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or by obtaining the fitted values for two observations (e.g., rows 1 and 23) with the desired
levels of the predictor Treatment

R> betablocker[c(1, 23), ]

Deaths Total Center Treatment
1 3 39 1 Control
23 3 38 1 Treated

R> fitted(betaMix) [c(1, 23), ]

Comp. 1 Comp.2 Comp.3
[1,] 0.09554822 0.1707950 0.05135184
[2,] 0.07511149 0.1295602 0.04756995

A further analysis of the model is possible with function refit () which returns the estimated
coefficients together with the standard deviations, z-values and corresponding p-values. Please
note that the p-values are only approximate in the sense that they have not been corrected
for the fact that the data has already been used to determine the specific fitted model.

R> summary(refit(betaMix))

$Comp. 1

Estimate Std. Error 2z value Pr(>|z|)
(Intercept) -2.247678 0.045181 -49.7481 < 2.2e-16 *x*x*
TreatmentTreated -0.262990 0.065598 -4.0091 6.095e-05 ***

Signif. codes: 0O 'skk' 0.001 's%' 0.01 'x' 0.05 '.' 0.1 ' ' 1

$Comp.2

Estimate Std. Error =z value Pr(>|zl|)
(Intercept) -1.579965 0.065997 -23.9401 < 2.2e-16 **x*
TreatmentTreated -0.324833 0.092882 -3.4973 0.0004701 **x*

Signif. codes: O 'skx' 0.001 '4x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

$Comp . 3

Estimate Std. Error =z value Pr(>l|z|)
(Intercept) -2.91634 0.09921 -29.39568  <2e-16 *xx
TreatmentTreated -0.08048 0.14104 -0.5706 0.5683

Signif. codes: O 'sx*x' 0.001 'xx' 0.01f 'x' 0.056 '.' 0.1 ' ' 1

Given the estimated treatment coefficients we now also compare this model to a model where
the treatment coefficient is assumed to be the same for components 1 and 2. Such a model
is specified using the model driver FLXMRgImfix (). As the first two components arc as-
sumed to have the same coeffcients for treatment and for the third component the coefficient
for treatment shall be set to zero the argument nested has k = ¢(2, 1) and formula =
¢("Treatment, ~).
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R> ModelNested <- FLXMRglmfix(family = "binomial",

+ nested = list(k = ¢(2, 1), formula = c(~ Treatment, ~ 0)))

R> betaMixNested <- flexmix(cbind(Deaths, Total - Deaths) ~ 1 | Center,
+ model = ModelNested, k = 3, data = betablocker,

+ cluster = posterior(betaMix))

R> parameters(betaMixNested)

$Comp. 1
coef .TreatmentTreated coef. (Intercept)
-0.2837779 -2.2379835
$Comp. 2
coef.TreatmentTreated coef . (Intercept)
-0.2837779 -1.5985089
$Comp. 3
coef . (Intercept)
—-2.956159

R> ¢(BIC(betaMix), BIC(betaMixNested), BIC(betaMixFix_3))
[1] 341.3473 335.7840 337.2673

The comparison of the BIC values suggests that the nested model with the same treatment
effect for two components and no treatment effect for the third component is the best.

3.3. Productivity of Ph.D. students in biochemistry

This dataset is taken from Long (1990). It contains 915 observations from academics who
obtained their Ph.D. degree in biochemistry in the 1950s and 60s. It includes 421 women and
494 men. The productivity was measured by counting the number of publications in scientific
journals during the three years period ending the year after the Ph.D. was received. In
addition data on the productivity and the prestige of the mentor and the Ph.D. department
was collected. Two measures of family characteristics were recorded: marriage status and
number of children of age 5 and lower by the year of the Ph.D.

