Synthesis of novel compounds based on reticuline scaffold for new drugs discovery

Tam-Dan Batenburg-Nguyen
University of Wollongong, tam@uow.edu.au

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Synthesis of Novel Compounds Based on the Reticuline Scaffold for New Drugs Discovery.

A thesis submitted in fulfilment of the requirements for the award of the degree of

Doctor of Philosophy

From

University of Wollongong

Tam-Dan (Uta) Batenburg-Nguyen

B. Adv. Med Chem (Hons)

Department of Chemistry

University of Wollongong

Wollongong, Australia

December, 2005
Declaration

I, Tam-Dan (Uta) Batenburg-Nguyen hereby declare that all materials presented in this thesis, submitted in the fulfillment of the requirements for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, are exclusively of my own work. These materials have not been submitted for qualifications at any other academic institution, unless otherwise referenced or acknowledged.

Tam-Dan (Uta) Batenburg-Nguyen

December, 2005
CHAPTER 1 INTRODUCTION ... 1

1.1. HISTORY OF NATURAL PRODUCTS. .. 2
1.2. PRIMARY VERSUS SECONDARY PLANT METABOLITES......................... 2
1.3. WHAT IS AN ALKALOID? .. 3
1.4. TYPES OF ALKALOIDS AND THEIR APPLICATIONS. 3
1.5. BENZYLISOQUINOLINE ALKALOIDS... 6
1.6. (S)-RETICULINE... 8
1.7. THE OPIUM POPPY. .. 9
1.8. BIOSYNTHESIS OF MORPHINAN ALKALOIDS..................................... 10
1.9. BIOSYNTHESIS OF PROTOBERBERINE AND BENZOPHENANTHRIDINE-ALKALOIDS. .. 11
1.10. BISBENZYLISOQUINOLINE ALKALOIDS... 13
1.11. APORPHINE-BENZYLISOQUINOLINE ALKALOIDS............................ 16
1.12. BENZYL-, BISBENZYL- AND APORPHINE-BENZYLISOQUINOLINE ALKALOIDS- ROLE AS ANTICANCER AGENTS......................... 18
1.13. BISBENZYLISOQUINOLINE ALKALOIDS – ROLE AS ANTIMALARIAL AGENTS.. 19
1.14. BENZYL-, BISBENZYL- AND APORPHINE-BENZYLISOQUINOLINE ALKALOIDS- ROLE IN COMBATING MULTIDRUG RESISTANCE.......... 20
1.15. METABOLIC ENGINEERING OF THE OPIUM POPPY.............................. 23
1.16. PROJECT AIMS... 25
CHAPTER 2 SYNTHESIS OF BISBENZYLISOQUINOLINES DERIVATIVES VIA PALLADIUM-MEDIATED CROSS COUPLING REACTIONS ... 29

2.1. INTRODUCTION ... 29

2.2. SYNTHETIC APPROACH TO TETHERED BBI DERIVATIVES VIA THE HECK COUPLING REACTION ... 30

2.3. SYNTHESIS OF THE 2’-IODONORLAUDANOSINE DERIVATIVE 58 31

2.4. SYNTHESIS OF OLEFINS 67 AND 68 VIA STILLE COUPLING REACTIONS. 35

2.4.1. Background on Stille coupling reactions... 35

2.4.2. Application of Stille couplings in the synthesis of 67 and 68. 37

2.5. SYNTHESIS OF THE BBI DERIVATIVE 65 VIA A PALLADIUM-CATALYSED HECK COUPLING REACTION ... 40

2.5.1. Background on Heck coupling reactions... 40

2.5.2. Application of the Heck coupling reaction to the synthesis of 65 41

2.5.3. Heck coupling reactions-optimization of yields and a study of regioselectivity. ... 50

2.6. SYNTHESIS OF THE NON-SYMMETRICAL BISBENZYLISOQUINOLINE 66 VIA THE HECK COUPLING REACTION .. 54

2.7. SYNTHESIS OF SATURATED TETHERED BISBENZYLISOQUINOLINE DERIVATIVES VIA HYDROGENATION ... 55

2.7.1. Synthesis of the saturated tethered BBI derivative 80 55

2.7.2. Attempted synthesis of saturated BBI derivative 81 56

2.8. N-TFA DEPROTECTIONS .. 58

2.8.1. N-TFA deprotection of 65 ... 58

2.8.2. N-TFA deprotection of 69 ... 59

2.8.3. N-TFA deprotection of 66 ... 60

2.8.4. N-TFA deprotection of rac-80 ... 61

2.9. SYNTHESIS OF AN ACETYLENIC TETHERED BIS-BENZYLISOQUINOLINE VIA THE SONOGASHIRA COUPLING REACTION ... 62

2.9.1. Retrosynthesis of the targeted acetylenic BBI derivative 63 62

2.9.2. Background on the Sonogashira coupling reactions 63
2.9.3. Synthesis of acetylenic BBI derivatives 84 and 85. 65
2.9.4. Synthesis of acetylenic BBI derivative 83 .. 68
2.9.5. N-TFA deprotection of 83. ... 69

2.10. INTRAMOLECULAR HECK COUPLING REACTIONS. 70
2.10.1. Retrosynthesis of the Bis-tethered BBI derivative 64. 70
2.10.2. Synthesis of the carboxylic acid 90. .. 71
2.10.3. Construction of the Carbon Tether between the Isoquinoline Nitrogens via EDCI/HOBt Coupling... 71
2.10.4. Formation of the Carbon-Carbon Tether Across C2’ Position via Intramolecular Heck Coupling. ... 73

CHAPTER 3 SYNTHESES OF 2’-ARYLVINYL AND 2’-ARYLALLYL BENZYLISOQUINOLINE DERIVATIVES.....................76

3.1. INTRODUCTION ... 76
3.2. SYNTHESIS OF EXOCYCLIC N,N-DIMETHYLAMINO BENZYLISOQUINOLINE DERIVATIVES. .. 77
3.1.1. Preparation of N-protected aryl iodides.. 79
3.1.2. Preparation of 2’-allyllaudanosine 122. .. 81
3.1.3. Synthesis of the benzylisoquinoline derivatives 112-117 via Heck coupling reactions... 81

3.2. SYNTHESIS OF N-ACETYL BENZYLISOQUINOLINE DERIVATIVES. 88
3.3. SYNTHESIS OF VERATROLE LINKED BENZYLISOQUINOLINE DERIVATIVES. 93
3.4. N-TFA DEPROTECTIONS AND REDUCTIVE N-METHYLTATIONS. 95
3.4.1. N-TFA deprotection and reductive N-methylation of 2’-arylvinyl benzylisoquinoline derivatives ... 96
3.4.2. N-TFA deprotection and reductive N-methylation of 2’-arylallyl benzylisoquinoline derivatives ... 99

