressure-induced ischaemia, all subjects rested on a dry floatation cushion (ROHO Inc, Belleville, IL, U.S.A.). This is a specialised mattress commonly used with spinal patients to minimise local pressure. Great care was also taken to avoid any tubing or thermistor cables lying between the subject and the mattress, and subjects were moved regularly to reduce localised pressure. These precautions minimised both the incidence and severity of spastic responses in the SCI subjects.

RESULTS

All controls displayed sweat suppression with leg cooling. However, one SCI subject similarly experienced reduced forehead sweating, and was classified as an incomplete SCI. Seven clinically, and physiologically, complete SCI subjects remained. Sweating did not occur at the forehead in any quadriplegic subject (n=3). Since preganglionic sympathetic fibres originate from neurons in the thoracic and lumbar segments only, a complete SCI above the thoracic segments results in the loss of all sympathetic and, subsequently, sudomotor control. Therefore, the ability to verify SCI completeness using limb cooling was not applicable within these subjects.

Whole body m_sw (averaged across six sweat capsules) for the control group was greater than observed in the SCI subjects (1.03 and 0.3 mg*cm^{-2}*min^{-1} respectively; P<0.05). This was primarily due to the absence of sweating at several sites in the majority of SCI subjects, regardless of large increases in mean body temperature (1.9°C SD 0.4). However, of the seven complete SCI subjects, two had sweating below the SCI, albeit of a substantially reduced magnitude: < 0.1 mg*cm^{-2}*min^{-1}.

In the control subjects, a delay of about 2 s occurred between a sweat expulsion at the forehead, and a corresponding expulsion at the foot. In the two SCI subjects with sweating below the SCI, the foot f_sw was only 53% of the forehead f_sw. However, when averaged over 50 min and across both subjects, 94% of the expulsions at the foot coincided with forehead sweat expulsions.

DISCUSSION AND CONCLUSION

The major finding of the present study was that the spinal cord, when isolated from the hypothalamus, could not independently induce sweating in response to thermal stimuli. These results also demonstrate that, despite the complete absence of spinal cord function below the site of injury, the autonomic nervous system can still be partially intact, and responsive to hypothalamic signals.

Consistently sequential sweat expulsions from both the sensate and insensate skin of two subjects with clinically-verified complete SCI, are consistent with hypothalamic control of thermally-induced sweating, and cannot be deemed to be a spinally-mediated sudomotor
response. Such control may, however, be due to the survival, or regeneration, of sympathetic ganglia, independently of a complete SCI. This finding may help explain why several previous studies have found sweating below a clinically, and sometimes anatomically, complete SCI.

REFERENCES

All experiments were approved by the University's Human Research Ethics Committee.