First, mixtures with one, two and three components and only varying parameters are fitted,
and the model minimizing the BIC is selected. This is based on the assumption that un-
observed heterogeneity is present in the data due to latent differences between the students
in order to be productive and achieve publications. Starting with the most general model
to determine the number of components using information criteria and checking for possible
model restrictions after having the number of components fixed is a common strategy in finite
mixture modelling (see Wang, Puterman, Cockburn, and Le 1996). Function refit() is used
to determine confidence intervals for the parameters in order to choose suitable alternative
models. However, it has to be noted that in the course of the procedure these confidence
intervals will not be correct any more because the specific fitted models have already been
determined using the same data.
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Figure 7: Coefficient estimates and confidence intervals for the model with only varying
parameters.

R> data("bioChemists")
R> Modell <- FLXMRglm(family = "poisson")
R> ff_1 <- stepFlexmix(art ~ ., data = bioChemists, k = 1:3, model = Modell)

1 @ % % %
2 1 % ok %k
3 1 ok ok ok

R> ff_1 <- getModel(ff_1, "BIC")

The selected model has 2 components. The estimated coeflicients of the components are
given in Figure 7 together with the corresponding 95% confidence intervals using the plot
method for objects returned by refit (). The plot shows that the confidence intervals of the
parameters for kidb, mar, ment and phd overlap for the two components. In a next step a
mixture with two components is therefore fitted where only a varying intercept and a varying
coefficient for fem is specified and all other coefficients are constant. The EM algorithm is
initialized with the fitted mixture model using posterior ().

R> Model2 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + mar + ment)
R> ff 2 <- flexmix(art ~ fem + phd, data = bioChemists,

+ cluster = posterior(ff_1), model = Model2)

R> c(BIC(ff_1), BIC(ff_2))
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[1] 3212.991 3200.071

If the BIC is used for model comparison the smaller model including only varying coefficients
for the intercept and fem is preferred. The coefficients of the fitted model can be obtained
using refit ():

R> summary (refit(ff_2))

$Comp. 1

Estimate Std. Error z value Pr(>|z|)
kidb ~0.2070933 0.0521307 -3.9726 7.11le-05 ***
marMarried 0.1646178 .0768505 2.1421 0.0321892 x*

0
ment 0.0274302 0.0032899 8.3377 < 2.2e-16 **x*
(Intercept) -0.4782683 0.2203178 -2.1708 0.0299455 *
femWomen 0.6045078 0.1822082 3.3177 0.0009077 **x
phd 0.0775564 0.0408161 1.9001 0.0574148 .
Signif. codes: O 'sxx' 0,001 'sxx' 0.01 'x' 0.06 '.' 0.1 ' ' 1
$Comp. 2

Estimate Std. Error z value Pr(>|zl|)
kidb ~0.2070933 0.0521307 -3.9726 7.110e~05 *x*x
marMarried 0.1646178 .0768505 2.1421 0.03219 *

0
ment 0.0274302 0.0032899 8.3377 < 2.2e-16 *x*x
(Intercept) 1.3208461 0.2337508 5.6507 1.598e-08 *x*x
femWomen ~2.2054873 0.4313329 -5.1132 3.168e-07 **x*
phd ~0.0818211 0.0554627 -1.4752 0.14015
Signif. codes: O 'sxxx' (0,001 'xx' 0.01 'x' 0.05 '.' 0.1 * ' 1

It can be seen that the coefficient of phd does for both components not, differ significantly
from zero and might be omitted. This again improves the BIC.

R> Model3 <~ FLXMRglmfix(family = "poisson", fixed = ~ kidb + mar + ment)
R> ff_3 <- flexmix(art ~ fem, data = bioChemists, cluster = posterior(ff_2),
+ model = Model3)

R> c(BIC(ff_2), BIC(ff_3))

[1] 3200.071 3192.816

The coefficients of the restricted model without phd are given in Figure 8.

An alternative model would be to assume that gender does not directly influence the number
of articles but has an impact on the segment sizes.