3.5. HYDROGENATION REACTIONS. ... 102

CHAPTER 4 SYNTHESIS OF BISBENZYLISOQUINOLINES DERIVATIVES VIA RUTHENIUM-MEDIATED OLEFIN METATHESIS. 105
4.1. INTRODUCTION ... 105
4.2. OLEFIN CROSS METATHESIS... 106
4.2.1. Background on cross metathesis reactions .. 106
4.2.2. Studies towards the selectivity of cross metathesis 109
4.2.3. Categories of olefins ... 111

4.3. FORMATION OF THE FOUR CARBON-TETHERED BBI DERIVATIVE 146
VIA CROSS METATHESIS REACTIONS ... 113

4.4. FORMATION OF THE TWO CARBON-TETHERED BBI DERIVATIVE 65
VIA CROSS METATHESIS. ... 115

4.5. CROSS METATHESIS BETWEEN A TYPE I AND A TYPE II OLEFIN 117
4.5.1. Formation of the three carbon-tethered BBI derivative 66 via cross metathesis .. 117
4.5.2 Formation of the substituted styrene derivative 150 via cross metathesis .. 119

4.6. SYNTHESIS OF THE SATURATED TETHERED BIS-BENZYLISOQUINOLINE DERIVATIVE 152. ... 120

4.7. N-TRIFLUOROACETYL DEPROTECTION AND REDUCTIVE N-METHYLATION ... 122
4.7.1. N-TFA deprotection and reductive N-methylation of BBI derivative 144. .. 122
4.7.2. N-TFA deprotection and reductive N-methylation of the BBI derivative 152. ... 123

4.8. SYNTHESIS OF THE BIS-TETHERED BBI DERIVATIVE 142. 124
4.8.1. Construction of the tether between the isoquinoline nitrogens via an amide coupling reaction. .. 125
4.8.2. Ring closing metathesis (RCM) of diene 154 126
4.8.3. Synthesis of Compound 142-Reduction of the carbonyl by LiAlH₄. 129

CHAPTER 5 SYNTHESIS OF 2'-AMINOALKYL BENZYL-ISOQUINOLINE DERIVATIVES AND MEDIUM Sized RING ANALOGUES. ... 133

5.1. INTRODUCTION .. 133
5.2. SYNTHESIS OF 2’-AMINOALKYLBENZYLISOQUINOLINE DERIVATIVES....... 135
5.2.1. Synthetic approach of 155-162 via the addition of lithium amide to the 2'-vinylaudanosine derivative 169. ... 135

5.2.2. Attempted synthesis of 157 via the addition of lithium morpholinamide to the 2'-vinylaudanosine derivative 169. 137

5.2.3. Model study of lithium morpholinamide addition to substituted and unsubstituted styrene. ... 138

5.2.4. Rhodium-catalysed hydroaminations. .. 139

5.2.5. Synthetic approach to 155-162 via reductive amination methodology. ... 139

5.2.6. Attempted synthesis of the epoxide 188 and the synthesis of epoxide 189. ... 140

5.2.7. Synthesis of the aldehydes 186 and 187 via oxidative cleavage of diols. .. 144

5.2.8. Synthesis of the 2'-aminoalkylbenzylisoquinoline derivatives via reductive amination. ... 147

5.2.9. N-TFA deprotection and N-methylation of 178-184. 148

5.3. SYNTHESIS OF BENZYLISOQUINOLINE DERIVATIVES CONTAINING A β-AMINO ALCOHOL MOIETIES. ... 150

5.3.1. Strategy toward the synthesis of benzylisoquinolines containing a β-amino alcohol moiety. ... 150

5.3.2. Synthesis of β-amino alcohols via ring opening of cyclic sulfates. .. 151

5.3.3. Synthesis of O-tosylate benzylisoquinoline derivatives 197 and 198 ... 154

5.3.4. Synthesis of β-amino alcohols 193, 201, 163 and 204 156

5.3.5. N-TFA deprotection and reductive N-methylation of 193 and 201... 159

5.3.6. Synthesis of β-amino alcohols 194, 164 and diol 207 161

5.4. SYNTHESIS OF BENZYLISOQUINOLINE DERIVATIVES CONTAINING A NINE- AND TEN-MEMBERED RING. ... 164

5.4.1. Synthetic strategy toward the synthesis of a nine-membered ring benzylisoquinoline derivative ... 164

5.4.2. Synthesis of the free diamino compound 210. 165
5.4.3. Synthesis of the aldehyde \textbf{209} by acid hydrolysis 165

5.4.4. Retrosynthesis of the nine-and ten-membered ring benzyl-isoquinolines... 167

5.4.5. Synthesis of the benzylisoquinolines \textbf{216} and \textbf{217} containing an \(\alpha\)-chloroacetamido moiety. .. 168

5.4.6. Synthesis of benzylisoquinolines \textbf{165} and \textbf{167} via displacement of the chloride. .. 170

5.4.7. Reduction of the carbonyl of \textbf{165} to give the corresponding amino compound \textbf{166}. ... 173

CHAPTER 6

\textbf{BIOLOGICAL TESTING.} ... 175

6.1. \textbf{INTRODUCTION} ... 175

6.2. \textbf{CYTOTOXICITY ON CANCER CELL LINES.} .. 175

6.2.1. Testing procedures ... 175

6.2.2. Cytotoxic Pre-screen assay .. 175

6.3. \textbf{ANTI-HIV TESTING} .. 178

6.4. \textbf{ANTI-BACTERIAL TESTING.} ... 181

6.5. \textbf{\textit{IN VITRO} CNS RECEPTOR BINDING STUDIES.} ... 182

6.5.1. Testing procedure ... 182

6.5.2. Results of receptor binding assays .. 185

6.5.3. IC_{50} studies on active analogues ... 186

6.5.4. Potential pharmaceutical applications of \textbf{UB009}, \textbf{UB014}, \textbf{UB016} and \textbf{UB022}. .. 188