R> Model4 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + mar + ment)
R> ff_4 <- flexmix(art ~ 1, data = bioChemists, cluster = posterior(ff_2),
+ concomitant = FLXPmultinom(~ fem), model = Model4)

R> parameters(ff_4)
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Figure 8: Coefficient estimates and confidence intervals for the model with varying and con-
stant parameters where the variable phd is not used in the regression.

Comp.1 Comp.2
coef.kidb -0.1819162 -0.1819162
coef .marMarried 0.1883990 0.1883990
coef .ment 0.0288501 0.0288501

coef. (Intercept) -0.2583828 0.9950050
R> summary(refit(ff_4), which = "concomitant")

$Comp. 2

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -1.02262 0.28385 -3.6027 0.0003149 *xx*
femWomen -0.61281 0.27280 -2.2464 0.0246782 *

Signif. codes: 0 'skx' 0,001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
R> BIC(ff_4)
[1] 3182.328

This suggests that the proportion of women is lower in the second component which is the
more productive segment.
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Figure 9: The estimated productivity for each compoment for men and women.

The alternative modelling strategy where homogeneity is assumed at the beginning and a
varying interept is added if overdispersion is observed leads to the following model which is
the best with respect to the BIC.

R> Models <- FLXMRgimfix(family = "poisson", fixed = ~ kid5 + ment + fem)
R> ff_5 <- flexmix(art ~ 1, data = bioChemists, cluster = posterior(ff_2),
+ model = Model5)

R> BIC(ff_5)

[1] 3174.266

In Figure 9 the estimated distribution of productivity for model ££_5 are given separately
for men and women as well as for each component where for all other variables the mean
values are used for the numeric variables and the most frequent category for the categorical
variables. The two components differ in that component 1 contains the students who publish
no article or only a single article, while the students in component 2 write on average several
articles. With a constant coefficient for gender women publish less articles than men in both
components.

This example shows that different optimal models are chosen for different modelling proce-
dures. However, the distributions induced by the different variants of the model clags may be
similar and therefore it is not suprising that they then will have similar BIC values.

4. Implementation

The new features extend the available model class described in Leisch (2004b) by providing
infrastructure for concomitant variable models and for fitting mixtures of GLMs with varying
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< FLXM <H FLXMC
FLXdist . .
- +} defineComponent: expression
fit: function
preproc.x: function 4“ FLXMR
stepFlexmix preproc.y: function 4
! : FLXMRgim
1 flexmix FLXcomponent 9
*
’ df: numeric 4
1 loglik: funct-mn FLXMRgImfix
parameters: list
FLXcontrol predict: function
iter.max: numeric
minprior: numeric
tolerance: numeric FLXP
. : 1 .
verbose: numeric fit: function 4—- FLXPmultinom
classify: character .
df: function

Figure 10: UML class diagram (see Fowler 2004) of the flexmix package.

and constant parameters for the component specific parameters. The implementation of the
extensions of the model class made it necessary to define a better class structure for the
component specific models and to modify the fit functions flexmix () and FLXfit ().

An overview on the S4 class structure of the package is given in Figure 10. There is a class
for unfitted finite mixture distributions given by "FLXdist" which contains a list of "FLXM"
objects which determine the component specific models, a list of "FLXcomponent" objects
which specify functions to determine the component specific log-likelihoods and predictions
and which contain the component specific parameters, and an object of class "FLXP" which
specifics the concomitant variable model. Class "flexmix" extends "FLXdist". It represents
a fitted finite mixture distribution and it contains the information about the fitting with the
EM algorithm in the object of class "FLXcontrol". Repeated fitting with the EM algorithm
with different number of components is provided by function stepFlexmix() which returns
an object of class "stepFlexmix". Objects of class "stepFlexmix" contain the list of the
fitted mixture models for each number of components in the slot "models".

For the component specific model a virtual class "FLXM" is introduced which (currently) has
two subclasses: "FLXMC" for model-based clustering and "FLXMR" for clusterwise regression,
where predictor variables are given. Additional slots have been introduced to allow for data
preprocessing and the construction of the components was separated from the fit and is now
captured as an expression (to allow for lexical scoping; Gentleman and Thaka 2000) in the slot
defineComponent. "FLXMC" has an additional slot dist to specify the name of the distribution
of the variable. In the future functionality shall be provided for sampling from a fitted or
unfitted finite mixture. Using this slot observations can be generated by using the function
which results from adding an r at the beginnning of the distribution name. This allows to
only implement the (missing) random number generator functions and otherwise use the same
method for sampling from mixtures with component specific models of clags "FLXMC".

For flexmix() and FLXfit () code blocks which are model dependent have been identified
and different methods implemented. Finite mixtures of regressions with varying, nested and
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constant parameters were a suitable model class for this identification task as they are different
from models previously implemented. The main differences are:

e The number of components is related to the component specific model and the omission
of small components during the EM algorithm impacts on the model.

e The parameters of the component specific models can not be determined scparately in
the M-step and a joint model matrix is needed.

This makes it also necessary to have different model dependent methods for fitted() which
extracts the fitted values from a "flexmix" object, predict() which predicts new values
for a "flexmix" object and refit() which refits an estimated model to obtain additional
information for a "flexmix" object.

4.1. Component specific models with varying and constant parameters

A new M-step driver is provided which fits finite mixtures of GLMs with constant and
nested varying parameters for the coefficients and the dispersion parameters. The class
"FLXMRglmfix" returned by the driver FLXMRglmfix () has the following additional slots with
respect to "FLXMRglm":

design: An incidence matrix indicating which columns of the model matrix are used for
which component, i.e. D = (1x,J,1x).

nestedformula: An object of class "FLXnested" containing the formula for the nested re-
gression coefficients and the number of components in each K., ¢ € C.

fixed: The formula for the constant regression cocfficients.

variance: A logical indicating if different variances shall be estimated for the components fol-
lowing a Gaussian distribution or a vector specifying the nested structure for estimating
these variances.

The difference between estimating finite mixtures including only varying parameters using
models specified with FLXMRgIm() and those with varying and constant parameters using
function FLXMRglmfix () is hidden from the user, as only the specified model is different. The
fitted model is also of class "flexmix" and can be analyzed using the same functions as for
any model fitted using package flexmix. The methods used are the same except if the slot
containing the model is accessed and method dispatching is made via the model class. New
methods are provided for models of class "FLXMRglmfix" for functions refit(), fitted()
and predict () which can be used for analyzing the fitted model.

‘The implementation allows repeated measurements by specifying a grouping variable in the
formula argument of flexmix (). Furthermore, it has to be noticed that the model matrix is
determined by updating the formula of the varying parameters successively with the formula
of the constant and then of the nested varying parameters. This ensures that if a mixture
distribution is fitted for the intercept, the model matrix of a categorical variable includes only
the remaining columns for the constant parameters to have full column rank. However, this
updating scheme makes it impossible to estimate a constant intercept while allowing varying
parameters for a categorical variable.
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For this model one big model matrix is constructed where the observations are repeated K
times and suitable columns of zero added. The coefficients of all K components are determined
simultaneously in the M-step, while if only varying parameters are specified the maximization
of the likelihood is made separately for all components. For large datasets the estimation of
a combination of constant and varying parameters might therefore be more challenging than
only varying parameters.

4.2. Concomitant variable models

For representing concomitant variable models the class "FLXP" is defined. It specifies how the
concomitant variable model is fitted using the concomitant variable model matrix as predictor
variables and the current a-posteriori probability estimates as response variables. The object
has the following slots:

fit: A function (x, y, ...) returning the fitted values for the component weights during
the EM algorithm.

refit: A function (x, y, ...) used for refitting the model.

df: A function (x, k, ...) returning the degrees of freedom used for estimating the
concomitant variable model given the model matrix x and the number of components
k.

x: A matrix containing the model matrix of the concomitant variables.
formula: The formula for determining the model matrix x.

name: A character string describing the model, which is only used for print output.