CHAPTER 7 \textbf{CONCLUSION AND FUTURE DIRECTIONS} .. 190

7.1. \textbf{CONCLUSION} ... 191

7.1.1. Synthetic methodology ... 191

7.1.2. Biological activity .. 194

7.2. \textbf{FUTURE DIRECTIONS.} ... 195

7.2.1. Synthetic methodology ... 195

7.2.2. Biological SAR studies ... 195
CHAPTER 8 EXPERIMENTAL ... 196

8.1. GENERAL .. 197
8.1.1. Solvents and Reagents .. 197
8.1.2. Nuclear Magnetic Resonance Spectroscopy ... 197
8.1.3. Mass spectrometry .. 198
8.1.4. Melting points ... 198
8.1.5. Polarimetry .. 199
8.1.6. Chromatography ... 199
8.1.7. Outline of the experimental section .. 199

8.2. EXPERIMENTAL FOR CHAPTER 2 .. 200
8.2.1. Synthesis of 2’-Iodolaudanosine (58) .. 200
8.2.2. General method for Stille coupling reactions ... 206
8.2.3. General method for Heck coupling reactions .. 209
8.2.4. Trial Heck coupling reaction with a less hindered alkene ... 214
8.2.5. Hydrogenation reactions .. 217
8.2.6. Sonagashira coupling Reactions .. 218
8.2.7. General method for N-TFA deprotection ... 223
8.2.8. Intramolecular Heck coupling reactions .. 230

8.3. EXPERIMENTAL FOR CHAPTER 3 .. 235
8.3.1. Synthesis of precursors 118, 119, 120, 126, 127, 130, 131 and 135 ... 235
8.3.2. General method for Heck coupling reactions ... 244
8.3.3. General method for N-TFA deprotection and reductive N-methylation ... 256
8.3.4. General method for Hydrogenation reactions .. 270

8.4. EXPERIMENTAL FOR CHAPTER 4 .. 277
8.4.1. Cross metathesis reactions .. 277
8.4.2. Hydrogenation reactions ... 282
8.4.3. N-TFA deprotection ... 283
8.4.4. N-Methylation .. 285
8.4.5. Ring closing metathesis reactions .. 288
8.5. EXPERIMENTAL FOR CHAPTER 5. 293

8.5.1. Synthesis of 2’- aminoalkylbenzylisoquinoline derivatives......... 293

8.5.2. Synthesis of β-hydroxy alcohol derivatives. 320

8.5.3. Synthesis of benzylisoquinoline derivatives containing a nine- and ten-membered ring... 336

REFERENCES ... 347
List of Figures.

Figure 1.1 The structures of amino acid-derived alkaloids: d-tubocurarine 1, tyrosine-derived; ephedrine 2, phenylalanine-derived; cocaine 3, ornithine derived and reserpine 4, tryptophane-derived.

Figure 1.2 The structures of purine and diterpene alkaloids.

Figure 1.3 Opium poppy’s flower and seed capsule.

Figure 1.4 BBI alkaloids containing a single diphenyl linkage with either no linkage or up to two diphenyl ether linkages in the top portion of the molecule.

Figure 1.5 The BBI alkaloids containing one or up to three diphenyl ether linkages.

Figure 1.6 BBI alkaloids containing one benzylphenyl ether linkage and one or two diphenyl ether linkages.

Figure 1.7 Structure of thalicarpine 15 and the plant *Thalictrum Dasycarpum*.

Figure 1.8 Structures of benzyl-, bisbenzyl- and aporphines-benzylisoquinoline alkaloids with anticancer activities.

Figure 1.9 Structures of bisbenzylisoquinoline alkaloids with antimalarial activities.

Figure 1.10 Structures of benzyl-, bisbenzyl-, and aporphine-benzylisoquinoline alkaloids that enhance the cytotoxicity of other drugs in MDR cell lines.

Figure 2.1 The targeted mono-tethered and bis-tethered BBI derivatives.

Figure 2.2 The single crystal X-ray structure of 73. *Note:* The X-ray crystallographic numbering is different from the systematic numbering.

Figure 2.3 The single crystal X-ray structures of 67 (top) and 68 (bottom). *Note:* The X-ray numbering is different from the systematic numbering.

Figure 2.4 The 1H NMR spectra (300 MHz, CDCl$_3$) of the mixture of meso-65 and rac-65 (top), (S,S)-65 (middle) and meso-65 (bottom).

Figure 2.5 3D representations of 69 (Spartan Pro, AM1) showing the sterically hindered environment of the olefinic group.
Figure 2.6 1H NMR spectra (300 MHz, CDCl$_3$) of the major (top) and the minor (bottom) diastereomer of derivative 82.

Figure 2.7 The 1H NMR (CDCl$_3$) showing the chemical shifts of the benzylic CH (position a) (left) and the CH at position b (right) of similar compounds in the literature.

Figure 2.8 Heats of formations of meso-83 and (S,S)-83 calculated using Spartan Pro (AM1).

Figure 3.1 The targeted benzylisoquinoline derivatives having a N,N-dimethylaminoalkyl aryl substituent.

Figure 3.2 The targeted benzylisoquinoline derivatives having N-acetyl moieties (top) and having the exocyclic amino moieties removed (bottom).

Figure 3.3 The identification of the major regioisomer 95a and the minor regioisomer 95b by NOESY experiments.

Figure 3.4 Proposed chelated intermediates in Chem 3D represenatations of 118X (top), 119X (middle) and 120X (bottom), (fourth ligand on Pd not identified).

Figure 3.5 The proposed H-bonded intermediate for the favourable formation of (Z)-92 in the N-deprotection of (E)-112.

Figure 4.1 The generic structures of the targeted mono- and bis-tethered BBI derivatives.

Figure 4.2 The structures of the commonly used olefin metathesis catalysts.

Figure 4.3 Olefin categorisation and rules for selectivity.

Figure 4.4 1H NMR spectrum (300 MHz, CDCl$_3$) of the aromatic region of 146 showing pairs of aromatic signals.
Figure 4.5 The 1H NMR spectra (300 MHz, CDCl$_3$) of the aromatic region of the diastereomeric mixture of 153 (top), the major diastereomer 153-d1 (middle) and minor diastereomer 153-d2 (traces of the 153-d1) (bottom).

Figure 4.6 Heat of formation calculations for the ring closed derivative 153 (Spartan Pro, AM1 forcefield).

Figure 4.7 1H NMR spectrum (300 Hz, CDCl$_3$) of the aromatic regions of the minor diastereomer 153-d2 (top) and its reduced form 142-d2 (bottom).

Figure 4.8 Spartan generated (AM1 forcefield) structures of (Z)-rac-153 (top) and (Z)-meso-153 (bottom) showing the more open conformation of (Z)-rac-153 compared to the more folded one for (Z)-meso-153.

Figure 5.1 The structures of known CNS active compounds.