Two constructor functions for concomitant variable models are provided at the moment.
FLXPconstant () is for constant component weights without concomitant variables and for
multinomial logit models FLXPmultinom() can be used. FLXPmultinom() has its own class
"FLXPmultinom" which extends "FLXP" and has an additional slot coef for the fitted coef-
ficients. The multinomial logit models are fitted using package nnet (Venables and Ripley
2002).

4.3. Further changes

The estimation of the model with the EM algorithm was improved by adapting the variants
to correspond to the CEM and SEM variants as outlined in the literature. To make this more
explicit it is now also possible to use "CEM" or "SEM" to specify an EM variant in the classify
argument of the "FLXcontrol" object. Even though the SEM algorithm can in general not
be expected to converge the fitting procedure is also terminated for the SEM algorithm if
the change in the relative log-likelhood is smaller than the pre-specified threshold. This is
motivated by the fact that for well separated clusters the posteriors might converge to an
indicator function with all weight concentrated in one component. The fitted model with the
maximum likelihood encountered during the SEM algorithm is returned.

For discrete data in general multiple observations with the same values are given in a dataset.
A weights argument was added to the fitting function flexmix () in order to avoid repeating
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these observations in the provided dataset. The specification is through a formula in order
to allow selecting a column of the data frame given in the data argument. The weights
argument allows to avoid replicating the same observations and hence enables more efficient
memory use in these applications. This possibitliy is especially useful in the context of model-
based clustering for mixtures of Poisson distributions or latent class analysis with multivariate
binary observations.

In order to be able to apply different initialization strategies such as for example first running
several different random initializations with CEM and then switching to ordinary EM using
the best solution found by CEM for initialization a posterior() function was implemented.
posterior() also takes a newdata argument and hence, it is possible to apply subset strate-
gies for large datasets as suggested in Wehrens, Buydens, Fraley, and Raftery (2004). The
returned matrix of the posterior probabilities can be used to specify the cluster argument
for flexmix () and the posteriors are then used as weights in the first M-step.

"The default plot methods now use trellis graphics as implemented in package lattice (Sarkar
2008). Users familiar with the syntax of these graphics and with the plotting and printing
arguments will find the application intuitive as a lot of plotting arguments are passed to
functions from lattice as for example xyplot () and histogram(). In fact only new panel, pre-
panel and group-panel functions were implemented. The returned object is of class "trellis"
and the show method for this class is used to create the plot.

Function refit() was modified and has now two different estimation methods: "optim”
and "mstep". The default method "optim" determines the variance-covariance matrix of the
parameters from the inverse Hessian of the full log-likelihood. The general purpose optimizer
optim() is used to maximize the log-likelihood and initialized in the solution obtained with
the EM algorithm. For mixtures of GLMs there are also functions implemented to determine
the gradient which can be used to speed up convergence.

The second method "mstep" is only a raw approximation. It performs an M-step where
the a-posteriori probabilities are treated as given instead of estimated and returns for the
component specific models nearly complete "glm" objects which can be further analyzed.
The advantage of this method is that the return value is basically a list of standard "glm"
objects, such that the regular methods for this class can be used.

5. Writing your own drivers

Two examples are given in the following to demonstrate how new drivers can be provided for
concomitant variable models and for component specific models. Easy extensibility is one of
the main implementation aims of the package and it can be seen that writing new drivers
requires only a few lines of code for providing the constructor functions which include the fit
functions.

5.1. Component specific models: Zero-inflated models

In Poisson or binomial regression models it can be often encountered that the observed number
of zeros is higher than expected. A mixture with two components where one has mean zero
can be used to model such data. These models are also referred to as zero-inflated models (see
for example Bshning, Dietz, Schlattmann, Mendonca, and Kirchner 1999). A generalization
of this model class would be to fit mixtures with more than two components where one
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component has a mean fixed at zero. So this model class is a special case of a mixture of
generalized linear models where (a) the family is restricted to Poisson and binomial and (b)
the parameters of one component are fixed. For simplicity the implementation assumes that
the component with mean zero is the first component. In addition we assume that the model
matrix contains an intercept and to have the first component absorbing the access zeros the
coefficient of the intercept is set to —co and all other coefficients are set to zero.

Hence, to implement this model using package flexmix an appropriate model class is needed
with a corresponding convenience function for construction. During the fitting of the EM
algorithm using flexmix() different methods for this model class are needed when deter-
mining the model matrix (to check the presence of an intercept), to check the model after
a component is removed and for the M-step to account for the fact that the coefficients of
the first component are fixed. For all other methods those available for "FLXMRgIm" can be
re-used. The code is given in Figure 11.

The model class "FLXMRziglm" is defined as extending "FLXMRglm" in order to be able to
inherit methods from this model class. For construction of a "FLXMRziglm" class the conveni-
cence function FLXMRziglm() is used which calls FLXMRglm(). The only differences are that
the family is restricted to binomial or Poisson, that a different name is assigned and that an
object of the correct class is returned.

The presence of the intercept in the model matrix is checked in FLXgetModelmatrix () after us-
ing the method available for "FLXMRglm" models as indicated by the call to callNextMethod ().
During the EM algorithm FLXremoveComponent () is called if one component is removed. For
this model class it checks if the first component has been removed and if this is the case the
model class is changed to "FLXMRglm".

In the M-step the coefficients of the first component are fixed and not estimated, while for the
remaining components the M-step of "FLXMRglm" objects can be used. During the EM algo-
rithm FLXmstep() is called to perform the M-step and returns a list of "FLXcomponent" ob-
jects with the fitted parameters. A new method for this function is needed for "FLXMRziglm"
objects in order to account for the fixed coefficients in the first component, i.e. for the
first component the "FLXcomponent" object is constructed and concatenated with the list
of "FLXcomponent" objects returned by using the FLXmstep() method for "FLXMRglm" mod-
els for the remaining components.

Similar modifications are necessary in order to be able to use refit() for this model class.
The code for implementing the refit() method using optim() for "FLXMRziglm" is not
shown, but can be inspected in the source code of the package.

Example: Using the driver

This new M-step driver can be used to estimafte a zero-inflated Poisson model to the data
given in Bohning et al. (1999). The dataset dmft consists of count data from a dental epi-
demiological study for evaluation of various programs for reducing caries collected among
school children from an urban area of Belo Horizonte (Brazil). The variables included are the
number of decayed, missing or filled teeth (DMFT index) at the beginning and at the end of
the observation period, the gender, the ethnic background and the specific treatment for 797
children.

The model can be fitted with the new driver function using the following commands:
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setClass ("FLXMRziglm", contains = "FLXMRglm")

FLXMRziglm <- function(formula = . .

family = c¢("binomial", "poisson"), ...)
{
family <- match.arg(family)
new ("FLXMRziglm", FLXMRglm(formula, family, ...),
name = paste("FLXMRziglm", family, sep=":"))
¥
setMethod ("FLXgetModelmatrix", signature(model="FLXMRziglm"),
function(model, data, formula, 1lhs=TRUE, ...)
{
model <- callNextMethod(model, data, formula, 1lhs)
if (attr(terms(model@fullformula), "intercept") == 0)
stop("please include an intercept")
model
b
setMethod ("FLXremoveComponent", signature(model = "FLXMRziglm”),
function(model, nok, ...)
{
if (1 %in?% nok) as(model, "FLXMRglm") else model
B

]

setMethod ("FLXmstep", signature(model
function(model , weights, ...)