Figure 5.2 The structural formula of β_3-adrenergic receptor agonists.

Figure 5.3 The targeted benzylisoquinoline derivatives containing 2’-aminoalkyl substituents (155-162), a 2’-β-amino alcohol substituent (163-164) and the medium sized ring targets (165-168).

Figure 5.4 HMBC analysis of the two regioisomers 193 and 201.

Figure 5.5 The methanolysis by-products from the N-acylation reaction of 217.

Figure 5.6 The proposed macrocyclic products 223 and 224 formed from intermolecular cyclisation.

Figure 6.1 Determination of IC$_{50}$ of UB009 (top) and UB014 (bottom) on selected receptors.

Figure 6.2 Structures of known 5-HT$_{1B}$ (green), 5-HT$_{2A}$ (blue) and 5-HT$_7$ (red) active ligands.
List of Schemes.

Scheme 1.1 The condensation of dopamine 8 and 4-hydroxyphenylacetaldehyde 9 to give (S)-norcoclaurine 10.

Scheme 1.2 The various groups of benzylisoquinoline alkaloids derived from (S)-norcoclaurine 10.

Scheme 1.3 The formation of (S)-reticuline 17 from (S)-norcoclaurine 10.

Scheme 1.4 Biosynthesis of morphine 11.

Scheme 1.5 The first committed step in the production of berberine 14 and sanguinarine 13.

Scheme 1.6 Biosynthesis of the protoberberine alkaloid, berberine 14.

Scheme 1.7 Biosynthesis of the benzophenanthridine alkaloid, sanguinarine 13.

Scheme 1.8 The biosynthetic pathway of thalicarpine 15.

Scheme 1.9 Cellular factors that cause drugs resistance.

Scheme 1.10 Conversion of (S)-reticuline 17 to (S)-norlaudanosine 56.

Scheme 1.11 Targeted benzyl and bisbenzylisoquinoline derivatives for synthesis.

Scheme 2.1 Retrosynthesis of the mono-tethered derivatives 59 and 60.

Scheme 2.2 The overall synthesis of the aryl iodide 58.

Scheme 2.3 The proposed mechanism of iodination using NIS/TFA.

Scheme 2.4 The mechanism of the Stille coupling reaction.

Scheme 2.5 The Stille coupling of derivative 58 to give the vinyl and allyl derivatives 67 and 68, respectively.

Scheme 2.6 The catalytic cycle of the palladium mediated Heck coupling reaction.

Scheme 2.7 The Heck coupling reactions between 58 and 67 using traditional Heck coupling reaction conditions.
Scheme 2.8 The mechanism of two possible insertion pathways. Pathway A: via dissociation of the neutral ligand. Pathway B: via dissociation of an anionic ligand.

Scheme 2.9 Heck coupling of iodobenzene and styrene.

Scheme 2.10 Heck coupling reaction of phenyltriflate and styrene using the bidentate ligand DPPP.

Scheme 2.11 Heck coupling using the bidentate ligand DPPP.

Scheme 2.12 A proposed mechanism for the formation of regioisomer 69.

Scheme 2.13 Heck coupling reaction of methoxylated styrene 77 and bromo derivative 76.

Scheme 2.14 The general Heck coupling reaction.

Scheme 2.15 Synthesis of the non-symmetrical three carbon tethered BBI derivative 66.

Scheme 2.16 Hydrogenation of the double bond of 65.

Scheme 2.17 The attempted hydrogenation of 69.

Scheme 2.18 N-deprotection of derivative 65.

Scheme 2.19 N-deprotection of derivative 69.

Scheme 2.20 N-deprotection of derivative 66.

Scheme 2.21 N-deprotection of rac-80.

Scheme 2.22 A retrosynthesis of acetylenic BBI derivative 63.

Scheme 2.23 The overall mechanism of Pd/Cu catalysed Sonogashira coupling reaction.

Scheme 2.24 Generation of the acetylenic laudanosine derivatives 84 and 85.

Scheme 2.25 A possible mechanism for the formation of Sonogashira by-product 86 or 87.

Scheme 2.26 Sonogashira coupling reaction between acetylene 84 and iodolaudnosine 58.
Scheme 2.27 *N*-deprotection of derivative 83.

Scheme 2.28 The retrosynthesis of bis-tethered BBI derivative 64.

Scheme 2.29 The synthesis of the acid 90.

Scheme 2.30 Synthesis of the derivative 89 *via* amide coupling.

Scheme 2.31 The synthesis of the derivative 88 *via* intramolecular Heck coupling reactions.

Scheme 3.1 The retrosynthesis of the exocyclic *N*,*N*-dimethylamino benzylisoquinoline derivatives.

Scheme 3.2 Synthesis of *N*-TFA protected aryl iodides 118-120 and the *N*,*N*-dimethyl aryl iodide 121.

Scheme 3.3 Synthesis of the 2’-allyllaudanosine derivative 122.

Scheme 3.4 The general procedure for the Heck coupling reaction of 67 with aryl iodides 118-120.

Scheme 3.5 The general procedure for the Heck coupling reactions of 122 and 68 with aryl iodides 118-121.

Scheme 3.6 The proposed mechanism for the formation of the two (*E*)-isomers 95a and 95b. (palladium ligands not shown).

Scheme 3.7 The initial synthetic strategy for 128 and 129.

Scheme 3.8 Synthesis of the *N*-Boc, *N*-acetyl aryl iodide 131.

Scheme 3.9 Heck coupling reaction between 67 and aryl iodides 131.

Scheme 3.10 The Heck coupling between 68 and 131.

Scheme 3.11 The overall synthesis of veratrole linked benzylisoquinoline derivatives 136 and 137.

Scheme 3.12 The *N*-TFA deprotection and *N*-methylation of the *N*-TFA stilbene derivatives.
Scheme 3.13 The N-TFA deprotection and reductive N-methylation of the N-TFA benzylisoquinoline derivative 115 and 116.

Scheme 3.14 The N-TFA deprotection and reductive N-methylation of the N-TFA benzylisoquinoline derivative 129 and 137.

Scheme 3.15 Hydrogenation of unsaturated derivatives.

Scheme 4.1 The variations of intermolecular cross metathesis.

Scheme 4.2 The catalytic cycle of the olefin cross metathesis.

Scheme 4.3 CM products obtained through secondary metathesis.

Scheme 4.4 Statistical distribution of CM products.

Scheme 4.5 Selective Cross metathesis of Type I with Type II/III olefins.