"FLXMRziglm"),

{
coef <- c(-Inf, rep(0, ncol(model®x)-1))
names (coef) <- colnames (model®x)
comp.1l <- with(list(coef = coef, df = 0, offset = NULL,

c(list (comp.1),
FLXmstep (as (model , "FLXMRglm"), weights[, -1, drop=FALSE]))
1))

family = model@family), eval(model®@defineComponent))

27

Figure 11: Driver for a zero-inflated component specific model.

R> data("dmft")

R> Model <- FLXMRziglm(family = "poisson")

R> Fitted <- flexmix(End ~ log(Begin + 0.5) + Gender + Ethnic + Treatment,
+ model = Model, k = 2 , data = dmft, control = list(minprior = 0.01))
R> summary (refit (Fitted))

$Comp. 2

Estimate Std. Error z value Pr(>|z|)
(Intercept) ~0.1470652 0.0963031 -1.5271 0.126734
log(Begin + 0.5) 0.7303431 0.0402403 18.1496 < 2.2e-16 ***
Gendermale 0.0068805 0.0550486 0.1250 0.900531

Ethnicwhite 0.0500281 0.0592975 0.8437 0.398848
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Ethnicblack -0.0472578 0.0899984 -0.5251 0.599516
Treatmenteduc -0.2371848 0.09056877 -2.6183 0.008837 *x*
Treatmentall -0.3277747 0.1011837 -3.2400 0.001195 *x*
Treatmentenrich 0.0172642 0.0838730 0.2058 0.836918
Treatmentrinse -0.2414627 0.0871032 ~-2.7721 0.005569 *x*
Treatmenthygiene -0.1026315 0.0916676 -1.1196 0.262882
Signif. codes: O 'x*x' 0,001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Please note that Bohning et al. (1999) added the predictor log(Begin + 0.5) to serve as
an offset in order to be able to analyse the improvement in the DMFT index from the be-
ginning to the end of the study. The linear predictor with the offset subtracted is intended
to be an estimate for log(E(End)) — log(E(Begin)). This is justified by the fact that for a
Poisson distributed variable Y with mean between 1 and 10 it holds that E(log(Y + 0.5)) is
approximately equal to log(E(Y)). log(Begin + 0.5) can therefore be seen as an estimate for
log(E(Begin)).

The estimated coeflicients with corresponding confidence intervals are given in Figure 12. As
the coefficients of the first component are restricted a-priori to minus infinity for the intercept
and to zero for the other variables, they are of no interest and only the second component is
plotted. The box ratio can be modified as for barchart () in package lattice. The code to
produce this plot is given by:

R> print(plot(refit(Fitted), components = 2, box.ratio = 3))

5.2. Concomitant variable models

If the concomitant variable is a categorical variable, the multinomial logit model is equivalent
to a model where the component weights for each level of the concomitant variable are de-
termined by the mean values of the a-posteriori probabilities. The driver which implements
this "FLXP" model is given in Figure 13. A name for the driver has to be specified and a
fit () function. In the fit() function the mean posterior probability for all observations
with the same covariate points is determined, assigned to the corresponding observations and
the full new a-posteriori probability matrix returned. By contrast refit() only returns the
new a-posteriori probability matrix for the number of unique covariate points.

Ezrample: Using the driver

If the concomitant variable model returned by myConcomitant() is used for the artificial
example in Section 3 the same fitted model is returned as if a multinomial logit model is
specified. An advantage is that in this case no problems occur if the fitted probabilities are
close to zero or one.