Scheme 4.6 Cross metathesis reaction of the 2’-allyllaudanosine derivative 68 (Type I olefin). Note- only the (S,S) enantiomer shown for rac-146.

Scheme 4.7 Cross metathesis of the 2’-vinyllaudanosine derivative 67.

Scheme 4.8 CM between Type I olefin 68 and Type II olefin 67.

Scheme 4.9 The proposed mechanism for the formation of the byproduct 147.

Scheme 4.10 The CM reaction between Type II olefin 67 and Type I olefin 149.

Scheme 4.11 CM of allylamine 149.

Scheme 4.12 Hydrogenation of derivative 146.

Scheme 4.13 N-TFA deprotection and reductive N-methylation of 146.

Scheme 4.14 N-TFA deprotection and reductive N-methylation of 152.

Scheme 4.15 The overall synthetic approach to the macrocyclic BBI derivative 142.

Scheme 4.16 The synthesis of amide 154 via an amide coupling reaction.

Scheme 4.17 The general mechanism of ring closing metathesis (RCM).

Scheme 4.18 The RCM of the diene 153.
Scheme 4.19 Carbonyl reduction of the major diastereomer 153-d1 and the minor diastereomer 153-d2 by LiAlH₄.

Scheme 5.1 Retrosynthesis of 2’-aminoalkyl benzylisoquinoline derivatives via lithium amide addition to 169.

Scheme 5.2 The mechanism of the synthesis of 2’-aminoalkyl derivatives via lithium amide addition.

Scheme 5.3 Reactions of styrene derivatives with lithium amides.

Scheme 5.4 Attempted synthesis of 159 using lithium morpholinamide and the 2’-vinyltaudanosine derivative 169.

Scheme 5.5 Models study of lithium morpholinamide with styrene 172 (top) and the electron rich styrene 175 (bottom).

Scheme 5.6 Hydroamination of styrene catalysed by rhodium.

Scheme 5.7 Two synthetic approaches to the aldehydes 186 and 187.

Scheme 5.8 The attempted synthesis of the epoxide 188.

Scheme 5.9 The proposed mechanism for the formation of the ring-opened product 192.

Scheme 5.10 Synthesis of the epoxide 189.

Scheme 5.11 The synthesis of the aldehyde 186 and 187 via oxidative cleavage of the diols 190 and 191.

Scheme 5.12 The reductive amination of aldehydes 186 and 187 with amines.

Scheme 5.13 N-TFA deprotection and N-methylation of 178-184.

Scheme 5.14 The retrosynthetic strategy for the benzylisoquinoline derivatives containing the β-amino alcohol.

Scheme 5.15 Attempted synthesis of the cyclic sulfate 195.

Scheme 5.16 Synthesis of the cyclic sulfate 196 and the β-amino alcohol 200.
Scheme 5.17 Synthesis of the O-tosylate benzylisoquinoline derivatives 197 and 198.

Scheme 5.18 The displacement of the O-tosylate group of 197 giving two regioisomers.

Scheme 5.19 The proposed mechanism for the formation of the regioisomer 201.

Scheme 5.20 N-TFA deprotection and reductive N-methylation of a mixture of 193, 201.

Scheme 5.21 N-TFA deprotection and reductive N-methylation of a mixture of 193, 202, 201 and 203.

Scheme 5.22 The displacement of the O-tosylate group of 198 by diethylamine.

Scheme 5.23 Retrosynthesis of the nine membered ring benzylisoquinoline derivative 166.

Scheme 5.24 The synthesis of the diamino compound 210.

Scheme 5.25 The hydrolysis of the diacetyl group to give the aldehyde 209.

Scheme 5.26 The formation of the cyclised compound 213.

Scheme 5.27 The alternative retrosynthetic pathway toward the nine and ten memebered ring benzylisoquinoline derivatives.

Scheme 5.28 Synthesis of α-chloroacetamido derivative 216.

Scheme 5.29 Synthesis of the α-chloroacetamido derivative 217.

Scheme 5.30 Intramolecular N-alkylation of α-chloroacetamide 217.

Scheme 5.31 N-alkylation of derivative 217 to give 167.

Scheme 5.32 Reduction of the carbonyl group of 165.
List of Tables.

Table 2.1 A summary of the Stille coupling reactions of 58.
Table 2.2 The outcomes of the Heck coupling reactions between compound 58 and 67 at 130 °C for 18 h.
Table 3.1 A summary of Heck coupling reactions of 67 with aryl iodides 118-120.
Table 3.2 A summary of Heck coupling reactions of 68 and 122 with the aryl iodides 118-121.
Table 3.3 Summary of the N-TFA deprotection and reductive N-methylation reactions to obtain the targeted benzylisoquinoline derivatives 92, 93, 104 and 108.
Table 3.4 Summary of the N-TFA deprotection and N-reductive methylation to obtain the targeted benzylisoquinoline derivatives 95, 96, 105 and 109.
Table 3.5 Summary of hydrogenation results.
Table 4.1 Olefin categories for selective CM.
Table 4.2 Summary of ruthenium mediated CM reactions of styrene 6.
Table 5.1 Summary of reactions of styrene derivatives with lithium amides.
Table 5.2 Epoxidation reactions of 67.
Table 5.3 Epoxidation reactions of 68.
Table 5.4 Synthesis of amino benzylisoquinoline analogues by reductive amination.
Table 5.5 Summary of the N-TFA cleavage and N-methylation reactions of 178-184.
Table 5.6 Examination of solvent and temperature variations on the displacement of the tosylate group of 197.
Table 6.1 Cytotoxic pre-screen assay of the benzyl- and bisbenzylisoquinoline derivatives.

Table 6.2 IC\(_{50}\) (\(\mu\)M) values of the three most active analogues determined from the initial pre-screen assay. (Note-ND-not determined).

Table 6.3 Summary of Anti-HIV testing. (Note- ND- not determined).

Table 6.4 Antiviral activity on the reference compounds on HIV infected cells.

Table 6.5 Summary of anti-bacterial testing.

Table 6.6 Receptor binding activity studies. Measurement of % Control Specific Binding.

Table 6.7 Receptor binding activity studies. Measurement of % inhibition of control specific binding.

Table 6.8 Summary of active analogues particularly at 5HT receptors subtypes.
List of Abbreviations.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1, α_2 receptor</td>
<td>Alpha adrenoceptors</td>
</tr>
<tr>
<td>A_1, A_{2A}, A_3</td>
<td>Adenosine receptors</td>
</tr>
<tr>
<td>Ag_2CO_3</td>
<td>Silver carbonate</td>
</tr>
<tr>
<td>AgOAc</td>
<td>Silver acetate</td>
</tr>
<tr>
<td>AgOCOCF_3</td>
<td>Silver trifluoroacetate</td>
</tr>
<tr>
<td>Ag_3PO_4</td>
<td>Silver phosphate</td>
</tr>
<tr>
<td>APV</td>
<td>Amprenavir</td>
</tr>
<tr>
<td>ATPase</td>
<td>Adenosine 5'-Triphosphatase</td>
</tr>
<tr>
<td>AT1 receptor</td>
<td>Angiotensin receptor</td>
</tr>
<tr>
<td>AZT</td>
<td>Azidothymidine</td>
</tr>
<tr>
<td>β_1 receptor</td>
<td>Beta adrenoceptor</td>
</tr>
<tr>
<td>B2 receptor</td>
<td>Bradykinin receptor</td>
</tr>
<tr>
<td>BBI</td>
<td>Bisbenzylisoquinoline</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-Butoxycarbonyl group</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>n-Butyl lithium</td>
</tr>
<tr>
<td>BZD receptor</td>
<td>Benzodiazepine receptor</td>
</tr>
<tr>
<td>CS</td>
<td>(S)-Canadine synthase</td>
</tr>
<tr>
<td>CC50</td>
<td>Cytotoxic concentration (the concentration that was required to reduce cell growth by 50 %)</td>
</tr>
<tr>
<td>CCK receptor</td>
<td>Cholecystokinin receptor</td>
</tr>
<tr>
<td>CDCl3</td>
<td>Deuterochloroform</td>
</tr>
<tr>
<td>CH$_3$CN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>Methanol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CI⁺</td>
<td>Chemical Ionisation</td>
</tr>
<tr>
<td>CM</td>
<td>Cross metathesis</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CXCR2, CCR1</td>
<td>Chemokine receptors</td>
</tr>
<tr>
<td>COR</td>
<td>Condeinone reductase</td>
</tr>
<tr>
<td>CNMT</td>
<td>(S)-Coclaurine-(N)-methyltransferase</td>
</tr>
<tr>
<td>gCOSY</td>
<td>Correlated Spectroscopy</td>
</tr>
<tr>
<td>mCPBA</td>
<td>\textit{meta}-Chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>CuI</td>
<td>Copper Iodide</td>
</tr>
<tr>
<td>CYP80P</td>
<td>Cytochrome (P_{450})-dependent hydroxylase</td>
</tr>
<tr>
<td>d</td>
<td>Days</td>
</tr>
<tr>
<td>D1, D2S receptors</td>
<td>Dopamine receptors</td>
</tr>
<tr>
<td>DA transporter</td>
<td>Dopamine transporter</td>
</tr>
<tr>
<td>DCC</td>
<td>Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DDC</td>
<td>2,3'-Dideoxycytidine</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-Dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>(N,N)-Dimethylformamide</td>
</tr>
<tr>
<td>DMG</td>
<td>(N,N)-Dimethylglycine</td>
</tr>
<tr>
<td>DOP receptor</td>
<td>Delta opiate receptor</td>
</tr>
<tr>
<td>DPPP</td>
<td>1,3-Bis(diphenylphosphino)propane</td>
</tr>
<tr>
<td>\textit{E. coli}</td>
<td>\textit{Escherichia coli}</td>
</tr>
<tr>
<td>EC(_{50})</td>
<td>Effective concentration (the concentration of an agonist that produces 50% of the maximum possible response for that agonist)</td>
</tr>
</tbody>
</table>
EDCI 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide

E. faecalis Enterococcus faecalis

EFV Efavirenz

EIr Electron impact

ESMS Electrospray mass spectrometry

ESi+ Electrospray (positive ion mode)

ETr receptor Endothelin receptor

Et3N Triethylamine

EtOAc Ethyl acetate

GFP Green fluorescent protein

GABA receptor Gamma-aminobutyric acid receptor

GAL2 receptor Galanin receptor

h Hour

H1, H2 receptors Histamine receptors

HBr Hydrogen bromide

HCl Hydrochloric acid

HIV Human Immunodeficiency Virus

HOAc Acetic acid

HOBt 1-Hydroxy-1H-benzotriazole

HRMS High resolution mass spectrometry

gHMBC Heteronuclear Multiple Quantum Correlation

gHSQC Heteronuclear Single Quantum Correlation

5HT receptors 5-Hydroxytryptamine, serotonin receptors

HIV-tat Human Immunodeficiency Virus-transactivator
IC$_{50}$ Inhibitory concentration (the concentration required to inhibit cell growth by 50 %)