R> Concomitant <- FLXPmultinom(~ yb)

R> MyConcomitant <- myConcomitant(~ yb)

R> m2 <- flexmix(. ~ x, data = NPreg, k = 2, model = list(Model_n, Model_p),
+ concomitant = Concomitant)

R> m3 <- flexmix(. ~ x, data = NPreg, k = 2, model = list(Model_n, Model_p),
+ cluster = posterior(m2), concomitant = MyConcomitant)
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Figure 12: The estimated coefficients of the zero-inflated model for the dmft dataset. The first
component is not plotted as this component captures the inflated zeros and its coefficients
are fixed a-priori.

myConcomitant <~

function(formula = ~ 1) {
z <- new("FLXP",
name = "myConcomitant",
formula = formula)
z@fit <- function(x, y, w, ...) {
if (missing(w) || is.null(w)) w <- rep(l, length(x))
f <- as.integer(factor(apply(x, 1, paste,
collapse = "")))
AVG <- apply(w*xy, 2, tapply, f, mean)
(AVG/rowSums (AVG)) [, ,drop=FALSE]
}
z@refit <- function(x, y, w, ...) {
if (missing(w) || is.null(w)) w <- rep(l, length(x))
f <~ as.integer(factor (apply(x, 1, paste,
collapse = "")))
AVG <~ apply(w*xy, 2, tapply, f, mean)
(AVG/rowSums (AVG))
¥
z

Figure 13: Driver for a concomitant variable model where the component weights are de-
termined by averaging over the a-posteriori probabilities for each level of the concomitant
variable.

29
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R> summary (m2)

Call:
flexmix(formula = . ~ x, data = NPreg, k = 2, model = list(Model_n,
Model_p), concomitant = Concomitant)

prior size post>0 ratio
Comp.1 0.493 96 138 0.696
Comp.2 0.507 104 137 0.759

'log Lik.' -1044.724 (df=14)
AIC: 2117.448 BIC: 2163.625

R> summary (m3)

Call:
flexmix(formula = . ~ x, data = NPreg, k = 2, cluster = posterior(m2),
model = list(Model_n, Model_p), concomitant = MyConcomitant)

prior size post>0 ratio
Comp.1 0.493 96 138 0.696
Comp.2 0.507 104 137 0.759

'log Lik.' -1044.724 (df=14)
AIC: 2117.448 BIC: 2163.625

For comparing the estimated component weights for each value of yb the following function
can be used:

R> determinePrior <- function(object) {

+ object@concomitant@fit (object@concomitant@x,
+ posterior(object))[!duplicated(object@concomitant@x), ]
+

R> determinePrior(m2)

[’1] [,2]
1 0.4830052 0.5169948
4 0.5050200 0.4949800

R> determinePrior(m3)

[,1] [,2]
1 0.4830037 0.5169963
2 0.5050168 0.4949832
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Obviously the fitted values of the two models correspond to each other.

6. Summary and outlook

Package flexmix was extended to cover finite mixtures of GLMs with (nested) varying and
constant parameters. This allows for example the estimation of varying intercept models. In
order to be able to characterize the components given some variables concomitant variable
models can be estimated for the component weights.

The implementation of these extensions have triggered some modifications in the class struc-
ture and in the fit functions flexmix() and FLXfit (). For certain steps, as e.g. the M-step,
methods which depend on the component specific models are defined in order to enable the
estimation of finite mixtures of GLMs with only varying parameters and those with (nested)
varying and constant parameters with the same fit function. The flexibility of this modified
implementation is demonstrated by illustrating how a driver for zero-inflated models can be
defined.

In the future diagnostic tools based on resampling methods shall be implemented as bootstrap
results can give valuable insights into the model fit (Griin and Leisch 2004). A function
which conveniently allows to test linear hypotheses about the parameters using the variance-
covariance matrix returned by refit() would be a further valuable diagnostic tool.

The implementation of zero-inflated Poisson and binomial regression models are a first step
towards relaxing the assumption that all component specific distributions are from the same
parametric family. As mixtures with components which follow distributions from different
parametric families can be useful for example to model outliers (Dasgupta and Raftery 1998;
Leisch 2008), it is intended to also make this functionality available in flexmix in the future.

Computational details

All computations and graphics in this paper have been done using R version 2.7.2 with the
packages nnet 7.2-44, flexmix 2.1-1, multcomp 1.0-2, mvtnorm 0.9-2, modeltools 0.2-15, lattice
0.17-13, tools 2.7.2.
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