K$_2$CO$_3$ Potassium carbonate

KF Potassium fluoride

K$_2$OsO$_4$.2H$_2$O Potassium osmate-dihydrate

KOP receptor Kappa opiate receptor

LiAlH$_4$ Lithium aluminium hydride

μM Micromolar

M$_2$, M$_3$ receptors Muscarinic receptors

MDR Multiple-Drug Resistance

min Minutes

ML$_1$ receptor Melatonin receptor

MOP receptor Mu opiate receptor

MRSA Methicillin-resistant Staphylococcus aureus

NADPH Nicotinamide adenine dinucleotide phosphate

NaHCO$_3$ Sodium bicarbonate

NaBH$_4$ Sodium borohydride

NaCNBH$_3$ Sodium cyanoborohydride

Na$_2$EDTA Disodium ethylenediaminetetraacetic acid

NaIO$_4$ Sodium metaperiodate

nM Nanomolar

NaOH Sodium hydroxide

NaOAc Sodium acetate

NE receptor Norepinephrine receptor

NH$_3$ Ammonia
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS</td>
<td>N-Iodosuccinimide</td>
</tr>
<tr>
<td>NK<sub>3</sub> receptor</td>
<td>Neurokinin receptor</td>
</tr>
<tr>
<td>NMO</td>
<td>N-Methylmorpholine N-oxide</td>
</tr>
<tr>
<td>NMP</td>
<td>N-Methyl-2-pyrrolidinone</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NT<sub>1</sub> receptor</td>
<td>Neurotensin receptor</td>
</tr>
<tr>
<td>NVP</td>
<td>Nevirapine</td>
</tr>
<tr>
<td>6OMT</td>
<td>(S)-Norcoclaurine-6-O-methyltransferase</td>
</tr>
<tr>
<td>4′OMT</td>
<td>4′-O-Methyltransferase</td>
</tr>
<tr>
<td>ORL<sub>1</sub> receptor</td>
<td>Opiate receptor-like receptor</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Pet. Spirit</td>
<td>Petroleum Spirit</td>
</tr>
<tr>
<td>Pd(OAc)<sub>2</sub></td>
<td>Palladium acetate</td>
</tr>
<tr>
<td>Pd/C</td>
<td>Palladium on activated carbon</td>
</tr>
<tr>
<td>PdCl<sub>2</sub></td>
<td>Palladium chloride</td>
</tr>
<tr>
<td>PGP</td>
<td>P-Glycoprotein</td>
</tr>
<tr>
<td>PPh<sub>3</sub></td>
<td>Triphenylphosphine</td>
</tr>
<tr>
<td>PRD</td>
<td>Pharmaceutical Research and Development</td>
</tr>
<tr>
<td>PTLC</td>
<td>Preparative thin layer chromatography</td>
</tr>
<tr>
<td>RCM</td>
<td>Ring closing metathesis</td>
</tr>
<tr>
<td>R<sub>f</sub></td>
<td>Retention factor</td>
</tr>
<tr>
<td>RISC</td>
<td>RNA-induced silencing complex</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>Ribonucleic acid interference</td>
</tr>
<tr>
<td>hpRNAs</td>
<td>Hair-pin ribonucleic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>siRNAs</td>
<td>Small interfering ribonucleic acid</td>
</tr>
<tr>
<td>RuCl$_3$.3H$_2$O</td>
<td>Ruthenium trichloride trihydrate</td>
</tr>
<tr>
<td>ROM</td>
<td>Ring opening metathesis</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>SI</td>
<td>Selective Index (CC${50}$/EC${50}$)</td>
</tr>
<tr>
<td>SMT</td>
<td>(S)-Scoulerine-9-O-methyltransferase</td>
</tr>
<tr>
<td>SOCl$_2$</td>
<td>Thionyl chloride</td>
</tr>
<tr>
<td>SST receptor</td>
<td>Somatostatin receptor</td>
</tr>
<tr>
<td>STOX</td>
<td>Tetrahydroberberine oxidase</td>
</tr>
<tr>
<td>N-TFA</td>
<td>N-trifluoacetyl</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl or tetramethylsilane (NMR)</td>
</tr>
<tr>
<td>Ts</td>
<td>p-Toluenesulfonyl</td>
</tr>
<tr>
<td>TsOH</td>
<td>p-Toluenesulfonic acid</td>
</tr>
<tr>
<td>V1a receptor</td>
<td>Vasopressin receptor</td>
</tr>
<tr>
<td>VIP1 receptor</td>
<td>Human vasoactive intestinal peptide receptor</td>
</tr>
<tr>
<td>Y1, Y2 receptors</td>
<td>Hypothalamic neuropeptide receptors</td>
</tr>
</tbody>
</table>
Abstract.

This thesis examines the synthesis of a library of benzyl- and bisbenzylisoquinolines (BBI) derivatives based on the reticuline motif. These compounds were assessed for their; i) cytotoxicity on 3 cancer cell lines, ii) activity on HIV-infected cells, iii) antibacterial activity, and iv) CNS receptor binding affinities.

Chapter 2 describes the employment of palladium-catalysed Stille, Heck and Sonogashira coupling reactions to synthesise a library of BBI derivatives. 2’-Vinyl- (67), 2’-allyl- (68) and 2’-iodo (58) derivatives of racemic, N-TFA protected, norlaudanosine were used as the key building blocks in this investigation. The key 2’-vinyl- and 2’-allyl-norlaudanosine derivatives 67 and 68, respectively were readily prepared from palladium-catalysed Stille coupling reactions of the 2’-iodonorlaudanosine derivative 58 and vinyl- or allyl-tributylstannane. The Heck coupling reactions between the 2’-vinyl-norlaudanosine derivative 67 and the 2’-iodonorlaudanosine derivative 58 gave not only the desired stilbene BBI derivative 65 but also the unexpected 1,1-disubstituted regioisomer 69. This unexpected regioisomer was a result of the electron rich nature of both stating materials that favoured a cationic palladium intermediate. The best Heck coupling reaction conditions involved the use of Pd(OAc)$_2$, DMG, NaOAc and NMP at 130 $^\circ$C. These conditions gave the highest yield and the best regioisomer selectively in favour of the BBI derivative 65. Fortunately these regioisomers were readily separated by triturating the product mixture with methanol. The Heck coupling reaction between the 2’-allylnorlaudanosine derivative 68 and the aryl iodide 58 successfully afforded the three carbon tethered BBI derivative 66 in moderate yield.

It was found, however, that these Heck coupling reaction conditions were only efficient with aryl iodide precursors. This was evident from the attempted
intramolecular Heck coupling reactions on the aryl bromide precursor 89, to give the macrocyclic BBI derivative 88. The optimised Heck coupling reaction conditions failed to produce the desired product, while more traditional Heck coupling conditions gave the required product in poor yield (15%).

The unsaturated BBI derivative 65 and its regioisomer 69 were subjected to hydrogenation conditions over Pd/C under a hydrogen atmosphere. However, the regioisomer 69 was found to be too sterically hindered and did not undergo the hydrogenation reaction, while derivative 65 encountered solubility problems and only rac-65 underwent the hydrogenation reaction to give rac-80, leaving the less soluble meso-65 intact. The compounds rac-80 and meso-65 were readily separated by column chromatography.

Chapter 2 also described the successful synthesis of the targeted acetylinic BBI derivative 63 via coupling of the 2’-ethynylbenzylisoquinoline derivative 84 with the aryl iodide 58, using a Pd/Cu catalysed Sonogashira coupling reaction, followed by N-TFA deprotection of the N-TFA 2’-ethynylbenzylisoquinoline derivative 83.

The synthesis of a library of 2’-arylvinyl- and 2’-arylallyl-benzylisoquinolines derivatives using the optimised Heck coupling reaction conditions developed in Chapter 2 is described in Chapter 3. This set of compounds included benzylisoquinolines having either an exocyclic N,N-dimethylamino (92-103) or N-acetamido (104-107) substituent. A third group of compounds (108-111) in this set had the exocyclic amino or amido group completely excluded. It was found that the Heck coupling reaction of the 2’-vinyllaudanosine derivative 67 and the aryl iodides 118, 119, 131 and 135 afforded only one regioisomer, unlike the Heck coupling between 67 and 58 in Chapter 2, which gave the two regioisomers 65 and 69. The Heck coupling reactions between the 2’-allyllaudanosine derivative 68 and the aryl iodides 118, 119, 131 and 135 gave two
regioisomers \textit{115a,b; 116a,b; 129a,b} and \textit{137a,b}, respectively, due to two possible sites of palladium hydride elimination.

In Chapter 4, the use of the ruthenium-catalysed CM and RCM reactions toward the successful synthesis of the four carbon tethered BBI derivatives, \textit{138-142}, in both unsaturated and saturated forms (\textit{via} hydrogenation reactions) was described. The synthesis of the analogous two and three carbon tethered BBI derivatives \textit{via} this method proved less efficient.

Chapter 5 reported the synthesis of a library of aminoalkyl benzylisoquinoline derivatives, incorporating both cyclic and acyclic amines (\textit{155-162}). These analogues were obtained by a simple reductive amination methodology involving the reaction of commercially available amines with the aldehydes \textit{186} and \textit{187}, which were generated from the 2’-vinyl- and 2’-allyllaudanosine derivatives \textit{67} and \textit{68}, respectively. The initially planned pathway to one of these aldehydes involved the rearrangement of the epoxide \textit{188}, however this epoxide was too unstable under the reaction conditions and readily underwent ring opening with \textit{m}-chlorobenzoic acid. An alternative pathway using oxidative cleavage of the diols \textit{190} and \textit{191}, which were generated from dihydroxylation of the 2’-vinyl- and 2’-allyllaudanosine derivatives, \textit{67} and \textit{68}, respectively, was found to be more successful for the synthesis of these aldehydes.

Chapter 5 also described the synthesis of an additional class of aminoalkyl benzylisoquinoline derivatives, \textit{163} and \textit{164}, containing a β-amino alcohol moiety. Retro-synthetic analysis showed two possible synthetic pathways which were either \textit{via} the ring opening of the cyclic sulfates \textit{195} and \textit{196} or \textit{via} the nucleophillic displacement of the tosylates \textit{197} and \textit{198} with an amine nucleophile. The latter pathway proved more successful and afforded the β-amino alcohol derivatives \textit{163} and \textit{164}, however, the yields of these reactions should be optimised in future studies.
The synthesis of the benzylisoquinoline derivatives containing a nine- and ten-membered heterocyclic ring, 165-167, was also described in Chapter 5. The synthesis of these analogues was initially attempted via the intramolecular reductive amination reaction between an aldehyde moiety at the C2’ position of 219 and its free isoquinoline amino group. However, the synthesis of the aldehyde moiety via the hydrolysis of its protected diacetal form was very difficult; therefore an alternative synthesis was developed. This method involved an intramolecular nucleophilic displacement of the chloride of the α-chloroacetamides 214 and 215 by the free isoquinoline amino moiety. This method successfully afforded the nine- and ten-membered ring benzylisoquinoline derivatives 165 and 167 in moderate yields (42-57 %). Lithium aluminium hydride reduction of 165 gave the corresponding cyclic diamino derivative 166 in high yield.

Some of the benzyl- and bis-benzylisoquinoline derivatives reported in Chapters 2-5 were sent for biological testing for their cytotoxicity on 3 cancer cell lines, activity on HIV-infected cells, their antibacterial activity and CNS receptor binding affinities. The BBI derivatives showed higher activity on cancer cell lines than the corresponding benzylisoquinoline derivatives. Various BBI and benzylisoquinoline derivatives have showed promising CNS-receptor binding affinities, especially for 5HT receptors and more prominently on the 5-HT_{1B}, 5-HT_{2A} and 5-HT_{7} receptors. At this stage, a clear structure-activity trend could not be discerned and the mode of action of these analogues was not clear. Further results on the awaiting analogues may help to develop pharmacophore models for CNS active compounds in the future, and eventually, allow the design and development of more selective and potent ligands.
Acknowledgement

“*The most perfect form of encouragement is the response that tells the other person that you care*”- Stephanie Dowrick.

Firstly, I would like to thank my supervisors Professor Stephen G. Pyne and Dr Alison Ung for their dedication and supervision over the past 5 years. Steve, you are an incredible person and I considered myself to be the luckiest student on earth to be under your supervision. You have an amazing knowledge of chemistry and your passion in this field is admirable. Your patience and dedication in putting in the extra effort to ensure that your students can receive the best attention and help possible, and to that, I am very grateful. Alison, I have always admired your work ethics, your discipline and great responsibility. You have taught me much more than just chemistry; I have acquired many skills needed to grow as a chemist by just observing your working attitudes and listening to your guidance. You are also a great friend and I would like to say a big “thank you” for being there for me.

“*The difficult situations give us an unparalleled chance to grow. You don’t need to seek them out; they will find you. Rise up to meet them.*”- Stephanie Dowrick.

I would like to thank the University of Wollongong for an APA scholarship, the Department of Chemistry and the academics for all their assistance, Johnson and Johnson Research Ltd for their funding and Wayne Gerlach for his help. I would like to thank all the technical staff for their marvellous support. Thanks to Sandra and especially Wilford for taking your time on the weekend to run NMR spectra for me. Thanks to Larry, Karin and Roger for running many of my mass specs, especially those bundles I handed to you toward the end.

“*Hang around people who love life. Sniff their armpits. Repeat their jokes. Live in their skin for a while.*”- Stephanie Dowrick.

I also like to thank my fellow students for making my four years such an enjoyable time. Steve Taylor, you are such a cool guy and you have also taught me a lot...
about discipline and good work ethics; and also thanks for keeping me on edge which gave me a driving force to work hard and keep up with you. Thanks to Joe Harley and Tim for all their help. Thanks to the blokes, Tien, Andrew, Karl, Theerapan, Thanapan and Chris for their friendship. Thanks to Nicole, Pitchaya, Tawesin for your friendship also. Minyan and Sarah, you guys are so nice and so pleasant to be with, thank you for taking the time to care for me and just being there.

“Listen to the teachings of your hearts. At the end of each day, find something to be thankful for. Give thanks. Sleep in peace.” - Stephanie Dowrick.

I would like to dedicate this thesis to my family, Mum and Unity. Thank you for your supports and encouragement over the past years. Thank you Mum, for those beautiful home cooked meals, and those nagging times of telling me to eat when I was too busy writing up. Thank you Mum for just being there. Thanks to Unity for just being a cool sister.

It’s easy to be pleasant and gracious when things go our ways. The challenging of maturity is to be pleasant and gracious when things do not go our way.” - Stephanie Dowrick.

Last but not least, thanks to my other half, Johana Muchiri Mbere, for all your support and patience during the past year. Juggling family, life, thesis, taekwondo, etc. won’t be the same without you! Thank you for being in my life and just being there.